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Preface

This is a work in progress. There are typos, missing references, and so on scattered through-
out. Please let me know if you notices such errors, find anything confusing, or if
you have any other suggestions! If you prefer, you can let me know about any of this
anonymously through this link.

The following is a set of lecture notes for a graduate level course in extremal combinatorics.
These notes focus on standard methods that have been used to solve a large number of prob-
lems in extremal combinatorics. Throughout I assume basic knowledge of asymptotic analysis,
probability theory, and linear algebra.

Due to the sheer scope of extremal combinatorics, there are many methods which I am not able
to cover at all (and there is no topic which I am able to cover in complete depth). Below is
a small list of methods and topics not covered by this text, as well as sources for a thorough
treatment of the topics.

� Extremal Combinatorics in general: see books of Lovasz [64] or Bollobás [14]; surveys
by Simonovits and Szemerédi [83] and Füredi and Simonovits [43]; and online courses by
Morris and Gowers.

� Discrete geometry: see the books by Sheffer [82] and Matoušek [68], as well as the online
minicourse on finite geometry and Ramsey theory by Bishnoi.

� Additive combinatorics and discrete Fourier analysis: see the book by Tao and Vu [88],
as well as online courses by Prendiville and Zhao.

� Statistical mechanics: see notes by Will Perkins.

� The discharging method: see the survey by Cranston and West [22].
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Part I

Basic Probabilistic Methods

This part is based heavily off of the book by Alon and Spencer [5] (which goes into much more
depth on the topic), as well as lecture notes by Verstraëte.
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1 Introduction

One of the most exciting developments in extremal combinatorics over the past century has
been the incorporation of ideas and tools from probability theory into solving combinatorial
problems. The first such use was by Erdős who proved an exponential lower bound for Ramsey
numbers. We recall that the Ramsey number R(s, t) is the smallest integer N such that any
2-coloring of the edges of KN contains a monochromatic clique.

Theorem 1.1 ([31]). For all n, we have

R(n, n) ≥ (1 + o(1))
n

e
√

2
2n/2.

This is essentially the best known lower bound (though we prove a slightly stronger bound in
Theorem 3.3). The best known upper bound is roughly 4n, so there’s still quite a gap!

For this proof and throughout the text, we make heavy use of the union bound: if A,B are
events in a probability space, then Pr[A∪B] ≤ Pr[A] + Pr[B]. Often we will use an equivalent
version: Pr[A ∩B] ≤ 1− Pr[A]− Pr[B], which follows from De Morgan’s laws.

Proof. Let G be a random coloring of KN with N to be determined later1. That is, for each
edge of KN , we independently and uniformly choose the edge to be colored either red or blue.
The key observation is that if Pr[G contains no monochromatic Kn] > 0, then there exists a
coloring of KN with no monochromatic Kn (since otherwise the probability would be zero),
proving the desired lower bound.

If S is a set of n vertices, we let AS be the event that G contains a monochromatic Kn on S.
With this we have

Pr[G contains a monochromatic Kn] = Pr
[ ⋃
S∈([N ]

n )

AS
]
≤

∑
S∈([N ]

n )

Pr[AS] =

(
N

n

)
· 21−(n2).

If this quantity is less than 1, then we can conclude that Pr[G contains no monochromatic Kn] >
0, so our goal is to choose N as large as possible so that this happens. By using the bound(
N
n

)
≤ (eN/n)n (which we will use many times throughout the text), we see that it suffices to

have2

1 > (eN/n)21−(n2) = 2(eN/n2(n−1)/2)n.

Solving this shows that the desired bound holds if N < 21/n · n
e
√

2
2n/2, proving the result3.

1When trying to prove results in extremal and probabilistic combinatorics, one often uses a method that
depends on some parameter such as N or p. Typically it is best to proceed through the argument without
deciding what N, p is ahead of time, and only in the end do you optimize your parameter to give you the best
bounds possible.

2Finding the “right” way to bound expressions like this takes time and practice. A reasonable strategy for
these sorts of problems is try and get all of the main terms to have the same form (e.g. xn in this example).
Much more about the art of asymptotic analysis can be found in the book Asymptopia by Spencer [85].

3In fact, a closer analysis of this proof shows that asymptotically, almost every coloring of KN with N =
(2 − ε)n/2 contains no monochromatic Kn. Despite almost every coloring working, we know of no explicit
coloring that gives more than a polynomial lower bound for R(n, n). Thus the probabilistic method gives us a
way to find the hay in the haystack.
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The proof of Theorem 1.1 implicitly used the following general principle, which is at the heart
of the probabilistic method.

(*) Let T be an object chosen randomly from a set T (in some way) and P some property
that objects in T could have. If Pr[T has property P ] > 0, then there exists some T ′ ∈ T
with this property.

We now turn to another classical extremal problem with a slick probabilistic proof. Recall that
α(G) denotes the largest independent set of a graph G, i.e. the largest set of vertices I such
that there exist no edge contained in I.

Theorem 1.2 (Caro-Wei Bound). Let G be an n-vertex graph with degrees d1, . . . , dn. Then

α(G) ≥
∑ 1

di + 1
.

Moreover, equality holds if and only if G is a disjoint union of cliques.

Here and throughout the text we make heavy use of the principle of linearity of expectation:
for two (possibly dependent) real-valued random variables, we have E[X + Y ] = E[X] + E[Y ].

Proof. For π a bijection from V (G) to [n], we define

I(π) = {v ∈ V (G) : π(v) < π(u) ∀u ∈ N(v)}.

That is, I(π) is the set of vertices which are smaller than all of their neighbors under π. Observe
that I(π) is an independent set (if u, v are adjacent we must have, say π(v) < π(u), in which
case u /∈ I(π)), so in particular α(G) ≥ |I(π)| for all π.

Let π be a random bijection chosen uniformly amongst all bijections from V (G) to [n], and let
1v be the indicator variable which is 1 if v ∈ I(π) and 0 otherwise. Note that regardless of what
π is, we have α(G) ≥ |I(π)| =

∑
1v, so by linearity of expectation we have

α(G) ≥ E[I(π)] =
∑

E[1v] =
∑

Pr[1v = 1]. (1)

Observe that 1v = 1 if and only if π(v) = minu∈{v}∪N(v) π(u). Since π was chosen uniformly at
random, each u ∈ {v} ∪N(v) is equally likely to achieve this minimum, so Pr[1v = 1] = 1

d(v)+1
,

and plugging this into (1) gives the result.

Note that equality holds in (1) if and only if I(π) is an independent set of maximum size for
all bijections π. It is not too difficult to show that this holds if and only if G is a disjoint union
of cliques, and we leave this as an exercise to the reader.

Theorem 1.2 implies Turán’s theorem, which is essentially the result that jump started the
entire field of extremal combinatorics1 (though the original proof was not probabilistic).

1The first theorem in extremal combinatorics is typically attributed to Mantel, which is the r = 3 case of
Turán’s Theorem. However, it wasn’t until Turán’s result 30 years later that the field really took off.
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To state this result, we define ex(n, F ) to be the largest number of edges that an n-vertex F -free
graph can have1 which is called the Turán number or extremal number of F . We define the
Turán graph Tr(n) to be the complete n-vertex r-partite graph with parts of sizes as equal as
possible. We let tr(n) = e(Tr(n)). For example, T2(n) = Kbn/2c,dn/2e and t2(n) = bn/2c·dn/2e =
bn2/4c. More generally we have

tr(n) ≤
(
r

2

)
(n/r)2 =

r − 1

r
· n

2

2
=

(
1− 1

r

)
n2

2
,

with equality holding if r|n and otherwise tr(n) is the floor of this upper bound.

Corollary 1.3 (Turán’s Theorem). For all r ≤ n we have

ex(n,Kr) = tr−1(n).

Moreover, Tr−1(n) is the unique n-vertex Kr-free graph with tr−1(n) edges.

Proof. The lower bound ex(n,Kr) ≥ tr−1(n) follows by considering Tr−1(n). Let G be an
n-vertex Kr-free graph with degrees d1, . . . , dn. Observe that the complement G contains no
independent set of size r, so by Theorem 1.2 we have

r − 1 ≥ α(G) ≥
∑ 1

n− di
. (2)

Observe that if x, y are positive numbers, then2

1

x
+

1

y
≥ 1

1
2
(x+ y)

+
1

1
2
(x+ y)

with equality holding if and only if x = y. In view of this inequality, we see that (2) is minimized
when all of the di are as close together as possible. Because

∑
di = 2e(G), we have

r − 1 ≥ n · 1

n− 2e(G)/n
=

n2

n2 − e(G)
=⇒ e(G) ≤

(
1− 1

r − 1

)
n2/2,

so e(G) ≤ tr−1(n) as desired. Moreover, to have equality, G must be a union of cliques with
sizes as close as possible to each other, i.e. G must be a complete r-partite graph with parts
having sizes as close as possible to each other, i.e. G must be the Turán graph.

In addition to using the probabilistic method to get an upper bound for ex(n,Kn) as in Corol-
lary 1.3, one can also use it to give a general lower bound for ex(n, F ).

Theorem 1.4. Let F be a graph with v vertices and e ≥ 2 edges. If e ≥ v, then

ex(n, F ) = Ωv(n
2− v−2

e−1 ).

1Throughout the text, a graph being F -free means that it contains no subgraph which is isomorphic to F
(and we don’t care whether this subgraph is induced or not).

2By multiplying both sides of the above expression by xy(x + y), we see that this is equivalent to saying
y(x+ y) + x(x+ y) ≥ 4xy, which is equivalent to saying x2 − 2xy + y2 = (x− y)2 ≥ 0.
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For this proof we use an object that is fundamental to probabilistic and extremal combinatorics.
This is the Erdös-Renyi random graph Gn,p, which is the random graph on n vertices that
contains each edge e ∈ E(Kn) independently and with probability p. For example, Gn,1 = Kn

and Gn,1/2 is equally likely to be any labeled graph on n vertices. The random graph is an
incredibly fascinating object in its own right. We will not discuss it in too much depth in this
text, see the book by Frieze and Karoński [41] for a thorough treatment of it.

Proof. Let Gn,p be the random graph with p a quantity to be determined later. Let X denote
the number of copies of F in Gn,p. For S a set of v vertices, let 1S be the indicator variable
which is 1 if S contains a copy of F in Gn,p and which is 0 otherwise. With this,∑

1S ≤ X ≤ v!
∑

1S,

since each set of v vertices contains at most v! copies of F . To have 1S = 1, we in particular
need S to contain at least e edges, so

Pr[1S = 1] ≤
∑
k≥e

((v
2

)
k

)
pk(1− p)(

v
2)−k ≤ v22v

2

pe ≤ 4v
2

pe.

In total this gives

E[X] ≤ v!

(
n

v

)
· 4v2

pe ≤ (4vn)vpe.

Observe that when p� nv/e, the calculation above suggests that Gn,p will contain copies of F
(at least in expectation), so Gn,p will not work as an F -free graph for this range of p. However,
we can get around this by using the following trick known as the method of alterations. Let G
be any subgraph of Gn,p obtained by deleting an edge from each copy of F in Gn,p. By definition
G will be F -free. Moreover, the number of edges that G has is at least e(Gn,p) − X since at
most X of the original edges from Gn,p are deleted. Using linearity of expectation gives

E[e(G)] ≥ E[e(Gn,p)−X] ≥ p

(
n

2

)
− (4vn)vpe ≥ 1

4
pn2 − (4vn)vpe. (3)

At this point we want to choose p so that the above expression is roughly maximized. Intuitively
this will happen when both terms on the rightside of (3) are roughly equal to each other,

i.e. when pn2 ≈ nvpe. This suggests taking p ≈ n
2−v
e−1 . And indeed, after playing around

for a bit, one sees that, for example, taking p = 1
20·16v

n
2−v
e−1 and plugging it into (3) gives1

E[e(G)] ≥ 1
160·16v

n2− 2−v
e−1 . Because G is a (random) F -free graph, by (*) there exists some

deterministic graph G′ which is F -free with this many edges, proving the result.

For many F , there are known constructions which give much better lower bounds for ex(n, F )
than Theorem 1.4. However, this is the best known lower bound which works for arbitrary F .

The method used in this proof is known as the method of alterations. Typically this works by
defining some initial random set A (e.g. a set of edges of a graph) which contains some bad

1Here we use 4v
2 ≤ 4ve and that e ≥ 2.
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subsets B (e.g. subsets of edges forming a forbidden graph F ). We then define a random set
A′ by deleting an element from each bad subset B, giving that |A′| ≥ |A| − |B| and that A′ has
no bad subsets. At this point we win provided

E[|A′|] = E[|A|]− E[|B|]

is large. Typically the expectations E[|A|],E[|B|] depend on some common parameter p, and
we often optimize this expression by finding p such that E[|A|] ≈ E[|B|], and then ultimately
choosing p to be a bit smaller than this so that, say, E[|B|] ≤ 1

2
E[|A|].

(**) The method of alterations detailed above is often very useful.

The last core tenant of the probabilistic method that we have implicitly used throughout this
section is the following.

(***) If one is trying to find a nice object, one should always try and see how well a random
object does (possibly after applying alterations).

For example, the most straightforward random coloring gave the bound of Theorem 1.1, and
the random graph together with alterations gave Theorem 1.4.

Lastly, we note that in principle many of these results could be proven without needing to use
probability. However, for certain problems a probabilistic perspective is genuinely useful since it
is allows one to use powerful tools from probability theory (e.g. martingales and concentration
inequalities). Even when it isn’t strictly needed, probability often provides for a much clearer
perspective on a problem.
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2 Some Random Examples

This section consists of an assorted collection of examples which provides both practice with
the general principles of the probabilistic method, as well as proofs of many fundamental results
from extremal combinatorics.

2.1 Graphs with Small and Large Chromatic Numbers

We start with a very simple example that will be used throughout the text (often without
reference).

Lemma 2.1. If G is an n-vertex graph, then there exists a bipartite subgraph G′ ⊆ G such
that e(G′) ≥ 1

2
e(G). Moreover, we can choose G′ such that its partition classes U, V have sizes

bn/2c , dn/2e.

Given this lemma, if you want to prove a statement of the form “any graph G with Ω(m)
edges has some monotone graph property”, then you only need to consider graphs which are
(balanced) bipartite.

Proof. The first part is very easy: let U ⊆ V (G) be obtained by including each vertex inde-
pendently and with probability 1

2
, and let V = V (G) \ U . Let G′ be the graph which consists

of every edge e ∈ E(G) with one vertex in U and one vertex in V . It is easy to check that
E[e(G′)] = 1

2
e(G), so such a (bipartite) subgraph exists.

The second part is conceptually easy but computationally a little tedious. Let U ⊆ V (G) be
a set of size bn/2c chosen uniformly at random and let V = V (G) \ U . Let G′ be the graph
which consists of every edge e ∈ E(G) with one vertex in U and one vertex in V . Observe that
the probability that a given edge xy ∈ E(G) is in G′ is exactly

1− bn/2c · (bn/2c − 1)

n(n− 1)
− dn/2e · (dn/2e − 1)

n(n− 1)
≥ 1

2
,

with the last step following from a case analysis based on whether n is even or odd. Thus
in expectation G′ has at least 1

2
e(G) edges, so such a balanced bipartite subgraph of G must

exist.

A graph G is said to have girth ` if its smallest cycle is of size `, and we say that it has infinite
girth if G has no cycles. Observe that graphs of large girth locally look like a tree, i.e. if you
pick any vertex v, then the graph induced by every vertex within distance ` of v is a tree. In
particular, “locally” graphs of large girth can be properly colored using few colors, but does
this necessarily hold globally as well? That is, does there exist graphs with girth at least ` and
chromatic number at least k for all `, k? A clever (random) argument of Erdős shows that such
a graph does indeed exist.

Theorem 2.2 (Erdős). For all `, k there exist graphs of girth at least ` and chromatic number
at least k.

12



For this proof we use Markov’s inequality: if X is a non-negative real-valued random variable,
then Pr[X ≥ x] ≤ E[X]/x for x > 0.

Proof. Consider Gn,p with n, p to be determined later. Let X≤` denote the number of cycles in
Gn,p of size at most `. Linearity of expectation gives

E[X≤`] ≤
∑̀
t=3

nt · pt ≤ `(pn)`.

Thus if we wantedGn,p to have girth smaller than ` with high probability, by Markov’s inequality
it would suffice to take p � n−1. Unfortunately this naive approach is too weak since in this
case Gn,p will have very small chromatic number. To get around this, we will take p slightly
larger than n−1 and then use alterations to delete a vertex from every small cycle of Gn,p. With
some foresight1 we will take p = n−1+1/2`. With this we see that

Pr[X≤` ≥ n/2] ≤ E[X≤`]/(n/2) ≤ 2`n−1/2. (4)

We now turn to the chromatic number of Gn,p, which is a slightly trickier quantity to get a
handle on. To do this we use the inequality χ(G) ≥ |V (G)|/α(G), which follows from the fact
that a k-coloring of G is a partition of V (G) into independent sets. Thus for Gn,p to have
large chromatic number, it suffices to show that all of its independent sets are small . For m
an integer we let Ym be the number of independent sets of size m in Gn,p. Using linearity of
expectation and (1− x) ≤ e−x gives for m ≥ 2

E[Ym] =

(
n

m

)
· (1− p)(

m
2 ) ≤ nm ·

(
e−p(m−1)/2

)m ≤ (ne−pm/4)m .
By Markov’s inequality and our choice of p = n−1+1/2`, we find for m = n/2k and n sufficiently
large in terms of k, ` that

Pr[Yn/2k ≥ 1] ≤ (ne−n
1/2`/8k)m <

1

2
. (5)

By combining (4) and (5), we see for n suffiiciently large that X≤` < n/2 and Yn/2k = 0 both
occur with positive probability, i.e. there exists a graph G such that both of these events occur.
Let G′ be G after deleting a vertex from each cycle of length at most ` in G. This deletes at
most half the vertices of G by assumption of X≤`, and we have α(G′) ≤ α(G) ≤ n/2k. Thus

χ(G′) ≥ |V (G′)|/α(G′) ≥ k,

proving the result.

2.2 Random Permutations and Extremal Set Theory

In this subsection, we use random permutations (similar to the proof of Theorem 1.2) to
prove two famous results from extremal set theory, which is roughly speaking the study of

1The exact choice of p doesn’t matter here, the important thing is to take p = n−1+α with 0 < α < 1/`.
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extremal problems for hypergraphs. We only scratch the surface of this topic, see Frankl and
Tokushige [37] for a more thorough treatment.

We start with the most fundamental theorem in extremal set theory: the Erdős-Ko-Rado
theorem.

