
The main research topics we wish to pursue are problems in extremal graph theory. In particular,
we are interested in problems from Ramsey Theory and Saturation Games.

Ramsey Theory. One of the classical areas of extremal combinatorics is Ramsey Theory, whose
problems ask how large an object can be before it contain a certain structure. This theory was
originally introduced by Ramsey to solve a problem in logic [5], and since then Ramsey theoretic
results have appeared and been utilized in various areas of mathematics. Some notable Ramsey
theoretic results includes Schur’s Theorem [6] in number theory (if N is partitioned into finitely
many classes, then some class contains x, y, and z such that x + y = z) and the Erdős-Szekeres
theorem [1] in discrete geometry (if P is an infinite number of points in the plane in general
position, then P contains infinitely many points in convex position). Ramsey Theory was a key
tool in the proof of Gowers’ celebrated Dichtomy Theorem [3], a theorem in functional analysis.

Let K(k)
n denote the complete k-uniform hypergraph on n vertices. Let rk(n) denote the smallest

N such that in any red/blue coloring of K(k)
N , there exists either a red K

(k)
n or a blue K(k)

n . A major
problem in Ramsey Theory is to find bounds for rk(n). An extremal example of this is the case
n = k + 1, for which the best known bounds are roughly 2k ≤ rk(k + 1) ≤ 22

k .
In an attempt to improve the bounds on rk(k+1), we consider a generalization of this problem.

Let hk(s) denote the smallest number N such that in any red/blue coloring of K(k)
N , there either

exists a red K
(k)
k+1, or there exists a set of k + 1 vertices which contain at least s blue edges. For

example, hk(k + 1) = rk(k + 1). While it is not too difficult to prove that hk(1) and hk(2) are
linear, the best known bounds for s = 3 are roughly k + 2 ≤ hk(3) ≤ 22

k . Our goal is to sharpen
the bounds of hk(s) for various s, with the hope that these methods could then be used to improve
the bounds for rk(k + 1). As a first step, we would like to improve the bounds on hk(3), and we
are currently exploring two different approaches to do this.

Our first approach comes from Design Theory. We will say that a k-uniform hypergraph on n
vertices H is an (n, k, s)-Steiner system if every (k − 1)-set of H is contained in at least 1 edge
but no more than s edges. Such objects are known as “almost Steiner systems,” with the case
s = 1 corresponding to the normal definition of a Steiner system. We were able to prove the
following: hk(s) > M if and only if there exists an (M,M − k, s − 1)-Steiner system. Using
this and recent results of Keevash [4] from Design Theory, we were able to prove, for infinitely
many k, that hk(2) = k + lpf(k + 1), where lpf(x) denotes the smallest prime factor of x. This
result is somewhat surprising, as initially this problem does not seem to be related to the number
theoretic properties of k. In a similar fashion, we suspect that the bounds of hk(3) can be improved
by looking at this problem from a Design Theory point of view.

Our second approach involves a relation between hk(3) and the Turán number ex(n,K
(k)
k+1),

which is the maximum number of edges a k-uniform hypergraph on n vertices can have without
containing K

(k)
k+1 as a subgraph. It can be shown that a significant improvement of the upper bound

of ex(n,K(k)
k+1) would imply an improvement to the upper bound of hk(3). With Jacques Verstraete,

we are exploring ideas using the probabilistic method to improve the upper bound on ex(n,K
(k)
k+1).

Namely, we are working on a method to probabilistically find a large clique in a hypergraph by
looking at the link hypergraph for each vertex. Improving the bounds on ex(n,K

(k)
k+1), in addition

to being of independent interest, could improve the bounds for hk(3).
Saturation Games. Let F be a set of (forbidden) graphs. Consider the following game played

by two players, Min and Max, which we call the (F , n)-game. The game starts with an empty
graph G on n vertices. The players alternate turns adding edges to G, with the only restriction
being that neither play can add an edge that would create some F ∈ F as a subgraph in G, and
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the game ends when no more edges can be added to G. If there are e edges in G at the end of the
game, then Max’s score for the game is e and Min’s score is −e. Thus Max wants the game to last
as long as possible and Min wants the game to end as quickly as possible. Assuming both players
play optimally, we wish to bound the number of edges in G at the end of the game.

Let Ck denote the cycle graph on k vertices. Saturation Games were first introduced by Füredi
et al. [2] in 1992, where they showed that the ({C3}, n)-game ends with at least 1

2
n log n edges.

Using results from extremal graph theory, one can show that if F contains any odd cycles, then
the (F , n)-game ends with at most 1

4
n2 edges. In terms of order of magnitude, these are the only

known bounds for the number of edges at the end of the ({C3}, n)-game. Despite this, we were
able to show the following.

Theorem 1. [7] For k ≥ 2, the ({C3, C5, . . . , C2k+1}, n)-game ends with quadratically many
edges. Moreover, if k ≥ 4 the game ends with at most ckn2 edges for some ck <

1
4
.

Saturation Games are still a relatively new subfield of extremal graph theory, and hence it con-
tains many open problems that are likely to be solvable. In particular, we are interested in proving
bounds for variants of the ({C3}, n)-game. For example, Theorem 1 shows that the ({C3, C5}, n)-
game ends with quadratically many edges, but it is not known whether the same is true for the
({C3, C7}, n)-game, even though these problems appear to be quite similar. Bounding these vari-
ant games should give insight as to what the correct order of magnitude is for the number of edges
at the end of the ({C3}, n)-game. Moreover, the techniques used to solve these variant games could
potentially be used to improve the bounds of the ({C3}, n)-game as well.

In addition to this, we would like to try to establish the foundations of a general theory for Sat-
uration Games, which the field currently lacks. In particular, none of the currently known bounds
for Saturation Game use the probabilistic method. Given how prominent the probabilistic method
has been in solving various problems in extremal combinatorics, we believe that there exists Sat-
uration Games whose bounds can be greatly improved by utilizing a probabilistic argument. Our
plan is to develop elements of a probabilistic strategy that could be used by either Max or Min,
and then to work out which (F , n)-games these probabilistic strategies could be used for. Once
probabilistic methods have been shown to work for some specific set of problems, we suspect that
a more general theory for Saturation Games using the probabilistic method could be developed.

Broader Impact. We are excited to talk about our results at seminars and conferences, espe-
cially at seminars and conferences that we organize, such as the UCSD Graduate Student Combi-
natorics Seminar and the Graduate Student Combinatorics Conference 2020. In addition to this, we
are scheduled to speak at the UCSD Combinatorics Seminar about our work in Saturation Games
this winter.
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