Theorem 2.3 (Erdős-Ko-Rado Theorem). Let F ⊆
(

[n]
k

)
be an intersecting family, i.e. F∩F ′ 6=

∅ for any F, F ′ ∈ F . If n ≥ 2k, then

|F| ≤
(
n− 1

k − 1

)
.

This bound is sharp by taking F to consist of every set containing the element 1 (and in fact,
up to isomorphism this is the unique extremal construction when n > 2k). Note that if n < 2k,
then F =

(
[n]
k

)
is an intersecting family, so we need n ≥ 2k for us to be able to prove a non-trivial

bound.

Proof. The proof uses what is known as Katona’s circle method, which involves choosing a
random cyclic ordering π : [n]→ Zn, where Zn is the integers mod n. Given such a π and a set
A ∈ F , we let 1A be the indicator variable with 1A = 1 if A = {π(i), π(i) + 1, . . . , π(i) + k− 1}
for some i ∈ [n]. We claim that 1A = 1 for at most k sets A.

Indeed, if 1A = 0 for all A then there is nothing to prove, so assume 1A = 1 for some A, say
with A = {π(i), π(i) + 1, . . . , π(i) +k−1}. Let Sj = {π(i) + j, π(i) + j+ 1, . . . , π(i) + j+k−1},
and observe that if B ∈ F has 1B = 1, then we must have1 B = Sj for some −k < j < k.
Moreover, for each pair {S−k+`, S`} with 0 ≤ ` < k, at most one B ∈ F is equal to one of these
sets since S−k+`, S` are disjoint, so in total we conclude that 1A = 1 for at most k different
A ∈ F .

Observe2 that Pr[1A = 1] = n
(
n
k

)−1
, and this together with the claim above implies

k ≥ E[
∑
A∈F

1A] =
∑
A∈F

Pr[1A = 1] = |F| · n
(
n

k

)−1

,

and rearranging gives the desired bound.

There are many, many proofs of the Erdős-Ko-Rado theorem, as well as many generalizations
and applications. Again, we refer the reader to [37] for more on this. Our second result related
to extremal set theory is the following.

Theorem 2.4 (Bollobás Set Pairs Inequality). Let A = {A1, . . . , Am} and B = {B1, . . . , Bm}
be set systems such that Ai ∩Bi = ∅ for all i and Ai ∩Bj 6= ∅ for all i 6= j. Then

m∑
i=1

(
|Ai|+ |Bi|
|Ai|

)−1

≤ 1

1Here we use that each B ∈ F intersects A and that n ≥ 2k implies Sk is disjoint from A
2This follows because for any cyclic ordering π there are exactly n sets S which have 1S = 1
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Pairs of families as in Theorem 2.4 are called cross-intersecting.

Proof. Let π be a random permutation of the underlying ground set (the size of which is
irrelevant for the conclusion/proof). Let 1i be the indicator variable with 1i = 1 if π(x) < π(y)
for all x ∈ Ai and y ∈ Bi. That is, 1i is the indicator for the event that Ai appears completely

before Bi under π. A simple counting argument shows that Pr[1i = 1] =
(|Ai|+|Bi|
|Ai|

)−1
(where

here we implicitly use that Ai ∩Bi = ∅, as otherwise Pr[1i = 1] = 0).

We claim that there is at most one i such that 1i = 1. Indeed, say 1i = 1. Then for any j 6= i,
by hypothesis there is some x ∈ Aj ∩Bi ⊆ Aj and y ∈ Ai ∩Bj ⊆ Bj, and since 1i = 1, we have
π(x) > π(y). Thus 1j = 0 for all j 6= i. With this claim we have

1 ≥ E
[∑

i

1i

]
=
∑

Pr[1i = 1] =
∑(

|Ai|+ |Bi|
|Ai|

)−1

.

Theorem 2.4 has many applications. One such application involves antichains, which are col-
lections of sets F such that there exist no distinct A,B ∈ F with A ⊆ B.

Corollary 2.5 (LYM Inequality). If F ⊆ 2[n] is an antichain, then

∑
A∈F

(
n

|A|

)−1

≤ 1.

Proof. Let F = {A1, . . . , Am} and define Bi = [n] \Ai. It is not difficult to check that since F
is an antichain, Ai∩Bj = ∅ if and only if i = j. The bound then follows from Theorem 2.4.

We note that the proof of Corollary 2.5 is a nice simplification of the proof of Theorem 2.4:
now 1i = 1 if and only if Ai = {π(1), . . . , π(|Ai|)}.

Corollary 2.6 (Sperner’s Theorem). If F ⊆ 2[n] is an antichain, then

|F| ≤
(

n

bn/2c

)
.

This result is sharp, as can be seen by taking F =
(

[n]
bn/2c

)
or
(

[n]
dn/2e

)
.

Proof. We have
(
n
k

)
≤
(

n
bn/2c

)
for all k, so by the LYM inequality

1 ≥
∑
A∈F

(
n

|A|

)−1

≥ |F|
(

n

bn/2c

)−1

,

and moving things around gives the desired result.
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2.3 The Crossing Lemma and Incidence Geometry

Our final result concerns drawings of graphs. Without being too precise with our definitions,
we define the crossing number of a graph G to be the minimum number of crossings that an
embedding φ(G) in the plane will have. For example, a graph is planar if and only if cr(G) = 0.

Lemma 2.7. If G is an n-vertex graph with m edges, then cr(G) ≥ m− 3n.

Sketch of Proof. Let φ(G) be an embedding of G with cr(G) crossings. By deleting an edge
from each crossing, we obtain a planar graph G′ with n vertices and at least m− cr(G) edges.
A simple consequence of Euler’s formula shows that this means m − cr(G) ≤ 3n, giving the
result.

We will use the probabilistic method to “amplify” the elementary bound of Lemma 2.7 and
give a bound that is effective for dense graphs.

Lemma 2.8 (Crossing Lemma). If G is an n-vertex graph with m ≥ 4n edges, then

cr(G) ≥ m3

64n2
.

Proof. Let φ(G) be an embedding of G which has cr(G) crossings. Let Vp ⊆ V (G) be obtained
by keeping each vertex of V (G) independently and with probability p, and let Gp = G[Vp].
Observe that there is a natural embedding of Gp, namely the restriction of φ to Gp.

Let X denote the number of crossings in φ(Gp), and note that E[X] = p4cr(G) since a crossing
survives if and only if all four of its relevant vertices lie in Vp. Using Lemma 2.7, we see that

p4cr(G) = E[X] ≥ E[e(G′)− 3|Vp|] = p2m− 3pn =⇒ cr(G) ≥ p−2m− 3p−3n.

This lower bound will roughly be optimized when p−2m = p−3n, i.e. when p = n/m. More
precisely, taking p = 4n/m gives the desired bound. However, implicitly this argument requires
that 0 ≤ p ≤ 1, i.e. that m ≥ 4n, and this holds by hypothesis.

In addition to being interesting in its own right, the crossing lemma gives a short proof of a
fundamental result in incidence geometry.

Theorem 2.9 (Szemeredi-Trotter Theorem). Let P be a set of n points and L a set of m lines
in the plane, and let I ⊆ P ×L denote their set of incidences, i.e. pairs (p, `) with p ∈ `. Then

|I| = O(m2/3n2/3 +m+ n).

This bound is essentially best possible, though we omit the details of the (not too difficult)
construction.

Proof (due to Székely). Without loss of generality, we can assume every point and line is in at
least one incidence (otherwise we can delete these points/lines). Let G be the graph on P which
makes two points p1, p2 adjacent if there exists a line ` 3 p1, p2 such that there is no third point
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q on the line segment p1p2. In other words, G is the graph obtained by drawing the points and
lines on the plane, and then erasing the rays of lines which go off to infinity.

If i(`) denotes the number of points incident to `, then it is not difficult to see that e(G) =∑
i(`)− 1 = |I| −m, where here we implicitly used that i(`) ≥ 1 for all `. If |I| ≤ 2m, then in

particular |I| = O(m) and the result follows, so we can assume e(G) ≥ 1
2
|I|, and similarly we

can assume |I| ≥ 8m and hence e(G) ≥ 4n. Thus by the crossing lemma we have

cr(G) ≥ |I|
3

29n2
.

The critical observation is that cr(G) ≤
(
m
2

)
since each crossing corresponds to two lines of L

intersecting. Plugging this into the expression above gives the desired result.

As a brief aside, we note that this idea of taking a weak result (Lemma 2.7) and amplifying
it to a stronger result (Lemma 2.8) shows up in many other places in extremal combinatorics.
For example, it is easy to prove a weak version of the Szemeredi-Trotter theorem with a bound
of roughly O(mn1/2 + n) by observing that there exist no points p1, p2 and `1, `2 such that all
of the incidences (pi, `j) are present, i.e. the “incidence graph” on P ∪ L contains no C4. One
can then use the method of polynomial partitioning to dissect R2 into small regions where this
bound is effective. For much more on incidence geometry and polynomial partitioning, we refer
the reader to the excellent book by Sheffer [82].
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3 The Lovász Local Lemma

We say that an event Ai is mutually independent of a set of events {Aj : j ∈ J} if for any
J ′ ⊆ J , we have Pr[Ai ∩

⋂
j∈J ′ Aj] = Pr[Ai] ·Pr[

⋂
j∈J ′ Aj]. We say that A1, . . . , An are mutually

independent events if Ai is mutually independent of {Aj : j ∈ [n] \ {i}} for all i. Note that in
this case we have Pr[

⋂
Ai] =

∏
Pr[Ai]. In this section we consider a result which roughly says

that if the Ai’s are “almost independent”, then we have Pr[
⋂
Ai] ≈

∏
Pr[Ai].

Theorem 3.1. [Lovász Local Lemma] Let A1, . . . , An be events and let D1, D2, . . . , Dn ⊆ [n] be
such that Ai is mutually independent of {Aj : j /∈ Di∪{i}} for all i. If there exist real numbers
γi ∈ [0, 1) such that Pr[Ai] ≤ γi

∏
j∈Di(1− γj) for all i, then

Pr[
⋂

Ai] ≥
∏

(1− γi) > 0.

This result is often just referred to as “the local lemma”. Note that if the Ai were all mutually
independent, then we could take Di = ∅ and γi = Pr[Ai] for all i and conclude from the local
lemma that Pr[

⋂
Ai] ≥

∏
Pr[Ai].

Proof. We claim that for all i and S ⊆ [n], we have

Pr[Ai|
⋂
j∈S

Aj] ≥ 1− γi.

This will give the result since then

Pr[
⋂
i

Ai] =
∏
i

Pr[Ai|
⋂

j∈[i−1]

Aj] ≥
∏
i

(1− γi).

We prove this claim by induction1 on |S|. The base case |S| = 0 is equivalent to saying
Pr[Ai] ≤ γi for all i, and this follows from Pr[Ai] ≤ γi

∏
j∈Di(1−γj) ≤ γi. Now consider any set

S, and in particular assume we have proven the result for all S ′ ( S. If i ∈ S then the result
is trivial, so we can assume i /∈ S. Observe that

Pr[Ai|
⋂
j∈S

Aj] =
Pr[Ai ∩

⋂
j∈S Aj]

Pr[
⋂
j∈S Aj]

≤
Pr[Ai ∩

⋂
j∈S\Di Aj]

Pr[
⋂
j∈S\Di Aj] · Pr[

⋂
k∈S∩Di Ak|

⋂
j∈S\Di Aj]

=
Pr[Ai]

Pr[
⋂
k∈S∩Di Ak|

⋂
j∈S\Di Aj]

, (6)

where the first inequality used that we are taking a product over fewer events, and the second
equality used that Ai is mutually independent of events not in Di. Let S ∩Di = {k1, . . . , kp}.
Then we can rewrite the probability in the denominator of (6) as

p∏
q=1

Pr[Akq |
⋂

j∈(S\Di)∪{k1,...,kq−1}

Aj] ≥
p∏
q=1

(1− γkq) ≥
∏
j∈Di

(1− γj),

1It is perhaps more natural to try and prove the result by induction on n rather than on this somewhat
weird looking claim. However, if one plays around with this problem, one quickly sees that one needs to prove
something like the stated claim.
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where the first inequality used the inductive hypothesis and the last step used kq ∈ S∩Di ⊆ Di

for all q. This together with (6) and the hypothesis Pr[Ai] ≤ γi
∏

j∈Di(1 − γj) implies that

Pr[Ai|
⋂
j∈S Aj] ≤ γi, which is equivalent to saying Pr[Ai|

⋂
j∈S Aj] ≥ 1 − γi. This proves the

inductive hypothesis of our claim, and hence proves the result.

The following version of the local lemma is often sufficient for most applications (and again this
is often referred to as “the local lemma”).

Corollary 3.2 (Symmetric Lovász Local Lemma). Let A1, . . . , An be events and let D1, D2, . . . , Dn ⊆
[n] be such that Ai is mutually independent of {Aj : j /∈ Di ∪ {i}} for all i. If ∆ ≥ 1 is such
that |Di| ≤ ∆ and Pr[Ai] ≤ 1

e(∆+1)
for all i, then Pr[

⋂
Ai] > 0.

Proof. Observe that for all i we have

1

∆ + 1

∏
j∈Di

(
1− 1

∆ + 1

)
≥ 1

∆ + 1

(
1− 1

∆ + 1

)∆

≥ 1

e(∆ + 1)
≥ Pr[Ai],

where the second to last inequality used that (1 − 1/x)x−1 > 1/e for x ≥ 2. Thus the (asym-
metric) local lemma applies with γi = 1

∆+1
for all i, proving the result.

We note that this result is essentially best possible. Indeed, consider rolling a fair (∆ + 1)-
sided dice and let Ai be the event that the dice rolls i. In this case Ai is dependent on all of
Di = [∆ + 1] \ {i} and we have Pr[Ai] = 1

∆+1
> 1

e(∆+1)
, so the local lemma does not apply

(which is good since we have Pr[
⋂
Ai] = 0). In particular, this example shows that we can

not improve the requirement Pr[Ai] ≥ 1
e(∆+1)

in the symmetric local lemma to Pr[Ai] ≥ 1
∆+1

in
general. Thus the hypothesis in the symmetric local lemma is sharp up to a factor of e, and in
fact Shearer proved that this factor of e is necessary [81].

3.1 Applications

Our first application of the local lemma will be an asymptotic improvement to our lower bound
for Ramsey numbers from Theorem 1.1.

Theorem 3.3 (Spencer [84]). For all n we have

R(n, n) ≥ (1 + o(1))

√
2n

e
2n/2.

Proof. Uniformly at random color the edges of KN . For S ∈
(

[N ]
n

)
, let AS be the event that G

contains a monochromatic Kn on S, and as before we note that Pr[AS] = 21−(n2). Let DS consist
of all the sets T ∈

(
[N ]
n

)
\{S} such that |S∩T | ≥ 2. It is not difficult to see that AS is mutually

independent of {AT : T /∈ DS ∪ {S}} since the color given to each pair of S is independent
of these events. A weak bound gives |DS| ≤

(
n
2

)(
N
n−2

)
− 1 ≤ n2(eN/(n − 2))n−2 − 1, so by the

(symmetric) local lemma we have that Pr[
⋂
AS] > 0 provided 21−(n2) < 1

en2 (eN/n − 2)2−n, i.e.
if

(2en2)1/n−2 · 2(n2)/n−2 · n− 2

eN
= (2en2)1/n−2 · 2n/2+1/2−1/(n−2) · n− 2

eN
< 1,
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and this happens if N = (1− ε)
√

2n
e

2n/2 for any ε > 0 provided n is sufficiently large, giving the
desired result.

The local lemma works best if there are few dependencies between events. As such, it performs
much better for off-diagonal Ramsey numbers.

Theorem 3.4. For all n we have

R(3, n) = Ω(n2/ log2 n).

Proof. Randomly color each edge of KN red with probability p and blue otherwise. Given a set
S ∈

(
[N ]
3

)
, we let RS be the event that the vertices of S form a red triangle, and similarly for

T ∈
(

[N ]
n

)
we define BT . Observe that Pr[AS] = p3 and Pr[BT ] = (1− p)(

n
2).

Given S ∈
(

[N ]
3

)
∪
(

[N ]
n

)
, we define DS to be the sets of sizes 3 and n which intersect S in at

least two vertices. Observe that if |S| = 3, then DS contains at most 3N set of size 3 and at
most

(
N
n

)
sets of size n, and if |S| = n, we have that DS contains at most N

(
n
2

)
sets of size 3

and at most
(
N
n

)
sets of size n. Our goal now is to choose some parameters γS, γT so that the

(asymmetric) local lemma applies to the RS, BT events.

At this point there’s a lot of undetermined variables floating around: N, p, γS. Let’s think about
reasonable guesses for how to optimize things. First of all, it seems clear that we probably want
two parameters γ3, γn such that we set γS = γ|S| when applying the local lemma. With this we
in particular need

p3 ≤ γ3(1− γ3)3N(1− γn)(
N
n). (7)

In particular we need γ3 ≥ p3, so let’s naively take γ3 = Cp3 for some large constant C. Given

this, we also need γn ≤ c
(
N
n

)−1
in order to have the (1 − γn)(

N
n) term be no larger than a

constant. If we take γn = c
(
N
n

)−1
, we see that (7) is satisfied provided p = o(N−1/3) and c, C

are chosen appropriately.

The other condition we need to satisfy is

(1− p)(
n
2) ≤ γn(1− γ3)N(n2)(1− γn)(

N
n),

and by plugging in our choices for γ3, γn and the assumption that p must be fairly small, we
essentially need to have

e−p(
n
2) ≤ (n/N)n · e−p3N(n2),

and for this to hold we in particular need something like p
(
n
2

)
≥ p3N

(
n
2

)
, i.e. p = O(N−1/2).

Taking p = c′N−1/2, we see that we also need roughly

p

(
n

2

)
≈ c′N−1/2n2 ≥ n log(N/n).

Assuming N ≥ n1+ε for some small ε > 0, this reduces to N1/2 ≤ n/ log n, i.e. N = n2/(log n)2.

Thus in total, a heuristic argument suggests that we can apply the local lemma with N =
Θ(n2/(log n)2) by taking p = Θ(N−1/2), γ3 = Θ(N−3/2), and γn = Θ(

(
N
n

)
). And indeed, a

careful analysis shows that this will work out for n sufficiently large.
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We note that the bound of n2/ log2 n is the best one can do using this approach. However, it
turns out that R(3, n) = Θ(n2/ log n). This improved lower bound was originally proved by
Kim [59]. The idea of their proof was to start with a KN which is entirely colored blue, and then
to iteratively randomly pick an edge of KN and color it red if it does not create a red triangle.
A careful analysis shows that with positive probability the final graph at the end contains no
large blue clique, and it contains no red clique by construction. We will see a shorter proof of
this lower bound in a later section (expanders).

3.2 Related Lemmas

While the local lemma is very powerful, there are certain circumstances where it doesn’t give
you quite what you want. Fortunately there are many other lemmas which allow one to prove
bounds on Pr[

⋂
Ai] even when the Ai depend on each other in some way. For example, it is

not too difficult to generalize the local lemma as follows (and as an exercise the reader should
convince themselves that they can prove this result).

Theorem 3.5. Let A1, . . . , An be events. Assume there exists partitions Di ∪ Ei = [n] \ {i}
for all i and real numbers 0 ≤ δ, γ ≤ 1 such that γ(1 − γ)|Di| ≥ δ and for all E ⊆ Ei we have
Pr[Ai|

⋂
e∈E Ae] ≤ δ and . Then

Pr[
⋂

Ai] ≥ (1− γ)n > 0.

Note that when δ = γ we more or less recover Theorem 3.1 when γi = γ for all i. The power here
is that we allow each Ai to possible be dependent of every event, but it is not “very dependent”
on the events of Ei.

Another result in a similar spirit as the local lemma is Janson’s inequality. Given a set S ⊆ X
and ~p, let AS be the set containing

Theorem 3.6 (Janson’s inequality). Let H be a hypergraph on a set V , and let Vp be the set
obtained by including each vertex of V independently and with probability p. Let Ai denote the
event that Vp contains the ith edge of H and define

µ =
∑

Pr[Ai], ∆ =
∑

(Si,Sj):Si∩Sj 6=∅

Pr[Ai ∩ Aj].

Then ∏
i

Pr[Ai] ≤ Pr[
⋂
i

Ai] ≤ e−µ+ ∆
2 .

Note that if all of the edges of H are disjoint, then these bounds are roughly e−µ ≤ Pr[
⋂
iAi] ≤

e−µ/2. Again there are many variants of Theorem 3.6 which are useful in different situations.
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4 The Second Moment Method

In the previous section we saw several results that can be used to bound the probability of some
event happening. In this section we look at what is perhaps the most broadly applicable result
of this form: Chebyshev’s inequality.

4.1 Concentration Inequalities

Roughly speaking, concentration inequalities are results which say that under reasonable cir-
cumstances, a random variable is likely to be close to its expectation.

Perhaps the most famous (one-sided) concentration inequality is Markov’s inequality. We al-
ready saw this around the proof of Theorem 2.2, but for good measure we’ll formally state it
here.

Lemma 4.1 (Markov’s inequality). If X is a non-negative real-valued random variable, then
for all λ > 0 we have

Pr[X ≥ λ] ≤ E[X]

λ
.

In particular, if X is integer-valued, then

Pr[X 6= 0] ≤ E[X].

Proof. For simplicity we only prove the result when X is integer valued. In this case we have

Pr[X ≥ λ] =
∑
k≥λ

Pr[X = k] ≤
∑
k≥λ

k

λ
· Pr[X = k] =

E[X]

λ
.

The second statement follows by taking λ = 1.

The “in particular” part of this lemma is probably the most common usage of Markov’s in-
equality. To reiterate, this says that E[X] → 0 implies X = 0 with high probability, and this
application of Markov’s inequality is often known as the first moment method.

Unfortunately it is not true in general that E[X] → ∞ implies X > 0 with high probability
(e.g. take X = n with probability n−1/2 and X = 0 otherwise). However, for many reason-
able examples this implication does hold. Often one can show this by utilizing Chebyshev’s
inequality. We recall that the variance of a random variable is Var(X) = E[(X − E[X])2].

Lemma 4.2 (Chebyshev’s inequality). Let X be a real-valued random variable with Var(X) =
σ2. Then for all λ > 0, we have

Pr[|X − E[X]| ≥ λσ] ≤ 1

λ2
.

Proof. We have

Pr[|X − E[X]| ≥ λσ] = Pr[(X − E[X])2 ≥ λ2σ2] ≤ 1

λ2
,
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where this last step used Markov’s inequality applied to the (non-negative) random variable
Y := (X − E[X])2 after noting that E[Y ] = σ2 by definition.

Morally speaking, Chebyshev’s inequality says that if σ = o(E[|X|]), then X is close to its
expectation with high probability. The usage of Chebyshev’s inequality is often referred to as
the second moment method.

4.2 The Rödl Nibble

Our approach in this subsection borrows heavily from Alon and Spencer [5].

We say that a set of edges E ⊆ E(Kr
n) is a k-covering if every k-set S ⊆ [n] is contained in

some edge of E, and we will simply call this a covering if k = 1. It isn’t hard to see that
every k-covering needs at least

(
n
k

)
/
(
r
k

)
edges, with equality holding if and only if every k-set

is contained in exactly one edge of E. S Erdös and Hannini asked whether one could find
k-coverings with asymptotically this many edges, and this was answered positively by Rödl.

Theorem 4.3 (Rödl [78]). For all fixed k ≤ r, there exists a k-covering E ⊆ E(Kr
n) with

|E| = (1 + o(1))

(
n
k

)(
r
k

) ,
where the o(1) term tends to 0 as n tends towards infinity.

The first step of this argument is to reduce the problem of finding k-coverings to simply finding
coverings. To this end we define Hr,k

n to be the
(
r
k

)
-uniform hypergraph whose vertex set is

(
[n]
k

)
and whose edge set is {

(
S
k

)
: S ∈

(
[n]
r

)
}. That is, the hyperedges of Hr,k

n are all the sets of size k
covered by an edge S ∈ E(Hr

n). It is not too difficult to check that Theorem 4.3 is equivalent
to saying that there exists a covering of Hr,k

n of the stated size.

Our approach for proving that Hr,k
n has a small covering will more generally show that any

“nice” r-uniform hypergraph H has a small covering, with the approach roughly being the
following:

� Randomly choose εn/r edges E1 from H for some small ε > 0. With high probability E1

will cover about e−εn vertices.

� Delete vertices covered by E1 to get a new hypergraph H2. With high probability H2 is
also “nice”, so we can iterate the procedure above and pick some random set of edges E2.

� We keep doing this until εn vertices remain uncovered, and at this point we can trivially
cover them using at most εn additional edges.

Broadly speaking this approach is known as the Rödl nibble or the semirandom method. To
reiterate, the core idea is that you iteratively do something to a small chunk of vertices in such
a way that the structure of the rest of your hypergraph remains roughly the same with high
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probability, which allows one to keep iterating this procedure until one is left with a very small
problem to solve.

It turns out that for our purposes, “nice” hypergraphs are those which are roughly D-regular
for some D and such that every pair of vertices is in o(D) edges, i.e. the hypergraph is almost
linear. These conditions are reasonable for trying to prove Theorem 4.3 since Hr,k

n is
(
n−k
r−k

)
-

regular and every pair of vertices is in at most
(
n−k−1
r−k−1

)
edges. Our main technical lemma in this

direction is the following, where throughout this section we write c = 1± δ if c ∈ [1− δ, 1 + δ].

Lemma 4.4. For every r ≥ 2 and reals K ≥ 1 and ε, δ′ > 0, there are δ = δ(r,K, ε, δ′) > 0
and D0 = D0(r,K, ε, δ′) such that for every n ≥ D ≥ D0 the following holds.

Let H = (V,E) be an n-vertex r-graph such that

(i) For all but at most δn vertices x ∈ V , we have d(x) = (1± δ)D,

(ii) For all x ∈ V we have d(x) < KD, and

(iii) For any two distinct x, y ∈ V , we have d(x, y) < δD.

In this case there exist a set of edges E ′ ⊆ E such that

(a) |E ′| = (1± δ′)(εn/r),

(b) The set V ′ := V −
⋃
e∈E′ e has |V ′| = (1± δ′)e−εn, and

(c) For all but at most δ′|V ′| vertices x ∈ V ′, the degree d′(x) of x in the induced hypergraph
H[V ′] satisfies d′(x) = (1± δ′)De−ε(r−1).

Again, (i) and (ii) say that H is close to D-regular and (iii) says it has small codegrees. The
main point of the conclusion is that the number of uncovered vertices and their degrees shrink
in a predictable way.

Proof. We only give a sketch of the proof from [5] (their full version is complicated enough to
involve 20 named constants!). Throughout the proof we’ll introduce various constants δi which
we always assume to be sufficiently small in terms of our relevant parameters.

Randomly choose a subset E ′ ⊆ E such that each edge of E appears in E ′ independently and
with probability p = ε/D. Roughly speaking, our goal will be to show that with this choice of
E ′, each of (a),(b),(c) occur in expectation, and then we will use Chebyshev to show that each
of these occur with high probability.

To start, because H is essentially D-regular, we have |E| = (1± δ1)Dn/r, so

E[|E ′|] = p|E| = (1± δ1)εn/r.

We also have
Var(|E ′|) = p(1− p)|E| ≤ 2εn/r.
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Because Var(|E ′|) = o(E[|E ′|]), Chebyshev should be able to show that E ′ is close to E[E ′] with
high probability. More precisely, Chebyshev’s inequality implies

Pr[||E ′| − E[|E ′|] ≥ δ1

√
2εn/r ·

√
2εn/r] ≤ r

2δ2
1εn
≤ .01,

with this last step holding for n sufficiently large. Thus with probability at least .99,

|E ′| = E[|E ′|]± 2δ1εn/r = (1± 3δ1)εn/r.

This shows that (a) occurs with high probability. To deal with (b), let us first get a grasp
on E[|V ′|]. For x ∈ V , let 1x = 1 if x /∈

⋃
e∈E′ e and 1x = 0 otherwise. With this we see

|V ′| =
∑

1x, so by linearity of expectation it suffices to bound each of E[1x].

We will say that a vertex x is good if d(x) = (1± δ)D and that it is bad otherwise. If x is bad
we will simply use the trivial estimates 0 ≤ E[1x] ≤ 1. If x is good we have

E[1x] = (1− p)d(x) = (1− ε/D)(1±δ)D = (1± δ3)e−ε, (8)

where this last step used that 1−p is within a constant factor of e−p for p sufficiently small and
that δ is chosen to be sufficiently small in terms of ε (e.g. we can make sure that it’s smaller
than ε−1).

Having at most δn bad vertices together with (8) implies E[|V |′] = (1 ± δ4)ne−ε. To compute
the variance, we observe that

Var[|V ′|] =
∑
x

Var[1x] +
∑
x

∑
y 6=x

E[1x1y]− E[1x]E[1y]. (9)

Because each 1x is an indicator random variable, we have∑
x

Var[1x] ≤
∑
x

E[1x] = E[|V ′|].

For the mixed terms of (9), we have for any x, y that

E[1x1y]− E[1x]E[1y] = (1− p)d(x)+d(y)−d(x,y) − (1− p)d(x)+d(y)

≤ (1− p)−d(x,y) − 1 ≤ (1− ε/D)−δD − 1 ≤ eεδ − 1 ≤ δ5.

In total we find
Var[|V ′|] ≤ E[V ′] + δ5n

2 ≤ δ6(E[V ′]|)2,

where this last step used that E[|V ′|] = Θε(n). By Chebyshev we can guarantee with probability
at least .99 that

|V ′| = (1± δ7)E[|V ′|] = (1± δ8)ne−ε.

Proving that condition (c) holds with high probability is a little complicated, so we’ll omit the
full details1 (which can be found in [5]). Let us instead give a heuristic argument as to why

1The argument is similar in spirit to that of (b): you define 1e = 1 if e survives in H[V ′] and 1e = 0 otherwise.
Then d′(x) is just the sum of some of these indicator random variables, so one has to bound terms of the form
E[1e] and E[1e1f ]. If e, f are “typical” edges then the computation of E[1e] and E[1e1f ] are straightforward to
estimate, and there are few terms involving e which are not typical.
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(c) holds in expectation. We first condition on the event x ∈ V ′, which means that no edge
containing x is in E ′. An edge e 3 x survives in H[V ′] only if every edge f with e ∩ f 6= ∅ has
f /∈ E ′. Because H is roughly linear and D-regular, there are about rD such edges f , but D of
these (namely those containing x) are automatically not in E ′ since we conditioned on x ∈ V ′.
The remaining (r − 1)D edges are each included independently and with probability ε/D, so
the probability that none are included is (1− ε/D)(r−1)D ≈ e−(r−1)ε, and summing this over all
of the roughly D edges containing x gives the result.

Once we have shown that each of (a),(b),(c) holds with probability at least .99, then the
probability that all of them hold is at least .97, so in particular some choice of E ′ exists which
satisfies these conditions.

By repeatedly applying this lemma with carefully chosen values of ε, δ, one can prove the
following result (and again, we omit the details of this, see [5]).

Theorem 4.5 (Pippenger). For every r ≥ 2 and reals K ≥ 1 and a > 0, there are δ =
δ(r,K, a) > 0 and D0 = D0(r,K, a) such that for every n ≥ D ≥ D0 the following holds.

Let H = (V,E) be an n-vertex r-graph such that

(i) For all but at most δn vertices x ∈ V , we have d(x) = (1± δ)D,

(ii) For all x ∈ V we have d(x) < KD, and

(iii) For any two distinct x, y ∈ V , we have d(x, y) < δD.

Then there exists a cover of H using at most (1 + a)(n/r) edges.

In particular, Hr,k
n satisfies the conditions of the theorem, proving Theorem 4.3.

4.3 Steiner Systems

We say that a hypergraph is a Steiner system S(n, r, k) if it has n-vertices, is r-uniform, and
every k-set of its vertex set is contained in exactly one edge. Note that Steiner systems are k-
coverings with exactly

(
n
k

)
/
(
r
k

)
edges, so Theorem 4.3 shows that “approximate” Steiner systems

exist, but when do actual Steiner systems exist?

The simplest non-trivial case is S(n, 3, 2), which are also known as Steiner triple systems. It
is not difficult to see that if a Steiner triple system on n vertices exists, then 3|

(
n
2

)
(each edge

covers 3 pairs and each of the
(
n
2

)
pairs are covered exactly once) and 2|(n− 1) (for any given

vertex v, each edge contains 2 pairs containing v and there are exactly n − 1 such pairs).
Equivalently, this argument says that if a Steiner triple system exists, then it is necessary that
n ≡ 1, 3 mod 6. It turns out that this condition is also sufficient due to certain constructions
involving quasigropus and latin squares.

In general for an S(n, r, k) to exist, there are certain “obvious” divisibility conditions that must
be satisfied, but in general these are not sufficient. In fact, as of 2014, it wasn’t even known if,
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say, any S(n, k, 6) Steiner systems existed, let alone if there were infinitely many n for which
such a Steiner system existed. In a major breakthrough, it was shown by Keevash [57] and
independently by Glock, Kühn, Lo, and Osthus [45] that if n is sufficiently large in terms of
r, k, then S(n, r, k) systems exist if and only if n satisfies the obvious divisibility conditions.
The core of Keevash’s proof was a variant of the Rödl nibble in an algebraic setting, but the
proof is very, very complicated!
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Part II

Further Probabilistic Methods
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5 Dependent Random Choice

The following is all based off of the excellent survey by Fox and Sudakov [35]. Throughout
this section we denote the common neighborhood of a set of vertices S by N(S), i.e. N(S) =
{u : u ∈ N(v) ∀v ∈ S}. Before we explain what dependent random choice is, let’s first see an
example of it in action.

Lemma 5.1. Let G be an n-vertex graph with average degree at least d. For any choice of
integers m, r, t, there exists a set U ⊆ V (G) such that every r-subset of U has at least m
common neighbors, and such that

|U | ≥ dt

nt−1
−
(
n

r

)(m
n

)t
.

Proof. The statement of the result suggests how we should prove it: we’ll randomly pick a set
W which will have expected size at least dt/nt−1, and then we’ll use the method of alterations
to delete from W a set of a bad vertices, which in expectation will have size at most

(
n
r

)
(m/n)t.

The key twist is that we don’t start by, say, defining W to include each vertex independently
and with probability p = dt/nt, but instead W will end up depending on a different random
set T .

To this end, let T be the random set obtained by uniformly at random selecting t vertices with
repetition (i.e. each vertex is equally likely to be the ith vertex added to T , and in total T has
size at most t), and define W = N(T ). The probability that a given vertex v is included in W
is exactly (d(v)/n)t, so by linearity of expectation and convexity we find that

E[|W |] =
∑

(d(v)/n)t ≥ dt/nt−1.

We say that a set of vertices S ⊆ V (G) of size r is bad if |N(S)| ≤ m. The probability that W
contains a given bad set S is at most (m/n)t (since S ⊆ W iff T ⊆ N(S)). Thus the expected
number of bad sets of W is at most

(
n
r

)
(m/n)t. If we let U be the set obtained by deleting

a vertex from each bad set of W , then it has the desired properties by construction and in
expectation it has the desired size, so such a choice of U exists.

Again, the key idea of this proof is that instead of defining W by including each vertex inde-
pendently and with probability p = dt/nt, we instead formed it so that, on average, each vertex
has probability at least p of being added, but the vertices are added in a very dependent way.
In particular, the dependent way that W was generated made it more likely to have our desired
property (i.e., we generated W by taking a common neighborhood, which made it less likely
for W to contain sets of vertices with small common neighborhoods).

We can use Lemma 5.1 to prove some bounds on Turán numbers by using the following em-
bedding lemma.

Lemma 5.2. Let F be a bipartite graph on A ∪B with |A| = a, |B| = b such that the vertices
in B all have degree at most r. If G is a graph which contains a set U such that |U | = a and
such that any subset of U of size r contains at least a+ b common neighbors, then G contains
F as a subgraph.
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Proof. We define an injective homomorphism φ from V (F ) to V (G) as follows. Choose φ|A to
be an arbitrary bijection onto U . For each v ∈ B that has yet to be assigned, choose φ(v) to
be any common neighbor of φ(NF (v)) which has yet to be assigned by φ. Note that there exist
at least a+ b common neighbors of φ(NF (v)), so there certainly exists one which has yet to be
assigned. This mapping gives the result.

With this we can quickly prove the following.

Theorem 5.3 (Füredi [42]; Alon, Krivelevich, Sudakov [4]). If F is a bipartite graph on A∪B
such that the vertices of B all have degree at most r, then

ex(n, F ) < 3(a+ b)n2−1/r.

Observe that this result generalizes Kővari-Sós-Turán, at least in terms of order of magnitude.

Proof. Assume G is an n-vertex F -free graph with average degree d = 6(a + b)n1−1/r. By
Lemma 5.2, we would be done if we could find a set U of size at least a such that every subset
of size r had at least m = a+ b common neighbors. By Lemma 5.1, for any t we can find a set
U with these properties of size at least

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (6a+ 6b)tn1−t/r − (e/r)r(a+ b)tnr−t.

We see that taking t = r makes the powers of n on both sides equal, and in total this gives a
set of size at least

(6a+ 6b)r − (e(a+ b)/r)r.

Note that 6(a+ b) ≥ 1
2
(e(a+ b)/r), so this is at least 1

2
(6a+ 6b)r ≥ a. We have thus found our

desired set U , which together with Lemma 5.2 gives a copy of F in G, a contradiction.

Another application of this method is to subdivisions. We define the 1-subdivision H∗ of a
graph H to be the graph obtained by replacing each edge of H by a P2 (i.e. by inserting a new
vertex in the middle of each edge). Note that subdivisions are bipartite graphs with all of its
e(H) new vertices having degree 2. Thus the previous theorem gives ex(n,K∗a) = O(a2n3/2). It
turns out that one can significantly improve upon this dependency of a.

Theorem 5.4 (Alon, Krivelevich, Sudakov [4]). For all a we have

ex(n,K∗a) = O(an3/2).

Note that this only gives a reasonable bound when a = O(n1/2), which makes sense since K∗a
has about a2 vertices and thus can always be avoided by an n-vertex graph if a� n1/2.

Unfortunately Lemma 5.1 on its own is not enough to prove Theorem 5.3, essentially because
the size of U that we’re guaranteed is too small. We can increase the size of U by demanding
slightly weaker conditions for it to have, i.e. we only need that most pairs have many common
neighbors1. More precisely, we use the following.

1This is a common situation that happens in applications of dependent random choice, though the exact
way you weaken the conditions of Lemma 5.1 depends on the particular problem at hand.
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Lemma 5.5. Let G be an n-vertex graph with an3/2 edges. Then G contains a subset of vertices
U with |U | = a such that for all 1 ≤ i ≤

(
a
2

)
, there are less than i pairs of vertices in U with

fewer than i common neighbors in V (G) \ U .

For example, this says that every pair of vertices of U has at least one common neighbor outside
of U , and that there is at least one pair which has at least a common neighbors outside of U .

Add more intuition for the proof.

Proof. For simplicity we assume n is even, and by losing at most half of our edges we can
assume that G is bipartite on V1 ∪V2 with |V1| = |V2| = n/2. Without loss of generality we can
assume

∑
v∈V1

d(v)2 ≤
∑

v∈V2

∑
d(v)2.

Let T be a random set obtained by including two vertices uniformly at random from V1 with
replacement. Let W = N(T ) and X = |W |. Similar to our computation before, we find

E[X] =
∑
v∈V2

(d(v)/(n/2))2 ≥ 4n−2 · (n/2)(an1/2)2 = 2a2.

Given distinct vertices x, y ∈ V2, we define f(x, y) = 1
|NV1

(x,y)| and we let Y =
∑

x,y∈W f(x, y).

Observe that

E[Y ] =
∑
x,y∈V2

f(x, y) · Pr[x, y ∈ W ] =
∑
x,y∈V2

1

|NV1(x, y)|
·
(
|NV1(x, y)|

n/2

)2

= 4n−2
∑
x,y∈V2

|NV1(x, y)|

= 4n−2
∑
z∈V1

(
d(z)

2

)
≤ 2n−2

∑
z∈V1

d(z)2 ≤ 2n−2
∑
z∈V2

d(z)2 =
1

2
E[X].

With this we see E[X −E[X]/2− Y ] ≥ 0, and thus there exists a choice of T such that X ≥ Y
and X ≥ E[X]/2 ≥ a2.

The trick now is to take U ⊆ W a set of size exactly a uniformly at random, and let Y ′ =∑
x,y∈U f(x, y). In this case

E[Y ′] =
∑
x,y∈W

f(x, y) · Pr[x, y ∈ U |x, y ∈ W ] ≤ Y · a(a− 1)

X(X − 1)
≤ X · (a/X)2 ≤ 1.

Thus there exists a choice of U such that Y ′ ≤ 1. We claim that such a U has the desired
properties. Indeed, if there existed i pairs with fewer than i common neighbors, then this would
immediately imply Y ′ ≥ i · 1

i−1
> 1, a contradiction.

Theorem 5.4 follows almost immediately from Lemma 5.5, and we omit its proof.

For our last result, we say that a graph F is r-degenerate if every subgraph of F contains a
vertex of degree at most r. In this setting we can prove an embedding lemma analogous to
Lemma 5.2.

Lemma 5.6. Let G be a graph with vertex sets U1, U2 such that, for k = 1, 2, every subset of at
most r vertices in Uk contains at least m common neighbors in U3−k. Then G contains every
r-degenerate bipartite graph H on m vertices.
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Proof. Let F1 be an m-vertex r-degenerate bipartite graph on V1∪V2. By definition this means
that there exists a vertex v1 ∈ F1 such that dF1(v1) ≤ r, and that there is some v2 ∈ F2 := F1−v1

with dF2(v2) ≤ r and so on. We now define a map φ : V1 ∪ V2 → U1 ∪ U2 with φ(Vi) ⊆ Ui as
follows. Iteratively assume we have defined φ(vm), φ(vm−1), . . . , φ(vq+1) and that vq ∈ Vi. Since
S := N(vq) ∩ {vm, . . . , vq+1} has at most r vertices by assumption, the set φ(S) ⊆ U3−i has
at least m common neighbors, so choose φ(vq) to be any of these vertices that has yet to be
assigned. It is not difficult to see that this gives the desired embedding.

Motivated by this lemma, we prove the following variant of Lemma 5.1.

Lemma 5.7. Let r,m ≥ 2 and let G be an n-vertex graph with at least mn1−1/6r edges. Then
G contains two subsets U1, U2 such that, for k = 1, 2, every subset of r vertices in Uk has at
least m common neighbors in U3−k.

Proof. The rough strategy of the proof is as follows. We will first apply Lemma 5.1 directly
to obtain a large set U1 such that every q-subset of U1 (with q > r) has at least m common
neighbors. We then mimic the proof of Lemma 5.1 by choosing a random set T ⊆ U1 of size
t and letting U2 = N(U1). By choosing an appropriate value of t, the set U2 will satisfy the
condition. Moreover, if q − t ≥ r, then for any r-subset S ⊆ U1, the set S ∪ T has at least m
common neighbors, all of which in particular lie in N(T ) = U2, so U1 will also have the desired
property.

We now being the formal argument. Apply Lemma 5.1 using q = 3r instead of r, t to get a set
U1 such that every subset of size 3r has at least m common neighbors and such that

|U1| ≥
d3r

n3r−1
−
(
n

3r

)
(m/n)3r ≥ m3rn1/2 −mr/(3r)! ≥ mn1/2.

Now let T be a set obtained by including t = 2r vertices uniformly at random from U1 with
replacement, and let U2 = N(T ). The probability that U2 contains a set of r vertices which
have fewer than m common neighbors in U1 is at most(

n

r

)
(m/|U1|)2r ≤ 1

r!
< 1,

and in particular there exists a choice of T such that no r-subset of U2 has fewer than m common
neighbors. Note that for any r-subset S ⊆ U1, the set S ∪ T has size at most 3r vertices, so by
construction S has at least m common neighbors which lie in N(T ) = U2. Thus U1, U2 gives
the desired result.

Combining these two lemmas immediately gives the following.

Theorem 5.8. If F is an m-vertex r-degenerate graph, then

ex(n, F ) < mn2−1/6r.

We note that one can optimize the proof of Lemma 5.7 to improve the exponent of this theorem
slightly (by using (3− 2

√
2)r instead of 3r throughout). However, the end result is still weaker
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than the best known bound of ex(n, F ) ≤ m1/2rn2−1/4r due to Alon, Krivelevich, and Sudakov
[4], with their proof more or less being a slight refinement of the argument we gave.

As all of these examples illustrate: if you have a problem that could be magically solved if you
had a large set of vertices U such that every r-set of U had many common neighbors, then a
variant of dependent random choice might be worth trying out!

6 Strong Concentration Inequalities

As we have already seen in Section 4, there are many instances where one would like to show
a random variable is concentrated around its expectation. Chebyshev’s inequality is one tool
which achieves this, and for arbitrary random variables this is essentially the best one can do.
However, there are many specific kinds of random variables where one can get significantly
stronger bounds. Here we present three results of this form in roughly increasing order of
power.

We will omit the majority of the proofs of these results, focusing mostly on their applications.
We refer the reader to the book of Dubhashi and Panconesi [28] for complete proofs. We note
that the appendix of [28] consists of a very nice summary of these inequalities and many of
their generalizations.

6.1 The Chernoff Bound

The Chernoff bound says that binomial random variables have exponential concentration around
their means.

Theorem 6.1. Let X1, . . . , Xn be independent Bernoulli random variables each with probability
of success p, and let X =

∑
Xi. Then for all λ > 0,

Pr[|X − pn| ≥ λpn] < 2e−λ
2pn/2.

Sketch of Proof. Observe that for all λ, t > 0, we have

Pr[X ≥ (1 + λ)pn] = Pr[etX ≥ et(1+λ)pn] ≤ E[etX ]e−t(1+λ)pn,

with this last step using Markov’s inequality. We note that etX =
∑ tmE[Xm]

m!
is the moment

generating function of X, and it is a common trick in probability to rephrase inequalities in
terms of etX . And indeed, because the Xi are all independent, we have

E[etX ] =
∏

E[etXi ] = (etp+ (1− p))n.

Thus we are left with the problem of choosing t so that etp+(1−p)
e−t(1+λ)p is minimized. One can do

this using calculus, and this will give Pr[X ≥ (1 + λ)pn] < e−λ
2pn/2. The same argument gives

Pr[X ≤ (1− λ)pn] < e−λ
2pn/2, and combining these inequalities gives the desired result.
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The Chernoff bound can be generalized, for example, by replacing the bernoulli random vari-
ables with any bounded random variable, see [28].

Given a hypergraph H and partition V (H) = RtB, define the discrepancy of the partition by

disc(H,R,B) = max
e∈E(H)

||e ∩R| − |e ∩B|| ,

and define the discrepancy of the hypergraph by disc(H) = minR,B disc(H,R,B). In other
words, disc(H) measures how well one can partition the vertex set so that each edge has about
the same number of vertices from each part.

Theorem 6.2. If H is an r-uniform hypergraph with m edges, then disc(H) ≤ 2
√
r log(2m).

If H is a clique on 2r − 1 vertices, then disc(H) = r and m ≈ 4r, so this result is essentially
best possible for general H.

Proof. Assign each vertex of H to R or B independently and with probability 1
2
. For e ∈ E(H),

let Ae be the event that∣∣∣∣|e ∩R| − 1

2
r

∣∣∣∣ ≥√r log(2m) = 2

√
log(2m)

r
· 1

2
r.

Because |e∩R| has a binomial distribution, the Chernoff bound gives Pr[Ae] < 2e− log(2m) = m−1,
and by a union bound we have Pr[

⋃
Ae] < 1. Thus with positive probability, there exists a

partition R,B such that none of the Ae occur. This means disc(H,R,B) ≤ 2
√
r log 2m, proving

the result.

Much more can be said about discrepancy problems, see [5, Chapter 13].

6.2 Martingales

We say that a sequence of real-valued random variablesX0, X1, . . . is a martingale if E[Xi+1|Xi] =
Xi for all i. One important class of Martingales, called Doob martingales, are defined as follows.
Given random variables Y1, . . . , Ym and a real-valued function f , let

Xi = E[f(Y1, . . . , Ym)|Y1, . . . , Yi].

It is not too difficult to show that any sequence of random variables Xi defined in this way is
indeed a martingale.

One of the most common classes of (Doob) martingales in probabilistic combinatorics are the
edge-exposure martingales. In this case, Yi denotes the indicator random variable which is 1
if the ith pair of vertices in Gn,p is an edge (where the pairs are ordered in some arbitrary
way). Intuitively in this situation we think of revealing the edges of Gn,p one at a time, and Xi

denotes the value that we expect f to be after we reveal all of the remaining edges.

Let us look at the very concrete case of the edge-exposure martingale when n = 3 and f is the
number of triangles in G3,p. With this we have

X0 = E[f ] = p3, X1 = E[f |Y1] = p2Y1,
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X2 = E[f |Y1, Y2] = pY1Y2, X3 = E[f |Y1, Y2, Y3] = Y1Y2Y3.

The main concentration result for martingales is Hoeffding’s inequality.

Theorem 6.3 (Hoeffdings’s inequality). Let X0, . . . be a martingale with |Xi −Xi−1| ≤ αi for
all i. Then for all λ > 0, we have

Pr[|Xm −X0| ≥ λ] < 2e
−2λ2∑
α2
i .

Sketch of Proof. Let Yi = Xi −Xi−1. Similar to the proof of the Chernoff bound, we have

Pr[Xm −X0 ≥ λ] = Pr[et(Xm−X0) ≥ etλ] ≤ E[et
∑m
i=1 Yi ]e−tλ.

We claim that this expectation is at most e
1
8
t2

∑m
i=1 α

2
i . Indeed, we can use conditional expecta-

tions to write

E[et
∑m
i=1 Yi ] = E

[
E[et

∑m
i=1 Yi |X0, . . . , Xm−1]

]
= E[et

∑m−1
i=1 Yi · E

[
etYm|X0, . . . , Xm−1]

]
,

where this last step used that Yi with i < m is fixed given X0, . . . , Xm−1. Observe that
conditional on X0, . . . , Xm−1, we have E[Ym] = 0 (due to the martingale property) and |Ym| ≤
αm (due to the hypothesis of the theorem). One can show that for random variables of this
form, the expected value of its moment generating function is at most eα

2
mt

2/8. One gets the
claim by repeating this argument inductively on the remaining terms.

In total, we have for any t > 0 that

Pr[Xm −X0 > λ
√
m] ≤ e

1
8
t2

∑
α2
i−tλ.

Taking t = 4λ/
∑
α2
i gives Pr[Xm −X0 ≥ λ] < e

−2λ2∑
α2
i . A symmetric argument shows Pr[Xm −

X0 ≤ λ] < e
−2λ2∑
α2
i (this can also be seen by considering the martingale X ′i := −Xi and applying

the first inequality), which gives the result.

In the special case where αi = 1 for all i, this result is referred to as Azuma’s inequality1.

Corollary 6.4 (Azuma’s inequality). Let X0, . . . be a martingale which satisfies |Xi−Xi−1| ≤ 1
for all i. Then for all λ > 0, we have

Pr[|Xm −X0| ≥ λ
√
m] < 2e−2λ2

.

There are many generalizations of the Hoeffding’s inequality which weakens the hypothesis that
|Xi+1 −Xi| ≤ αi. For example, it suffices to have that this difference holds in expectation, or
that it holds with high probability. Again, see [28] for details.

One application of Azuma’s inequality is the following.

1The naming convention for these inequalities are all over the place: some people call these Hoeffding’s
inequalities, others Azuma (which is probably the most popular name in the combinaotrics community), some
Azuma-Hoeffding, and yet others Hoeffding-Azuma.
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Proposition 6.5. We have

Pr[|χ(Gn,p)− E[χ(Gn,p)| ≥ λ
√
n] < 2e−λ

2/2.

We note that this result tells us that χ(Gn,p) is concentrated around its expectation, but it
gives no indication of what this expectation is. This is a common phenomenon when applying
concentration inequalities.

Proof. We consider a vertex-exposure martingale, i.e. a Doob martingale f(Y1, . . . , Yn) where
Yi is the set of vertices j > i in Gn,p which are adjacent to i. In particular, taking f = χ and
Xi = E[f |Y1, . . . , Yi] gives X0 = E[χ(Gn,p)] and Xn = χ(Gn,p). It is clear that each time we
reveal a set Yi that the expected chromatic number changes by at most 1, i.e. |Xi+1 −Xi| ≤ 1
for all i. Thus Azuma’s inequality applies, giving the result.

We note that one could try and prove this result using an edge-exposure martingale instead
of a vertex-exposure martigale, but this approach gives essentially trivial bounds. In general,
when using martingales you want to reveal information in as few rounds as possible, while
also making it so that the information you reveal can’t dramatically change your function each
round.

While Proposition 6.5 says nothing about E[χ(Gn,p)], it is well known that this value is asymp-
totic to n

2 log1/(1−p) n
for any fixed p. This was first proven by Bollobás using a clever martingale

argument. Much more can be said about χ(Gn,p), see for example the paper by Heckel and
Riordan [50] which, in addition to surveying many of the known results on χ(Gn,p), shows that
the concentration in Proposition 6.5 is in some sense close to best possible.

There are a number of variants of all of the concentration inequalities stated in this chapter.
One particular version of Azuma that we will need at some point is the following.

Lemma 6.6 ([63]). Let X0, . . . be a martingale which satisfies |Xi −Xi−1| ≤ α for all i. Then
for all δ ∈ [0, 1], we have

Pr[|Xm −X0| ≥ δαm] < e−δ
2αm/6c.

Note that |Xm − X0| ≤ αm deterministically, so δαm is at least a δ fraction of the mean of
Xm − X0, and as such this is referred to as the “multiplicative Azuma inequality” (since its
error term is multiplicative relative to the expectation as opposed to additive).

6.3 Talagrand’s Inequality

Let Ω = Ω1 × · · · × Ωn be a product of probability spaces. For α = (α1, . . . , αn) a vector of
non-negative real numbers, we define the weighted Hamming distance dα on Ω by dα(x, y) =∑

i:xi 6=yi αi. For example, α = (1, . . . , 1) gives the usual Hamming distance on product spaces.

Given α as above, a set A ⊆ Ω, and a non-negative number t, we define

Aα,t = {x : ∃y ∈ A, dα(x, y) ≤ t}.
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That is, Aα,t is the set of points in Ω which are within distance t of A. We also define A = Ω\A.
Our goal is to prove “isoperimetric” inequalities which state that, for any A ⊆ Ω, we have

Pr[A] · Pr[Aα,t] ≤ f(t),

where f is some rapidly shrinking function. Isoperimetric inequalities are intimately related
to concentration inequalities. For example, a corollary of an inequality as above is that if
Pr[A] ≥ 1

2
, then Pr[Aα,t] ≤ 2f(t) (i.e., most of Ω is concentrated around A). On the other

hand, one can prove isoperimetric inequalities by using concentration inequalities.

Proposition 6.7. For Ω a product space, A ⊆ Ω, and α such that
∑
α2
i = 1, we have for all t

that
Pr[A] Pr[Aα,t] ≤ 4e−t

2

.

Proof. Define the function f : Ω → R by f(y) = dα(y, A). Let Y = (Y1, . . . , Yn) be chosen
according to the probability distribution on Ω and let Xi = E[f(Y )|Y1, . . . , Yi]. Observe that
Xn = 0 iff Y ∈ A and Xn > t iff Y ∈ Aα,t, and also that |Xi −Xi−1| ≤ αi. Thus Hoeffding’s
inequality implies

Pr[A] Pr[Aα,t] = Pr[Xm = 0] Pr[Xm > t]

≤ Pr[|Xm −X0| ≥ X0] Pr[|Xm −X0| > t−X0]

≤ 4e−2X2
0−2(t−X0)2 ≤ 4e−t

2

,

where this last step used that the exponent is maximized when X0 = 1
2
t.

A remarkable result of Talagrand shows that Proposition 6.7 essentially holds even when com-
paring A with the set of points which are at least distance t from A for some choice of α.

Theorem 6.8 (Talagrand’s inequality). For all A ⊆ Ω and t ≥ 0, we have

Pr[A] Pr

[⋂
α

Aα,t

]
≤ e−t

2/4,

where the intersection ranges over all α with
∑
α2
i = 1.

Again we emphasize that
⋂
αAα,t can be much larger than Aα,t for any given α, but still

essentially the same bound as in Proposition 6.7 holds. We omit the proof of Theorem 6.8,
and we refer the reader to [5] for a direct proof, and to [28] for a longer, but perhaps more
enlightening argument.

We note that Talagrand’s inequality is often stated in the following equivalent form: Given
x ∈ Ω and A ⊆ Ω, define d′(x,A) = miny∈A maxα dα(x, y), where the maximum ranges over all
α with

∑
α2
i = 1. Note that having d′(x,A) ≤ t is equivalent to saying that for all α there

exist y ∈ A with dα(x, y) ≤ t, which is equivalent to saying x ∈
⋂
αAα,t. Thus Theorem 6.8

can be seen as an isoperemetric inequality with respect to the pseudo-distance d′.
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Talagrand’s inequality has a number of applications to concentration of random variables. One
particular application is for certifiable functions. For a function s : R → N, we say that a
real-valued function f defined on a product space Ω is s-certifiable if having f(x) ≥ c implies
that there exists a set I ⊆ [n] of size s(c) such that f(y) ≥ c whenever yi = xi for all i ∈ I
(that is, the values in position I “certify” that f(x) ≥ c).

For example, if f(x) = |{i : xi 6= 0}|, then f is s-certifiable with s(c) = c, since f(x) ≥ c implies
there exist c coordinates with xi 6= 0, and any y which agrees with x on these coordinates satisfies
f(y) ≥ c. Lastly, we say that a function f is Lipschitz if |f(x)− f(y)| ≤ 1 whenever x, y differ
in at most one coordinate.

Corollary 6.9. If f is an s-certifiable Lipschitz function on the product space Ω and X is
chosen according to the probability space Ω, then for all m and t > 0 we have

Pr[f(X) < m− t
√
s(m)] Pr[f(X) ≥ m] ≤ e−t

2/4.

Proof. Let A = {x : f(x) < m− t
√
s(m)}. We claim that

⋂
αAα,t ⊆ {y : f(y) < m}.

Assume for contradiction that y ∈
⋂
αAα,t and f(y) ≥ m. Because f is s-certifiable, there

exists a set of s(m) indices I which certifies f(y) ≥ m. Let α′i = 1√
s(m)

if i ∈ I and α′i = 0

otherwise. Because y ∈
⋂
αAα,t ⊆ Aα′,t, there exists some x ∈ A such that dα′(x, y) ≤ t,

i.e. such that restricted to I, the vectors x, y differ in at most t
√
s(m) coordinates. Let z be

defined by zi = yi if i ∈ I and zi = xi otherwise. Then f(z) ≥ m by definition of I, and f being
Lipschitz implies f(x) ≥ f(z)− t

√
s(m) ≥ m− t

√
s(m), contradicting x ∈ A. This proves the

claim.

The contrapositive of the claim implies {y : f(y) ≥ m} ⊆
⋂
αAα,t, so the first result follows

from Talagrand’s inequality.

We emphasize that Proposition 6.7 is too weak to prove Corollary 6.9: we genuinely have to
make use of the fact that Talagrand’s inequality allows us to choose a different distance function
for each choice of y.

In most applications, one applies Corollary 6.9 where either m is a median, i.e. Pr[f(X) ≥
m] = 1

2
, or where m − t

√
s(m) is a median. While medians are hard to estimate directly, a

concentration result like that of Corollary 6.9 can usually be used to show that the median and
expectation must be close to each other, see for example [28, Problem 11.4].

As an application, let X = (X1, . . . , Xn) be a random vector with each Xi distributed uniformly
on [0, 1]. Let f(X) denote the length of a longest increasing subsequence, i.e. the largest k
such that there exist indices with Xi1 < Xi2 < · · · < Xik . Note that f is Lipschitz and is
s-certifiable with s(c) = c, so if m is a median we conclude Pr[f(X) < m − t

√
m] ≤ 2e−t

2/4.
It is well known that E[f(X)] ∼ 2

√
n, so at least heuristically, this argument suggests f(X) is

highly concentrated around 2
√
n + Θ(n1/4) (and it’s not hard to make this more precise). In

contrast, if one attempted to get concentration results for f(X) by utilizing martingales, one
would conclude that f(X) is highly concentrated around Θ(n1/2), which is significantly weaker.
One can literally dedicate an entire book to the longest increasing subsequence problem, see
Romik [79] for more on this topic.
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7 Coupling

It is often the case that one can understand a random variable X by comparing it to a “similar”
random variable Y which is easier to do calculations for. One way to do this to form a coupling,
i.e. a pair of random variables (X ′, Y ′) such that X ′, Y ′ have the same distribution as X, Y ,
respectively, and such that X ′, Y ′ have some (nice) relation between them. We start with a
simple but non-trivial example.

Let Sn denote a simple random walk of length n, i.e. Sn is a random vector (Sn0 , S
n
1 , . . . , S

n
n)

where Sn0 = 0, and Pr[Sni = Sni−1 + 1] = Pr[Sni = Sni−1 − 1] = 1
2
. For n even, let T n denote a

random walk after conditioning on having T nn = 0 (i.e. we uniformly at random pick a walk
which returns to to 0 at the end of the walk). It is easy to show via Chernoff boudns that Snt
is likely to be within roughly

√
t of 0 for any given value t. While Chernoff bounds don’t apply

to the random variables T nt , intuitively the same conclusion should also hold for T nt , since the
condition of T nn = 0 should force T nt to be closer to the origin than Snt in general. It is possible
to make this intuition rigorous, allowing one to bootstrap bounds of Snt to T nt .

Proposition 7.1. For n even and all s, t, we have Pr[|T nt | ≥ s] ≤ Pr[|Snt | ≥ s].

Proof. Our goal is to define a new random vector Rn such that (1) Rn has the same distribution
as T n, and (2) |Rn

t | ≤ |Snt | for all t. From this the result will quickly follow. Intuitively, we
will define Rn

t in rounds by flipping biased coins. If the tth coin lands heads, then Rn
t+1

moves towards 0, and if it lands tails, it moves towards/away from 0 if and only if Snt+1 moves
towards/away from 0. Such a process will always satisfy (2), and it will satisfy (1) by choosing
the probability of our biased coins appropriately.

To this end, set Rn
0 = 0. Given Rn

t , we define a random variable Yt (which will be our biased

coin flips) that equals 1 with probability
|Rnt |
n−t and is 0 otherwise. If Yt = 1, we set Rn

t+1 = Rn
t ±1

such that |Rn
t | > |Rn

t+1| (i.e. such that Rn moves towards 0; note that this is well defined since
Yt = 1 implies Rn

t 6= 0). If Yt = 0 and Rn
t 6= 0, then we set Rn

t+1 = Rn
t ±1 such that |Rn

t | > |Rn
t+1|

if and only if |Snt | > |Snt+1| (i.e. Rn move away/towards 0 if Sn moves away/towards 0). If
Rn
t = 0 then we set Rn

t = ±1 with equal probability.

It is straightforward to see that (2) is achieved from this process1. It is not difficult to prove that

for T n, we have that |T nt | > |T nt+1| happens with probability2
1
2

(n−t+|Tnt |)
n−t . One can check that

Rn has |Rn
t | > |Rn

t+1| with probability
1
2

(n−t+|Rnt |)
n−t , so we conclude (1) and hence the result.

Recall that an F -factor in a graph G is a collection of vertex disjoint copies of F such that every
vertex is in one of these copies of F . By a similar argument as in Theorem 9.2, one can show that

Gn,p contains a Kr-factor provided r|n and p � n−1/(r2) log n. Intuitively, it seems reasonable

that the set of Kr’s in Gn,p should be distributed like the hyperedges of Gr
n,π where π = p(

r
2)

(at the very least, the expected number of Kr’s in Gn,p is equal to the expected number of

1Any time Sn moves towards 0, Rn does as well, except when Rnt = 0. In this case Snt must be an even
distance away from 0, so after one step Rnt is still at least as close to 0.

2Given Tnt , we still need to make 1
2 (n − t + |Tnt |) steps in the direction of 0 and 1

2 (n − t − |Tnt |) in the
direction away from 0.
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hyperedges in Gr
n,π). If this were true, then Gn,p would contain a Kr-factor when Gr

n,π contains

a perfect matching, and Theorem 9.2 says this should happen when p(
r
2) ≈ π � n−1 log n,

which implies that taking p � n−1/(r2) log1/(r2) n should suffice. And indeed, Johansson, Kahn,
and Vu [54] proved that this is the threshold for Kr-factors in Gn,p using a somewhat involved
argument. A nice coupling result of Riordan [77] will allow us to conclude the result in a much
easier way.

Let (V1, E1), . . . , (V(nr)
, E(nr)

) be an arbitrary ordering of all the Kr’s in Kn. To prove our desired

coupling, we would like to construct a pair of random variables (G,H) such that (1) G ∼ Gn,p

and H ∼ Gr
n,π with π ≈ p(

r
2), and such that (2) every hyperedge in H is a Kr in G. Note that

(2) means that H containing a perfect matching implies that G has a Kr-factor. Let us first
consider the following (very, very) naive attempt at this coupling.

Algorithm 1. Generate a random graph G ∼ Gn,p. Let H be an initially empty r-graph on
[n]. For each i with Ei ⊆ G, add Vi as a hyperedge to H. Output (G,H).

This algorithm definitely satisfies (2), but it completely fails at (1). Indeed, let Ai denote the
event that Ei ⊆ G (i.e. the event that Vi is a hyperedge in H), and assume V1, V2 have at least

two vertices in common. Then Pr[A2|A1] ≥ p(
r
2)−1 and Pr[A2|A1] < p(

r
2). But to have H ∼ Gr

n,π

we would, in particular, need these two probabilities to equal each other. Thus we’ll need to
consider a somewhat more complicated algorithm. As before, let (Vi, Ei) be the Kr’s in Kn,

and let π be a parameter which will be approximately p(
r
2).

Algorithm 2. Generate a random graph G ∼ Gn,p and an initially empty hypergraph H on
[n]. We proceed in

(
n
r

)
rounds as follows. For the ith round, let πi be the conditional probability

of having Ei ⊆ G given all the information from the previous rounds.

� If πi < π, then with probability π we add Vi to H.

� If πi ≥ π, then with probability π
πi

we test whether Ei ⊆ G, and if so, we add Vi to H.

Otherwise1 we declare this hyperedge to be absent in H.

We note that the πi ≥ π case of Algorithm 2 is similar in spirit to the proof of Proposition 7.1:
each round we flip a coin which is biased based off of the current information we have. If the
coin lands heads we do something to H independent of G, and otherwise we have H behave “in
the same way” as G.

For Algorithm 2, it is not difficult to see that H ∼ Gr
n,π. Unfortunately, if πi < π, then it is

possible that H contains edges which are not Kr’s in G, i.e. the coupling could fail to satisfy (2).
The key insight is that for applications, it suffices to have (2) be satisfied with high probability,
which will turn out to be the case.

To try and convince ourselves that this algorithm has a chance of winning even when πi < π,
let’s consider the most dangerous situation, namely that πi = 0. It is not too hard to see that

1Note that with probability 1 − π
πi

we do not reveal any additional information about Ei. When working
with random objects, it is usually best to reveal as little information as possible in order to “preserve” the
randomness of your object.
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πi = 0 if and only if there exists some j < i such that (a) we revealed that Ej 6⊆ E(G) and
(b) every edge of Ej \ Ei has been revealed to be in G. If this situation happens and if the
algorithm adds Vi to H, then the coupling fails to satisfy (2). However, when this happens,
every graph edge of Ej is contained in a hyperedge of H (by (b) and Vi ∈ E(H)) and Vj is
not a hyperedge of H (by (a)). Thus the probability of this situation happening is at most the
probability of H ∼ Gr

n,π containing such a configuration. These configurations can essentially
be described as follows.

Lemma 7.2. If H is an r-graph with r ≥ 4 which contains a set of r vertices V /∈ E(H) such
that every pair of V is contained in a hyperedge of H, then H contains a subgraph F which has
e(F ) ≤

(
r
2

)
and |V (F )| ≤ (r − 1)e(F )− 1.

This statement is false for r = 3. Indeed, one could take H to be the loose triangle with edges
{1, 2, 4}, {2, 3, 5}, {1, 3, 6} which satisfies the hypothesis of Lemma 7.2 with V = {1, 2, 3} but
which fails to satisfy the conclusion.

Proof. Let V1, . . . , Vt be hyperedges such that every pair of V is contained in some Vi. By
throwing away redundant hyperedges, we can assume that |Vi ∩ V | ≥ 2 for all i and that
t ≤

(
r
2

)
. Let F ⊆ H be the hypergraph with hyperedges V1, . . . , Vt

First assume |V1 ∩ V2| ≥ 2. Then V1 ∪ V2 consists of at most 2r − 2 vertices, and it is not
difficult to see that it is possible to order the remaining sets so that |Vi \

⋃
j<i Vj| ≤ r − 1 and

that |Vt \
⋃
j<t Vj| ≤ r − 2. In total this implies that F has the desired properties.

Thus we can assume that |Vi ∩ Vj| ≤ 1 for all i, j. This means every pair of V is covered by
some unique Vi, so t = e(F ) =

(
r
2

)
and the number of vertices of F is at most r+ (r− 2)e(F ) =

(r − 1)e(F )− (e(F )− r) ≤ (r − 1)e(F )− 1 since
(
r
2

)
− r ≥ 1 for r ≥ 4.

Lemma 7.3. For r ≥ 4, if H ∼ Gr
n,π and π ≤ n−(r−1)+o(1), then a.a.s. H does not contain a

set V as in Lemma 7.2.

Proof. If H did contain such a set V , then it must contain a subgraph F as in Lemma 7.2. Up
to isomorphism, there are only finitely many subgraphs that F could be, and for each of these
the expected number of copies of F in H is at most

O(πe(F )n|V (F )|) = O(πe(F )n(r−1)e(F )−1) = o(1).

We conclude the result by Markov’s inequality.

We note that for π ≈ p(
r
2) this lemma applies when p ≈ n−2/r. Thus when p is about this value,

none of the “bad” configurations of Lemma 7.2 are likely to appear, and in this regime we have
the following.

Theorem 7.4 ([77]). For r ≥ 4 and p ≤ n−2/r+o(1), there exists some π ∼ p(
r
2) such that

Algorithm 2 produces a pair (G,H) with G ∼ Gn,p, H ∼ Gr
n,π, and such that a.a.s. every

hyperedge of H is the vertex set of a Kr in G.
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We emphasize that the theorem as stated does not cover the case r = 3. However, Heckel [49]
showed that the same conclusion does hold for r = 3 by using a slightly different coupling.

For the proof of Theorem 7.4, we will need a standard result known as Harris’ inequality (also
referred to as Kleitman’s inequality).

Lemma 7.5 (Harris’ Inequality). Let f, g, h : Rn → R be functions such that f, g are non-
decreasing and h is non-increasing. Let X = (X1, . . . , Xn) be a random vector such that the
Xi’s are mutually independent. Then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)],

E[f(X)h(X)] ≤ E[f(X)]E[h(X)].

Proof. For n = 1, we deterministically have

(f(y)− f(z))(g(y)− g(z)) ≥ 0 ≥ (f(y)− f(z))(h(y)− h(z)).

Thus if Y, Z are independent random variables with the same distribution as X = X1, the first
inequality implies

0 ≤ E[f(Y )g(Y ) + f(Z)g(Z)− f(Y )g(Z)− f(Z)g(Y )] = 2E[f(X)g(X)]− 2E[f(X)]E[g(X)].

This gives the first bound, and the second bound follows from an identical argument.

Assume the result has been proven up to some n > 1. By the inductive hypothesis and the
n = 1 case applied to f ′(X1) := E[f(X)|X1] and g′(X1) = E[g(X)|X1], we find

E[f(X)g(X)] = E[E[f(X)g(X)|X1]] ≥ E[E[f(X)|X1] · E[g(X)|X1]]

= E[f ′(X1)g′(X1)] ≥ E[f ′(X1)]E[g′(X1)] = E[f(X)]E[g(X)].

This proves the first inequality, and the second follows from an identical argument.

The main application of Harris’ inequality is when f is an indicator function. More precisely,
we say that a set system A ⊆ 2[n] is an upset if A ∈ A implies B ∈ A for all B ⊇ A, and we
similarly define what it means for A to be a downset.

Corollary 7.6. Let A,B be upsets and C a downset of [n], and let S ⊆ [n] be obtained by
including each element i independently and with probability pi. Then

Pr[S ∈ A ∩ B] ≥ Pr[S ∈ A] Pr[S ∈ B],

Pr[S ∈ A ∩ C] ≤ Pr[S ∈ A] Pr[S ∈ C].

Proof. Define f : Rn → R by having f(x) = 1 if {i : xi > 0} ∈ A and f(x) = 0 otherwise.
Similarly define g, h with respect to B, C. The result follows from Harris’ inequality by letting
X = (X1, . . . , Xn) with the Xi being independent Bernoulli random with probability pi.
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Proof of Theorem 7.4. Again, the only cases where the algorithm can fail is when πi is small,
so let us try and lower bound this quantity in terms of the (random) information we have at
the ith step. Let Y be the set of “yes” indices j such that we have revealed that Ej ⊆ E(G)
and let N be the set of “no” indices such that we have revealed Ej 6⊆ E(G) . Let R =

⋃
j∈Y Ej

be the set of revealed edges, and let G′ be the random graph which contains all of the edges of
R, and which contains any e /∈ R independently and with probability p. Let E ′j = Ej \R, and
let A′j be the event that E ′j ⊆ G′. It is not too hard to see that in total we have

πi = Pr[A′i|
⋂
j∈N

A′j].

Define
D0 =

⋂
j∈N, Ej∩Ei=∅

A′j, D1 =
⋂

j∈N, Ej∩Ei 6=∅

A′j.

Intuitively D0 shouldn’t really influence πi, and we can prove this using Harris’ inequality. First
note that

πi = Pr[A′i|D0 ∩D1] ≥ Pr[A′i ∩D1|D0] = Pr[A′i|D0]− Pr[A′i ∩D1|D0] = Pr[A′i]− Pr[A′i ∩D1|D0],

where this last step used that A′i and D0 are independent. Observe that A′j is an upset for all
j (i.e. A′j is achieved precisely when the random set E(G′) is an element of an appropriately
defined upset), D0 is a downset (since complements of upsets are downsets, and downsets/upsets
are preserved under intersection), and A′i∩D1 is an upset. Thus by Harris’ inequality, we have1

Pr[A′i]− Pr[A′i ∩D1|D0] = Pr[A′i]−
Pr[A′i ∩D1 ∩D0]

Pr[D0]
≥ Pr[A′i]− Pr[A′i ∩D1].

Now let N1 = {j ∈ N : Ej ∩ Ei 6= ∅}. Note that D1 =
⋃
j∈N1

A′j, so by a union bound we have

πi ≥ Pr[A′i]−
∑
j∈N1

Pr[A′j ∩ A′i] = p|E
′
i| −

∑
j∈N1

p|E
′
i∪E′j | = p|E

′
i|(1−Qi) ≥ p(

r
2)(1−Qi),

where
Qi :=

∑
j∈N1

p|Ej\(Ei∪R)|.

Let ∆ denote the maximum degree of G. We next prove a (somewhat imprecise) claim.

Claim 7.7. Either ∆ > no(1), or for all i, either Qi = o(1) or Vi ∈ E(H) implies H contains
a configuration as in Lemma 7.2.

Proof. Assume ∆ ≤ no(1) and consider some index i. Given j, let Kj denote the graph on Vj
with edge set Ei ∪R, and let C1, . . . , Ck+1 with k ≥ 0 denote the connected components of Kj,
say with |V (C`)| = r` for all `. Observe that |Ej \ (Ei ∪ R)| is at least the number of edges
which aren’t contained in any Kj component, i.e.

|Ej \ (Ei ∪R)| ≥
(
r

2

)
−
∑(

r`
2

)
≥
(
r

2

)
−
(
r − k

2

)
,

1This same sort of argument is essentially what you need to do prove Janson’s inequality Theorem 3.6.
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where this last inequality holds since if there are two terms with r` ≥ 2, then one can adjust these
two terms to get a stronger bound. Because Kj is a graph using edges of R ∪Ei ⊆ G, we have
that the number of j ∈ N1 such that Kj has k+ 1 components is at most rnk∆r−k−1 = nk+o(1),
where the factor of r comes from the fact that j ∈ N1 implies that Kj contains at least one
vertex of Vi since Ei, Ej intersect in at least one edge.

In total then, the contribution to Qi coming from j such that Kj has k + 1 ≥ 2 components is
at most

r−2∑
k=1

nk+o(1)p(
r
2)−(r−k2 ) = o(1),

where the equality follows from a simple calculation. Thus it remains to show that the con-
tribution from terms with Kj connected is small. Because there are only r∆r−1 = no(1) such
terms, a similar argument shows that the contribution is negligible for terms with e(Kj) <

(
r
2

)
.

The only non-trivial case then is when e(Kj) =
(
r
2

)
, i.e. when every edge of Vj is contained in

R∪Ei. In this case, Vi ∈ E(H) implies that H contains a configuration as in Lemma 7.2. Thus
for all i, either this happens or Qi = o(1), proving the result.

Since H ∼ Gr
n,π, we have that the expected degree of every vertex is roughly πnr−1 = no(1).

Thus if B1 is the “bad” event that ∆ > no(1), then by the Chernoff bound we have Pr[B1] = o(1).
Similarly if B2 is the event that H contains one of the configurations as in Lemma 7.2, then
Pr[B2] = o(1) by Lemma 7.3.

We are now ready to complete the proof. Recall that the theorem claims the result holds for

some π ∼ p(
r
2), so it suffices to prove it for π = p(

r
2)(1− o(1)) where the o(1) term is the upper

bound for Qi from the claim. Now all we have to do is verify that with this choice, a.a.s. every
hyperedge of H is a Kr in G. The only way this can fail is if there exists an i with πi < π such
that Vi is added as a hyperedge to H. By the previous claim and our choice of π, this is only
possible if B1 ∪ B2 occurs. As these occur with probability o(1), we conclude the result.

As noted previously, the proof of Theorem 7.4 does not go through for r = 3 due to the existence
of loose triangles, but Heckel [49] managed to get around this issue. Essentially the idea of her
proof is to first do a coupling on edges of H and G which are in loose triangles and then to run
Riordan’s argument.

It is also proven in [77] that one can to some extent generalize this approach to finding F -factors
for sufficiently nice F . In this setting, H is not exactly a uniform hypergraph, but instead a
collection of copies of F in Kn chosen with some probability π.
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8 Random Algebraic Constructions

One can easily extend Theorem 1.4 to hypergraphs as follows.

Theorem 8.1. Let F be an r-graph with v vertices and e ≥ r edges. If e ≥ v, then

ex(n, F ) = Ωv(n
r− v−r

e−1 ).

Sketch of Proof. Consider Gr
n,p, which in expectation has about pnr edges and pe(F )n|V (F )| copies

of F . At p = Cn−
v−r
e−1 for some large constant C this first quantity is much larger than the

second, so we can delete an edge from each copy of F to give the result.

One way you could try and improve upon this argument is to delete edges which are in many
copies of F . In Gr

n,p this is too much to ask for, but it is possible to do this in other random
hypergraph models. In particular, if our random model contains some algebraic structure, then
it is often the case that edges will either be in many copies of F or almost none. We look at a
few examples of this phenomenon.

8.1 Random Multilinear Maps

The problem of determining the Turán number of Kr
2,...,2, the complete r-partite r-graph with

each part having size 2, is called the Erdős box problem. Theorem 8.1 gives a lower bound of
nr−

r
2r−1 , and for certain values of r this lower bound was improved by Gunderson, Rödl, and

Sidorenko [48]. This result was significantly improved by Conlon, Pohoata, and Zakharov[21]
who gave a polynomial improvement to the bound of Theorem 8.1 for all values of r.

Theorem 8.2 ([21]). For all r ≥ 2, we have

ex(n,Kr
2,...,2) = Ω(nr−d

2r−1
r e

−1

).

Note that r never1 divides 2r − 1, so this does always give a polynomial improvemnt to Theo-
rem 1.4.

We prove this result by considering a random hypergraph based off of multilinear maps. Recall
that if V1, . . . , Vr are vector spaces over Fq, then a map T : V1 × · · · × Vr → Fq is said to be
multilinear if the one dimensional function f(x) = T (v1, · · · , vi−1, x, vi+1, · · · , vr) is linear for
all i and any choice of vj. Note that there are only finitely many such maps over Fq if V1, . . . , Vr
are finite dimensional, so in this setting we can talk about choosing such a T uniformly at
random.

Let s =
⌈

2r−1
r

⌉
, and let V1, . . . , Vr be copies of Fsq with q a large prime power. Given a multilinear

map T , let HT denote the r-partite r-graph on V1 ∪ · · · ∪ Vr with {v1, . . . , vr} ∈ E(HT ) if and
only if T (v1, . . . , vr) = 1 (here and throughout we assume vi ∈ Vi for all i). The proof relies on
the following three results.

1If r is prime then 2r − 1 ≡ 2− 1 mod r by Fermat’s little theorem though I don’t see why this holds
otherwise
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Lemma 8.3. Let T be a uniformly random multilinear map and assume q is sufficiently large
in terms of r. Then the following hold:

(a) We have E[e(HT )] = (qs − 1)rq−1 ≈ qrs−1.

(b) Let F denote the set of tuples (v0
1, v

1
1, . . . , v

0
r , v

1
r) with vji ∈ Vi and v0

i 6= v1
i such that

T (vj11 , . . . , v
jr
r ) = 1 (i.e. such that this forms a Kr

2,...,2 in HT ). Then E[|F|] ∼ q2rs−2r .

(c) Let B denote the set of edges {v1, . . . , vr} such that (v1, v
′
1, . . . , vr, v

′
r) ∈ F for some

{v′1, . . . , v′r}. Then E[|B|] ≤ (1 + o(1))q−rE[|F|].

We note that Gr
n,p with p, n chosen appropriately already roughly satisfy (a) and (b), so the

crucial thing we gain here is (c), which says that there are not many edges that are contained
in some Kr

2,...,2, i.e. the copies of Kr
2,...,2 are all clumped together. This is the key fact that we

acquire from using a random algebraic construction.

Let us briefly observe that this lemma gives the result. Indeed, we can form a Kr
2,...,2-free

hypergraph H ′T by deleting every edge of B. The expected number of edges for this will be
asymptotically at least qrs−1 − q2rs−2r−r. Because s =

⌈
2r−1
r

⌉
, we have s < 2r−1

r
+ 1, which is

equivalent to saying rs − 1 > 2rs − 2r − r, and hence the number of edges is roughly qrs−1.
Since H ′T has rqs := n vertices, this gives ex(n,Kr

2,...,2) = Ω(nr−1/s) as desired. Thus it remains
to prove the lemma.

Proof of Lemma 8.3. For (a), note that T (v1, . . . , vr) = 0 if vi = 0 for some i. For any other
tuple, let Ui ⊆ Vi be the one-dimensional subspace containing vi and 0. It is not too hard
to argue that T restricted to U1 × · · · × Ur is still a uniform multilinear map. Further, every
multilinear map on this space is uniquely determined by the value of T (1, . . . , 1), and it is not
hard to see that exactly one of these q maps has T (v1, . . . , vr) = 1. Thus such a tuple is an
edge with probability q−1 and the result follows from linearity of expectation.

For (b), observe that the only tuples that can be in F are those such that v0
i 6= λv1

i for any i,
as otherwise

λ = λT (v0
1, . . . , v

0
i , . . . , v

0
r) = T (v0

1, . . . , v
1
i , . . . , v

0
r) = 1,

which means λ = 1, contradicting v0
i 6= v1

i . The number of such tuples with this property is
asymptotic to q2rs. For such a tuple, let Ui be the span of v0

i , v
1
i , which is a 2-dimensional

subspace. Again T restricted to U1 × · · · × Ur is uniform, and it is not too hard to see that
there are q2r choices for T with exactly one of these placing the tuple in F . The result follows
from linearity of expectation.

It remains to deal with (c). Given affine lines `1, . . . , `r in V1, . . . , Vr, let P (`1, . . . , `r) denote
the set of tuples (v1, v

′
1, . . . , vr, v

′
r) such that vi, v

′
i ∈ `i. It is not difficult to show the following:

� The sets P (`1, . . . , `r) are disjoint for distinct choices of lines.

� We have |P (`1, . . . , `r)| = qr(q − 1)r.

� Every element of F is contained in some P (`1, . . . , `r).
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� If P (`1, . . . , `r) ∩ F 6= ∅ then P (`1, . . . , `r) ⊆ F , i.e. T (u1, . . . , ur) = 1 for any ui ∈ `i.

If L denotes the set of tuples (`1, . . . , `r) with P (`1, . . . , `r) ∩ F 6= ∅, then the above implies
that

|L|qr(q − 1)r = |F|.

Further, we have

|B| =

∣∣∣∣∣∣
⋃

(`1,...,`r)∈L

`1 × · · · × `r

∣∣∣∣∣∣ ≤ qr|L| = (q − 1)−r|F|,

so taking expectations gives the result.

We note that one can get a slightly stronger result by not just considering one multilinear map
T , but a family of (random) multilinear maps T1, . . . , T` and then defining HT1,...,T` by having
a hyperedge if and only if Ti(v1, . . . , vr) = 1 for all i. The analysis here is mostly the same, but
for ease of presentation we only considered a single map.

8.2 Random Polynomial Graphs

Somewhat more complicated constructions can be made by utilizing random polynomials as
opposed to random multilinear maps. This approach was first popularized by Bukh [15], and
since then Bukh and Conlon have developed a lot of theory surrounding it.

To set things up, given a field Fq, we define Pd,b to be the set of polynomials over Fq in t
variables with degree at most d. We will say that f is a random polynomial from Pd,b if it
is chosen uniformly at random from Pd,b, which can be done, for example, by uniformly at
random choosing the coefficient of each possible monomial. With a little bit of linear algebra
one can show the following, which says that a random polynomial has the same distribution as
a random function when evaluated on a few number of points.

Lemma 8.4 ([17] Lemma 2.3). If q >
(
m
2

)
and d ≥ m−1, then if f ∈ Pd,b is uniformly random

and x1, . . . , xm are m distinct points of Fbq, then

Pr[f(xi) = 0 ∀i] = q−m.

Maybe include proof.

The next lemma requires just a smidge of terminology from algebraic geometry. A variety is
any set of the form X = {x ∈ Fbq : f1(x) = · · · = fa(x) = 0} where f1, . . . , fa : Ftq → Fq are
polynomials. The variety X is said to have complexity at most M if a, b and the degrees of
the fi are bounded by M . One can prove the following using standard results from algebraic
geometry.

Lemma 8.5 ([17] Lemma 2.7). Let X,D be varieties over Fq of complexity at most M . If q is
sufficiently large in terms of M , then either |X \D| ≥ q/2 or |X \D| ≤ c for some c depending
only on M .
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The actual lemma statement involves the algebraic closure, which I think is an
artifact of the proof and isn’t necessary in the statement. Please let me know if
you think I’m wrong (or right) about this point.

One can think of this lemma as being analogous to the fact that if f is a degree d polynomial
in one variable which is 0 on at least d + 1 points, then it must in fact be 0 on an entire line.
With these two results we can prove the following.

Theorem 8.6. For all s ≥ 2, there exists some t0 = t0(s) such that for all t ≥ t0, we have

ex(n,Ks,t) = Θ(n2−1/s).

Proof. The upper bound follows from the Kővári-Sós-Túran theorem. For the lower bound, let
q be a sufficiently large prime power, and with some foresight we define

r = s2 + 1, d = rs+ 1, N = qs.

Let f ∈ Pd,2s be a polynomial chosen uniformly at random. Let G be the (random) graph with
vertex set Fsq×Fsq where vertices x1 ∈ Fsq, x2 ∈ Fsq form an edge of G if and only if f(x1, x2) = 0.

Fix vertices x1, . . . , xs ∈ Fsq ∪ Fsq. Let C be the set of vertices y such that xi ∼ y for all
i (noting that C = ∅ if the xi don’t all belong to the same copy of Fsq, and otherwise this
means e.g. f(xi, y) = 0 for all i). Observe that the number of Ks,r’s of G which has the xi

as its set of size s is equal to
(|C|
r

)
, and motivated by this we will attempt to bound the rth

moment E[|C|r] = E[|Cr|] (which will be slightly easier to work with compared to the rth falling
moment). To this end, we observe that if a given tuple (y1, . . . , yr) with k distinct elements lies
in Cr, then the corresponding copy of Ks,k lies in G. By Lemma 8.4, the probability that any
given copy of Ks,k appears in G is exactly q−sk (provided q is sufficiently large in terms of s, r).
Moreover, the number of tuples with k distinct elements is Or(N

k). In total we conclude that
The exposition here can probably be cleaned up

E[|Cr|] ≤
r∑

k=1

q−sk ·Or(N
k) = Or(1).

Note that C is an algebraic variety by definition. By Lemma 8.5, there exists some constant c
such that either |C| ≤ c or |C| ≥ q/2. Thus

Pr[|C| > c] = Pr[|C| ≥ q/2] = Pr[|C|r ≥ (q/2)r] ≤ E[|C|r]
(q/2)r

= Or(q
−r),

with the last step using the previous inequality.

Call a sequence (x1, . . . , xs)bad if there are more than c vertices y such that xi ∼ y for all i,
and let Bi denote the number of i-bad sequences. Our analysis above gives

E[Bi] ≤ 2N s ·Or(q
−r) = Or(q

s2−r) = or(1). (10)

Now let G′ ⊆ G be defined by deleting a vertex from each bad sequence. Because each vertex
is in at most N = qs edges in G, by (??) and (10) we find

E[e(G′)] ≥ E[e(G)]− E[B] · qs = Ω(q2s−1),
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where this last step used the previous inequality and Lemma 8.4 to deduce E[e(G)] = q2s · q−1.
By definition G′ contains no copy of Ks,c, so for t ≥ t0 := c, we have shown that there exists
a graph G′ on at most q2s vertices such that it contains at least Ω(q2s−1) edges and no ncopy
of Ks,t. This gives the desired lower bound when n is a sufficiently large prime prime power.
Using Bertrand’s postulate gives the desired bound for all n.

We will admit that on its own Theorem 8.6 is not particularly groundbreaking. Indeed, there
exist explicit constructions showing ex(n,Ks,t) = Θ(n2−1/s) when s > (t− 1)!, and this depen-
dency on t is far better than the implicit constant t0 one gets from the proof. However, the
proof of Theorem 8.6 gives us a new idea for constructing F -free graphs.

And indeed, many developments have been made on this method since Bukh’s original con-
struction of this form. In particular, by using more sophisticated tools from algebraic geometry,
Bukh [16] showed that Theorem 8.6 holds with t0 = Cs for some absolute constant C, which
stands as the best known bounds for this problem. On the other hand, by carefully modifying
the current proof of Theorem 8.6, Conlon [19] was able to construct large graphs avoiding theta
graphs θa,b, which we recall denotes the graph consisting of a internally disjoint paths of length
b between two fixed vertices.

Theorem 8.7 ([19]). For all b ≥ 2, there exists some a0 = a0(b) such that for all a ≥ a0, we
have

ex(n, θa,b) = Θ(n1+1/b).

Proof Sketch. The upper bound is a result of Faudree and Simonovits [34]. For the lower bound,
the key idea is to consider multiple random polynomials f1, . . . , fa ∈ Pd,2b chosen independently,
with us defining our graph G on Fbq ∪ Fbq by having x ∼ y if and only if fi(x, y) = 0 for all i.

Fix two vertices x1, xb+1 ∈ Fbq∪Fbq and define C to be the tuples of distinct vertices (x2, . . . , xb−1)
such that x1 · · ·xb+1 is a path in G. As before (but with a somewhat more difficult analysis),
one can show E[|C|r] = O(1). However, in this case C is not quite an algebraic variety because
of us requiring C to use distinct vertices. However, one can write C as X \D for two varieties
X,D, so Lemma 8.5 still applies and the rest of the proof goes through.

One can further interpolate between this theorem and Theorem 8.6 to give effective lower
bounds on ex(n, F ) whenever F is a “large power of a rooted tree” (e.g. Ks,t is just many
copies of a star Ks,1, and θa,b is just many copies of a path Pb). This was done by Bukh and
Conlon [17] in order to show that for every rational number r ∈ [1, 2], there exists a finite set
of graphs F such that ex(n,F) = Θ(nr). The rational exponents conjecture, which says that
one can achieve this with F consisting of a single graph, remains a major open problem.

8.3 Multicolor Ramsey Numbers

Let r(t; `) denote the smallest number N such that every `-coloring of E(KN) contains a
monochromatic clique of size t. Inset history and connection with the earlier Ramsey
results proven in the text. Also sketch the proof of the bound you get with the
naive method for comparison.

49



The following observation will be the key towards going further. The initial idea for this lemma
can be seen in Conlon and Ferber [20], though it was first really used by Wigderson [90] and
then generalized by Sawin [80].

Lemma 8.8. Let G be graph with no clique of size t, and let p be the probability that vertices
v1, . . . , vt ∈ V (G) chosen independently and uniformly at random form an independent set.
Then for all ` ≥ 2, we have

r(t; `) ≥ p−(`−2)/t2(t−1)/2.

Note that when ` = 2 this recovers the usual lower bound for Ramsey numbers from the random
coloring.

Proof. Let N be an integer to be determined later, and let f1, . . . , f`−2 : V (KN) → V (G) be
chosen independently and uniformly at random. Define a coloring χ : E(KN) → [`] in the
following way: for distinct x, y ∈ V (Kn), if there exists i such that fi(x)fi(y) ∈ E(G), then
set χ(xy) to be the minimum i with this property. Otherwise, set χ(xy) to be `− 1 or ` with
probability 1/2 each. That is (as Wigderson notes in his paper), this coloring comes from
covering KN with `− 2 randomly permuted blowups of G and then randomly using two colors
to deal with any uncovered vertices.

We first observe that there is no monochromatic Kt in any color i ≤ `−2. Indeed, if {x1, . . . , xt}
were such a clique then this would imply {fi(x1), . . . , fi(xt)} forms a clique inG (since χ(xjxk) =
i implies fi(xj)fi(xk) ∈ E(G)). Thus it remains to show that, with positive probability, there
is no monochromatic Kt in color i ∈ {` − 1, `}. Observe that a clique Kt in KN has all of its
edges colored by ` − 1 or ` if and only if each fi maps Kt to an independent set of G, and
the probability that this happens is exactly p`−2 by hypothesis, and from there this Kt will be

monochromatic with probability 21−(t2). In total then, the expected number of monochromatic

cliques will equal
(
N
t

)
p`−221−(t2), and this will be less than 1 provided N ≤ p−(`−2)/t2(t−1)/2. Thus

there exists a coloring of this size with no monochromatic clique, giving the desired result.

Observe that the p in Lemma 8.8 roughly corresponds to the number of independent sets of size
at most t in G, so we need to find a graph with small clique number and not too many small
independent sets. To this end, let V ⊆ Ft2 be the set of vectors v with v · v = 0 (i.e. vectors
with even Hamming weight), and let G be the graph on V where two vectors u, v are adjacent
if and only if u · v = 1.

Lemma 8.9. If t is even, then the graph G contains no clique of size t.

Proof. Assume for contradictiont that there exist distinct vectors v1, . . . , vt ∈ V with vi · vj = 1
for all i 6= j (and = 0 for i = j by definition of V ). We claim that these vectors are linearly
independent. Indeed, if there exists αi ∈ {0, 1} with

∑
αivi = 0, then by taking the dot product

of vj on both sides we find
∑

i 6=j αi ≡ 0 for all i, and it is not difficult to show that this implies
αi = 0 for all i (here we need that t is even, else αi = 1 for all i would work). However, V is a
t− 1 dimensional subspace, so it contains no set of t linearly independent vectors, proving the
result.

Lemma 8.10. The probability p that a uniformly random tuple (v1, . . . , vt) ∈ V t is such that
{v1, . . . , vt} is independent in G is at most 2−3t2/8+o(t2).

50



Proof. Let X be the set of tuples (v1, . . . , vt) ∈ V t such that vi · · · vj = 0 for all i, j, so our goal
is to upper bound |X|/|V |t = |X|2−t2 . Define the rank of a tuple in X to be the rank of the
smallest subspaces containing every vertex of the tuple. We claim that the number of tuples in
X of rank r is at most

t!

(
r−1∏
i=0

2t−i

)
· 2(t−r)r = 2tr−(r2)+tr−r2

. (11)

Indeed, possibly by reordering the tuple (giving us the factor of t!) we can assume the first r
vectors are linearly independent, and given v1, . . . , vi with 0 ≤ i < r, the number of choices for
a vi+1 which is linearly independent of v1, . . . , vi is exactly qt−i. After this every vector must
lie in the span of v1, . . . , vr, giving exactly qr choices for the remaining t− r vectors.

We next claim that there exists no tuple in X of dimension larger than t/2. Indeed, if S is the
span of the vectors in a tuple of X, then note that S ⊆ S⊥ since vi · vj = 0 for all i, j. From
linear algebra we have t = dimS + dimS⊥ ≥ 2 dimS, proving the claim.

It is not hard to prove that (11) is increasing for r ≤ t/2, so plugging in r = t/2 gives an upper
bound for |X|/(t/2) of the form 25t2/8+o(t2), giving the desired bound on |X|/|V |t.

Putting all these lemmas together gives the following.

Corollary 8.11. For ` ≥ 3 we have

r(t; `) ≥
(

2
3`
8
− 1

4

)t−o(t)
.

This bound stood as the best for about a year until Sawin [80] realized one could do somewhat
better by replacing the algebraic graph G described above with a purely random graph, namely
Gn,p with p ≈ .455. Thus, although the initial breakthrough for multicolor Ramsey numbers
came from a random algebraic approach, the method was later subsumed by a simpler random
model. This sort of thing happens somewhat often with proofs using the random algebraic
method. Because of this, some mathematicians are of the opinion that any time the random
algebraic method is used, there exists a simpler random model which gives better results. I
don’t personally believe that this is true, and even if it were, the fact that random algebraic
methods consistently give initial breakthroughs to longstanding open problems makes them
worth considering in my eyes.

Maybe comment on other ways random homomorphisms are useful.
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Part III

Spread Hypergraphs

9 The Spreadness Theorem

Throughout this section we consider hypergraphs H which may have repeated edges, and we
will typically denote the edges of H by S. We recall that d(A) denotes the degree of a set of
vertices A in H, i.e. the number of edges of H containing A.

We say that a hypergraph H is r-bounded if all of its edges have size at most r. We say that a
hypergraph H is q-spread1 for some 0 < q < 1 if H is non-empty and if d(A) ≤ q|A||H| for all
sets of vertices A. The main result for q-spread hypergraphs is the following.

Theorem 9.1 ([6, 39]). Let H be an r-bounded q-spread hypergraph on V . There exists an
absolute constant K0 such that if W is a set of size Cq log r · |V | chosen uniformly at random
from V with C ≥ K0, then

Pr[W contains an edge of H] ≥ 1− 8C−1.

We note that better quantitative versions of Theorem 9.1 exist, see e.g. Tao’s reformula-
tion below?, but as stated this theorem already does a lot. Let’s start by looking at some
applications before turning it’s short (though very dense!) proof.

9.1 Applications

Our first application is the following.

Theorem 9.2. Let Gr
n,m be the r-graph chosen uniformly at random amongst all r-graphs with

n vertices and m edges. Then there exists a constant C such that if m ≥ Cn log n and n is a
multiple of r, then Gr

n,m contains a perfect matching a.a.s. 2

It is not too difficult to show that this bound on m is essentially best possible. We note that
morally speaking, G2

n,m acts the same as Gn,p where p = m/
(
n
2

)
. In particular, one can use

Theorem 9.2 to prove that Gn,p contains a perfect matching a.a.s. if p = Ω(log n/n). Proving
Theorem 9.2 for r = 2 is not hard, but the result for general r was thought to be very difficult,
with its first proof due to Johansson, Kahn, and Vu [54] using a rather involved argument. We
will prove Theorem 9.2 in just a few lines with Theorem 9.1.

Proof. Let H be the hypergraph on E(Kr
n) where each hyperedge S is a perfect matching of

1Some texts would say that such an H is q−1-spread.
2This means “asymptotically almost surely”, i.e. the probability of this event happening tends to 1 as n

tends to infinity.
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Kr
n. Observe that for any set A ⊆ E(Kr

n), we have

d(A) · |H|−1 =
(n− r|A|)!

(r!)n/r−|A|(n/r − |A|)!
· (r!)n/r(n/r)!

n!

= (r!)|A|
(
n/r

|A|

)(
n

r|A|

)−1 |A|!
(r|A|)!

≤ (r!)|A|(en/r|A|)|A| · (n/r|A|)−r|A| · (|A|)|A| · (r|A|/e)−r|A|

= (r!)|A|e(r+1)|A|n−(r−1)|A| ≤ (n/re3)−(r−1)|A|.

Thus H is (n/re3)−r+1-spread. It is also (n/r)-uniform and has a ground set V = E(Kr
n) of size(

n
r

)
. By Theorem 9.1, we see that if m is at least as large as in our hypothesis, then with high

probability a random m-subset of H will contain a hyperedge, i.e. Hr
n,m will contain a perfect

matching with high probability.

Another basic example is the following.

Proposition 9.3. Let F be an r-graph and define t(F ) = max{|E(F ′)|/|V (F ′)| : F ′ ⊆ F}. Let
Gr
n,m be as in Theorem 9.2. There exists a constant C(F ) such that if m ≥ C(F )nr−1/t(F ), then

Gr
n,m contains a copy of F a.a.s.

A simple first moment argument shows that this bound is tight. One can prove Proposition 9.3
using a standard but somewhat tedious second moment argument, but using Theorem 9.1 gives
a shorter proof.

Proof. LetH be the hypergraph on E(Kr
n) whose hyperedges correspond to copies of F . Observe

that H being q-spread is equivalent to having (d(A)/|H|)1/|A| ≤ q for all A ⊆ V = E(Kr
n). Any

set A ⊆ E(Kr
n) of positive degree in H forms a subgraph F ′ ⊆ F with |E(F ′)| = |A|, and in

this case (
d(A)

|H|

)1/|A|

≤

(
n|V (F )|−|V (F ′)|(

n
|V (F )|

) )1/|A|

≤ |V (F )||V (F )| · n−|V (F ′)|/|E(F ′)|.

Thus we see that H is q-spread with

q = max{|V (F )||V (F )| · n−|V (F ′)|/|E(F ′)| : F ′ ⊆ F} = |V (F )||V (F )| · n−1/t(F ).

Plugging this into Theorem 9.1 gives the result.

The study of q-spread hypergraphs was initiated by Alweiss, Lovett, Wu, and Zhang [6] where
they proved a slightly weaker version of Theorem 9.1. Their motivation came from the Erdős
sunflower conjecture. A k-sunflower is a hypergraph with edges S1, . . . , Sk such that there
exists a set K called the kernel which has Si ∩ Sj = K for all i 6= j.

Theorem 9.4. There exists an absolute constant C > 0 such that if H is an r-graph with at
least (Ck log r)r edges, then H contains a k-sunflower.

We note that [6] was the first to prove bounds of the form (log r)r+o(1) for fixed k, with [74, 13]
later giving better bounds in terms of k. Prior to [6], the best known bounds were of the form

rr−o(1). It is a famous conjecture of Erdős that one can prove a bound of the form c
r+o(1)
k .
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Proof. We prove the result by induction on r, the r = 1 case being trivial. Let H be an r-
graph with at least (Ck log r)r edges. If H is not q-spread with q = (Ck log r)−1, then there
exists some A ⊆ V (H) such that d(A) ≥ (Ck log r)r−|A|. This means that the link hypergraph
HA = {S \A : S ∈ H, A ⊆ S} has size at least (Ck log r)r−|A|. Since HA is an (r−|A|)-uniform
hypergraph, by induction HA contains a k-sunflower, say with edges S1 \ A, . . . , Sk \ A ∈ HA.
It is not difficult to check that S1, . . . , Sk ∈ H forms a k-sunflower in H. We conclude that any
H with at least (Ck log r)r edges which is not q-spread contains a k-sunflower, so from now on
we may assume H is q-spread.

Possibly by adding isolated vertices to H, we can assume that the size of the vertex set V of
H is a multiple of 2k. Let V1, . . . , V2k be a random partition of V such that each Vi ⊆ V has
size (2k)−1|V |. This means that each Vi is a uniformly chosen set of V of size (2k)−1|V | =
1
2
C(log r)q|V |. Let 1i be the indicator variable for the event that Vi contains an edge of H. By

Theorem 9.1, we have Pr[1i = 1] ≥ 1
2

provided C is sufficiently large. In this case, E[
∑

1i] ≥ k,
and hence there exists some partition V1, . . . , V2k such that

∑
1i ≥ k, which in particular means

there exist k disjoint edges of H. This is a k-sunflower in H, proving the result.

9.2 Proof of the Spreadness Theorem

There are by now a number of proofs of Theorem 9.1, though most of them maintain the same
core set of ideas. The proof we present here is based off of a proof due to Rao [75] which gives
weaker quantitative bounds. We emphasize that while the proof itself is very short, it is also
very dense in content, so we’ll spend some time trying to build up some intuition for it.

Recall that H is an r-bounded q-spread hypergraph on V , and that we want to show that a
uniformly random set W of size Cq log r · |V | contains an edge of H with high probability.
In order to use an iterative approach, we consider a uniform random vector of disjoint sets
(W1, . . . ,Wlog r) each of size Cq|V |. Let W≤i =

⋃
j≤iWj, and note that W has the same

distribution as Wlog r, so it suffices to work with these random sets.

A super ideal situation for our iterative approach would be if for all S ∈ H, we have |S−W≤i| <
2−ir. Indeed, with this at i = log r, we would get that every edge is contained in W≤log r. Of
course, this is far too much to hope for. However, since we only need W≤log r to contain a
single edge, it would suffice to have this work out for some S. As such it perhaps make sense
to say that an edge S “succeeds” at step i if |S −W≤i| < 2−ir, and then to argue that with
high probability some edge succeeds at each step. Unfortunately this notion of success is too
restrictive to work. The key insight is that we can loosen our condition by saying that an edge
S “succeeds” if there exists some edge S ′ ⊆ S ∪W≤i (or equivalently S ′ −W≤i ⊆ S −W≤i)
such that |S ′ −W≤i| < 2−ir. The point is that (1) this condition is easier to achieve (and in
particular will be achieved by “most” S at each step), and (2) if some S succeeds at each step,
then the S ′ it points to for step log r will be contained in W≤log r. Need to fact check that this
is really what’s going on, and in particular we maybe need S ′ also to have not failed at this
point.

With this in mind, given W1, . . . ,Wi, we iteratively define “failure” hypergraph Fi to be those
S /∈ F≤i−1 :=

⋃
j≤i−1Fj (i.e. which haven’t failed at any previous step) such that for all

S ′ ∈ H − F≤i−1 satisfying S ′ ⊆ S ∪W≤i, we have |S ′ −W≤i| ≥ 2−ir. The key claim is the
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following.

Lemma 9.5. Given W≤i−1, we have E[|Fi|] ≤ 2(C/4)−2−ir|H|.

To upper bound |Fi|, it will help to instead upper bound the size of an auxiliary hypergraph
defined as follows. Given W1, . . . ,Wi, we define the fragment T (S,W≤i) of an edge S ∈ H−Fi−1

to be a set of minimum size in {S ′−W≤i : S ′ ∈ H−F≤i−1, S
′ ⊆ S ∪W≤i} (say the lexicograph-

ically smallest set if there are multiple of minimum size). We let Gi be the hypergraph where T
is an edge if T = T (S,W≤i) for some S ∈ Fi. Note that by definition this means |T | ≥ 2−ir, and
that for every S ∈ Fi, there exists some T ∈ Gi with T ⊆ S. This last condition says Gi is an
undercover of Fi, which will also be a key condition in our upcoming proof of the Park-Pham
Theorem.

Proof. Let w := Cq|V |, which we recall is the size of Wi, and let ni = |V − W≤i−1|. Let
P consist of all pairs (S,W ) with S ∈ H and W ∈

(
V−W≤i−1

w

)
such that S ∈ Fi whenever

Wi = W . Similarly given an integer a ≥ 2−ir, let Pa consist of all pairs (T,W ) with |T | = a
and W ∈

(
V−W≤i−1

w

)
such that T ∈ Gi whenever Wi = W . We claim that. Probably use t

instead of a

E[|Fi|] = |P|
(
ni
w

)−1

≤
∑
a≥2−ir

qa|H||Pa|
(
ni
w

)−1

. (12)

Indeed, the equality is straightforward. Because Gi is an undercover of Fi, for every pair
(S,W ) ∈ P there exists a pair (T,W ) ∈

⋃
aPa such that T ⊆ S. Moreover, for each set T of

size a, the number of S ∈ H with T ⊆ A is at most qa|H| by the definition of H being q-spread.
This gives the stated inequality

It remains to count the number of elements (T,W ) ∈ Pa. We will identify such a pair by first
specifying the set T ∪W , and then specifying T (which uniquely determines W ). We first note
that T ∪W is a set of size a+ w, so the number of choices for this step is at most(

ni
a+ w

)
≤ (ni/w)a ·

(
ni
w

)
= (Cq)−a

(
ni
w

)
.

Given T ∪ W , choose any S ′ ∈ H − F≤i−1 with S ′ − W≤i−1 ⊆ T ∪ W . Crucially, we must
have T ⊆ S ′ − W≤i−1, as otherwise if T = T (S,W≤i−1 ∪ W ) for some S, then taking T ′ =
S ′ − (W≤i−1 ∪ W ) ( T (with the inclusion holding because S ′ − W≤i−1 ⊆ T ∪ W , and the
strictness holding if T 6⊆ S ′ − W≤i−1), we find that T cannot be the fragment of S (since
T ′ is a smaller set than T satisfying the same properties). Note that S ′ /∈ F≤i−1 implies
|S ′ −W≤i−1| ≤ 2−i+1r, so the number of choices for T is at most 22−i+1r = 42−ir.

In total we conclude that |Pa| ≤ (Cq)−a42−ir
(
ni
w

)
. Plugging this into (12), we find

E[|Fi|] ≤
∑
a≥2−ir

qa|H| · (Cq)−a42−ir = 42−ir|H|
∑
a≥2−ir

C−a ≤ 2(C/4)−2−ir|H|,

with this last step holding for C sufficiently small.

With this lemma, we have

E[|F≤log r|] ≤
r∑
i=1

2(C/4)−2−ir|H| ≤ 16C|H|.
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By Markov, the probability that |F≤log r| = |H| is at most 1
16C

, so F≤log r 6= H is at least 1− 1
16C

.
As noted above, if there exists S ∈ H − F≤log r then S points to an edge which is contained in
W≤log r, so we conclude that this random set W≤log r of size Cq log(r)|V | contains an edge with
probability at least 1− 1

16C
.

9.3 Losing Logarithms

As we noted earlier, the bound of Theorem 9.2 is best possible. In particular, the log r term
of Theorem 9.1 is necessary in general. However, under certain conditions one can remove
this logarithmic term. This was first observed by Kahn, Narayanan, and Park [56] where they
found tight bounds on the threshold of a square of a Hamiltonian cycle in Gn,p. Here we briefly
outline how, under special circumstances, one can modify the previous proof to get rid of the
log r factor.

The main idea is that instead of setting our cutoff points for our fragments to be r/2, r/4, . . .,
we instead set them to be k1, k2, . . . for some suitable sequence ki with significantly fewer than
log r terms. In this setup, one could try to naively go through Lemma 9.5 and replace 2−i+1r
with ki−1 and 2−ir with ki, which will roughly give us

E[|Fi|] ≤ 2ki−1C−ki |H|,

but this will be terrible unless ki−1 differs from ki by a multiplicative constant depending on C.

One way we can get around this is if we impose that for all sets A and integers j with ki−1 ≥
|A| ≥ j ≥ ki, we have that the number of edges S ′ with |A ∩ S ′| = j is at most qj|H|. Note
that this is stronger than spreadness since, when taking j = |A|, the condition |A∩S ′| = j just
says S ′ is an edge containing A, so this bound exactly says degH(A) ≤ q|A||H|, which is the
spreadness condition. Assuming this condition holds, we will count the pairs (S,W ) ∈ P in a
more subtle way.

Let T = T (S,W≤i−1 ∪W ), which we note has |T | ≥ ki and T ⊆ S. We first specify T ∪W ,
which as before can be done in roughly (Cq)−a

(
ni
w

)
ways. We then pick some edge S ′ /∈ F≤i−1

such that A := S ′−W≤i−1 ⊆ T ∪W , where as before we have T ⊆ A. Since T ⊆ A∩S, we have
j := |A ∩ S| ≥ a. Given j, the number of S with |A ∩ S| = j is at most qj|H| by our condition
(and we have |A| ≤ ki−1 as otherwise we would have S ′ ∈ F≤i−1). Since we now know S and
T ∪W , we also know S ∪W (since T ⊆ S), and hence T (since T is purely a function of the set
S ∪W and W≤i−1 Need to double check this; in any case there are trivially at most 2j choices
for T ⊆ A ∩ S), and hence W = (T ∪W ) \ T (since T is disjoint from W by definition). With
this, we see that the total number of choices is at most∑

a≥ki

C−a
(
ni
w

)∑
j≥a

qj|H| ≈ C−ki
(
ni
w

)
|H|,

giving the desired result. A more formal theorem/proof can be found in [86], though the
approach used there is an older and more complicated version of the one presented here. See
also [41] for a proof in the specific case of getting rid of the logarithm for the square of a
Hamiltonian cycle.
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10 The Park-Pham Theorem TODO
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11 Spread Measures and Absorption TODO
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12 Spread Approximations

Motivated by our success in proving bounds on hypergraphs which don’t contain sunflowers in
Theorem 9.4, we consider some additional applications of spread hypergrpahs to extremal set
theory. For this it will be convenient to define a slightly different notion of spreadness which
was introduced by Kupavskii and Zakharov [62].

Given a set of vertices A, we define the link hypergraph H(A) = {e \ A : e ∈ H, A ⊆ e}. We
say that an n-vertex r-graph H is τ -homogeneous if

d(A) = |H(A)| ≤ τ |A|

(
n−|A|
r−|A|

)(
n
r

) |H|.
Intuitively, τ -homogeneous hypergraphs should be thought of as (τ/n)-spread hypergraphs.
Formally, we have the following.

Lemma 12.1. If H is an n-vertex r-graph which is τ -homogeneous, then it is q-spread with
q = τr

n
.

Proof. Note that
(
n−1
r−1

)
= r

n

(
n
r

)
. By repeating this logic and using that r−i

n−i ≤
r
n

whenever
i ≤ r ≤ n, we find

d(A) ≤ τ |A|

(
n−|A|
r−|A|

)(
n
r

) |H| ≤ (τr
n

)|A|
|H|,

proving the result.

The main motivation for this definition is the following.

Theorem 12.2 ([62]). Fix k ∈ Z≥1 and τ ∈ R≥1. For every n-vertex r-graph H, there exists
an “approximation” hypergraph S with edges of size at most k, and a “remainder” H′ ⊆ H with
the following properties:

� For every e ∈ H \ H′, there exists S ∈ S such that S ⊆ e.

� |H′| ≤ τ−k−1
(
n
r

)
.

� For every S ∈ S there exists HS ⊆ H such that the link hypergraph HS(S) is τ -
homogeneous.

This first condition says that S “approximates” H \ H′ in the sense that it’s an undercover,
while the second condition says that “most” of H is approximated. The third condition gives
us the very useful property that each edge S of our approximating hypergraph S has a well
spread link, which will imply that a random partition of our vertex set will give a sunflower
whose kernel contains S.

Add more intuition for this proof, possibly via recalling the proof of the improved
sunflower bounds (namely you go by picking a largest S such that F(S) isn’t spread).
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Proof. If n ≤ k, then we can take S = H, HS = {S}, and H′ = ∅ to get the result, so we may
assume n > k. For this proof we define H[S] = {e : e ∈ H, S ⊆ e}, i.e. this is just the link
hypergraph H(S) after adding the set S back into each edge.

Let H1 = H. Given Hi, let Si be a maximal set of vertices with dHi(Si) ≥ τ |Si|
(n−|Si|r−|Si|

)
(nr)
|Hi|.

If |Si| > k (which happens automatically if Hi = ∅ and n > k), then stop the procedure.
Otherwise set Hi+1 = Hi \ Hi[Si].

Say we stop this procedure at i = m+ 1. Set H′ = Hm+1, S = {Si : i ≤ m}, and HSi = Hi[Si].
Observe that by construction each edge of S has size at most k and that the first condition of
the theorem is satisfied (since e ∈ H \ H′ implies e ∈ Hi for some i ≤ m, and taking S = Si
works). Again by construction, we have

|H′| = |Hm+1| ≤ dHm+1(Sm+1)τ−|Si|
(
n
r

)(
n−|Sm+1|
r−|Sm+1|

) ≤ τ−k−1

(
n

r

)
,

where this last step used the trivial bound dHm+1(Sm+1) ≤
(
n−|Sm+1|
r−|Sm+1|

)
and that |Sm+1| ≥ k + 1

by assumption of us stopping the procedure here. This establishes the second condition.

For the third condition, note that for any set T disjoint from Si, we have

dHSi (T ) = dHi(S ∪ T ) < τ |Si∪T |

(
n−|Si∪T |
r−|Si∪T |

)(
n
r

) |Hi|,

where this last step used the maximality of Si. We also have

|Hi| ≤ τ−|Si|
(
n
r

)(
n−|Si|
r−|Si|

)dHi(Si) = τ−|Si|
(
n
r

)(
n−|Si|
r−|Si|

) |HSi |.

Combining these two inequalities gives the third condition, proving the result.

It turns out that when τ is small, the S given by Theorem 12.2 inherits intersection properties
of the original hypergraph H. Recall that a hypergraph is t-intersecting if every two edges
intersect in at least t vertices.

Lemma 12.3. There exists an absolute constant C such that the following holds. Let H be an
n-vertex r-graph, and let S by the hypergraph guaranteed by Theorem 12.2 with parameters k, τ .
If n ≥ Cτrmax{log r, k}, then

{S ∩ T : S, T ∈ S} ⊆ {e ∩ f : e, f ∈ H}.

We emphasize that we allow S = T in the lemma statement.

Proof. Let S, T ∈ S, and note that Lemma 12.1 implies HS(S) is τr
n

-spread. Let H′S ⊆ HS(S)
be the hypergraph obtained by deleting all of the vertices x ∈ T \ S. Then

|H′S| ≥ |HS(S)| −
∑
x∈T\S

dHS(S)(x) ≥ (1− τr

n
· k)|HS(S)| ≥ 1

2
|HS(S)|,
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where the second inequality used that HS(S) is spread, and the last inequality holds for C ≥ 2.
This together withHS(S) being τr

n
-spread impliesH′S is q := 2τr

n
-spread. Similarly if one defines

H′T ⊆ HT (T ) by deleting the vertices of S \ T we get that this is q-spread.

Randomly partition the vertices of V (H)\(S∪T ) into two sets V1, V2 of size at least 1
2
(n−2k) ≥

1
4
n, where this holds if C is sufficiently large. By hypothesis this is at least 1

4
Cτr log r =

1
8
Cq log rn. Thus by Theorem 9.1, if C is sufficiently large, then with positive probability both
V1, V2 contain edges e′, f ′ of H′S,H′T respectively, which by definition means e′, f ′ contains no
vertices of T, S. This means e = e′ ∪ S, f = f ′ ∪ T are edges of H with e∩ f = S ∩ T , proving
the result.

A simple application of this result gives the t-intersecting version of the Erdős-Ko-Rado theorem
(albeit with suboptimal bounds on n).

Theorem 12.4. Let H be an n-vertex r-graph such that |e ∩ f | ≥ t for all e, f ∈ H. If n is
sufficiently large in terms of r, then |H| ≤

(
n−t
r−t

)
with equality holding if and only if H consists

of every edge containing some fixed set T of size t.

Proof. Apply Theorem 12.2 with k = t and τ = n
Crmax{log r,k} with C as in Lemma 12.3, and let

H′,S be the resulting families. Note that by Theorem 12.2,

|H′| ≤ τ−k−1

(
n

r

)
= O(nr−t−1).

By Lemma 12.3, our hypothesis on H, and the fact that |S| ≤ k = t for all S ∈ S, we see
that S is either empty or consists of a single set T of size t. In the former case |H| = |H′| =
O(nr−t−1) <

(
n−t
r−t

)
and there is nothing to prove, so we may assume such a T exists. This

implies that every element of H \H′ contains T .

First consider the case that H contains some e which does not contain T . By our observation
above, this means that every element of H \ H′ contains both T and some additional element
of e. This implies

|H \ H′|+ |H′| ≤ r

(
n− t− 1

r − t− 1

)
+ |H′| = O(nr−t−1) <

(
n− t
r − t

)
.

Thus we can assume every element of H contains T , which means |H| ≤
(
n−t
r−t

)
.

The above argument actually gives the following stability result: for all r, t there exists a
constant c′ = c′(r, t) such that if H is t-intersecting with |H| > c′

(
n−t
r−t

)
, then there exists a set

of size t which is contained in every edge of H.

Another application is a bound for how large an intersecting hypergraph H can be if it’s “far”
from the extremal example, i.e. a star. There are many ways to make the notion of “far” precise.
One way is to demand that every vertex of H to be contained in the same number of edges, i.e.
to demand that H be regular.

Theorem 12.5 ([62]). There exists an absolute constant C > 0 such that if n ≥ Crmax{log r, k},
then any n-vertex intersecting r-graph H has |H| ≤ 2−k

(
n
r

)
.
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This result is roughly optimized when k ≈ n/r, giving an upper bound of roughly 2−n/r
(
n
r

)
,

which is typically much stronger than the bound
(
n−1
r−1

)
given by Erdős-Ko-Rado for (not nec-

essarily regular) intersecting families. Note that in particular this bound implies that regular
intersecting hypergraphs cannot exist if n � r Which is maybe obvious by elementary
means.

Proof. Apply Theorem 12.2 with τ = 2, which we can do if C is sufficiently large. Let H′,S be
the corresponding families that we get. Note that by Theorem 12.2 we have

|H \ H′| ≥ 1

2
|H|.

We claim that every edge e ∈ H \ H′ intersects every S ∈ S. Indeed, by the first property of
Theorem 12.2, there exists some S ′ ⊆ e with S ′ ∈ S, and by Lemma 12.3, this S ′ (and hence
e) intersects S.

Pick any S ∈ S. By the previous claim, some vertex x ∈ S must satisfy

d(x) ≥ 1

|S|
|H \ H′| ≥ 1

2k
|H|,

where this last step used |S| ≤ k for any S ∈ S and |H \ H′| ≥ 1
2
|H|. However, since H is

regular, by the handshaking lemma we must have

d(x) =
r

n
|H|.

This contradicts the previous bound if n > 2rk, giving the result.

12.1 Further Results

One can push the ideas of this section significantly further. Here we sketch out some of these
ideas, and we refer the reader to [62] for the details.

One important direction is that one can consider different “ambient families.” That is, up to
this point we were considering r-uniform hypergraphs, i.e. H ⊆ A :=

(
[n]
r

)
. Alternatively, one

can identify subsets of [n2] by their 0-1 characteristic vectors, which can in turn be written
as n-dimensional 0-1 matrices. In particular, by letting A denote the set of such vectors
corresponding to permutation matrices, we can now consider “intersection” problems for sets
of permutations H ⊆ A. Here one can again go through similar steps to develop a notion of
homongenous families (with respect to our new choice of A) in order to get results about sets
of permutations H which are intersecting (i.e. such that any two permutations π, σ ∈ H have
π(i) = σ(i) for some i, i.e. if there corresponding 0-1 matrices have a common entry equal to
1).

Through Lemma 12.3, we showed that if H is t-intersecting and τ is small enough, then we
can guarantee that S is t-intersecting. Through a more refined argument, one can show that
if τ is very small, then in fact this same conclusion holds if we only impose the much weaker
condition that |e ∩ f | 6= t− 1 for e, f ∈ H.
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Part IV

The Regularity Lemma TODO
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Part V

Hypergraph Containers

This part is heavily based off of lecture notes by Balogh [8]. Throughout this section we let
I(H) denote the set of independent sets of a hypergraph H and Im(H) the set of independent
sets of size m. We adopt the notation

(
n
≤k

)
to denote the number of subsets of [n] of size at

most k. Many of the bounds in this part will be rough approximations to the truth in order to
emphasize the intuition of the results and techniques rather than the nitty gritty detail that is
actually required.

64



13 Introduction

Many problems in extremal combinatorics can be stated in terms of independent sets of hyper-
graphs. For example, one can define HAP

n to be the 3-graph on [n] where every triple S ⊆ [n] is
a hyperedge if and only if S is a 3-term arithmetic progression. Thus Roth’s theorem is equiva-
lent to saying α(HAP

n ) = o(n). Similarly one can define H∆
n to be the 3-graph whose vertex set

is E(Kn) and whose hyperedges are triples of edges in Kn which form a triangle. Independent
sets of H∆

n are triangle-free subgraphs of Kn, so Mantel’s theorem says α(H∆
n ) = bn2/4c.

This part is dedicated to a powerful method of upper bounding the size of I(H). Observe that
for any hypergraph H we have

2α(H) ≤ |I(H)| ≤
(

n

α(H)

)
2α(H) ≤ (2n)α(H).

In particular, the upper bound follows because every independent set is a subset of a set of size
α(H). More generally, we say that a collection C of subsets C ⊆ V (H) is a set of containers
for H if every independent set I ∈ I(H) is a subset of some C ∈ C. If such a set of containers
exists, then

|I(H)| ≤
∑
C∈C

2|C| ≤ |C|2maxC∈C |C|. (13)

Thus we will get an effective upper bound on |I(H)| whenever we can find a small collection
of containers, each of which are relatively small. Sometimes we will be interested in finding the
number of independent sets of H of size m. The same reasoning as above gives(

α(H)

m

)
≤ |Im(H)| ≤ |C|

(
maxC∈C |C|

m

)
. (14)

The method of hypergraph containers gives a systematic way of obtaining such a collection of
containers whenever H satisfies some fairly mild conditions. The main condition we need is
that the codegrees of H to be relatively small, and in practice this often corresponds to having
some notion of supersaturation.
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14 Graph Containers

While the general method of containers involves bounding independent sets of hypergraphs, one
can get pretty far by only considering independent sets of graphs. To this end we prove the
following graph container lemma, which will be the main workhorse for the rest of this section.
Recall that a collection C of subsets C ⊆ V (G) is a set of containers for G if every independent
set I ∈ I(G) is a subset of some C ∈ C.

Lemma 14.1. Let G be an n-vertex graph and t > 0 a positive number. There exists a collection
C of containers such that

(a) |C| ≤
(

n
≤n/t

)
.

(b) ∆(G[C]) < t− 1 for all C ∈ C.

In other words, there exists a small set of containers C such that each C ∈ C is “small” in the
sense that it induces a graph with small maximum degree.

Proof. Our proof will be algorithmic: we construct a (deterministic) algorithm which takes as
input a set I ⊆ V (G) and which outputs a pair (S(I), A(I)) such that S(I) ⊆ I ⊆ S(I)∪A(I),
and we will ultimately use {S(I) ∪A(I) : I ∈ I(G)} as our set of containers. We now describe
the algorithm.

Fix an arbitrary ordering of V (G). As input we take in an independent set I ⊆ V (G). We
initially set S = ∅ and A = V (G) (the former corresponds to a set of “selected” vertices which
are in I, and the latter to the set of “available” vertices which could possibly be in I given the
current stage of the algorithm). The algorithm proceeds as follows:

Step 1 If ∆(G[A]) < t− 1, output (S(I), A(I)). Otherwise proceed to Step 2.

Step 2 Let v be the vertex of maximum degree in G[A], with ties being broken according to the
fixed ordering of V (G). If v /∈ I, then set A = A − v and repeat Step 1. Otherwise
proceed to Step 2.

Step 3 Set A = A− v −NG[A](v), S = S ∪ {v}. Proceed to Step 1.

Let’s reiterate what’s going on here. It’s not difficult to show inductively that we always have
I ⊆ S ∪A, so S ∪A serves as a container set for I, and we would like to trim this set down as
much as possible. We do this by selecting a vertex v ∈ A∩ I and adding it to S. If v has large
degree in G[A], then v being in the independent set I means that its many neighbors are not,
so we get to remove all of these vertices from A while maintaining I ⊆ S ∪ A. In particular,
since we keep going so long as G[A] has large maximum degree, we know at each step of this
process that we’re removing many vertices from A.

Define
C = {S(I) ∪ A(I) : I ∈ I(G)},
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which is a set of containers since I ⊆ S(I) ∪ A(I) at every step of the algorithm. Since we
terminate the algorithm precisely when ∆(G[A(I)]) = ∆(G[S(I) ∪A(I)]) < t− 1 (the equality
holds since S(I) has no neighbors in S(I) ∪ A(I)), (b) holds. It thus remains to verify (a). To
do this, we note the following which is easy to verify.

Claim 14.2. Let I1, I2 be two independent sets and let (S1, A1), (S2, A2) be their outputs from
the algorithm. If S1 = S2, then A1 = A2.

This claim implies that given S(I), the container S(I) ∪ A(I) is uniquely determined1. In
particular, if we always have |S(I)| ≤ n/t, then the number of containers will be at most(

n
≤n/t

)
. And indeed, each round of the algorithm has ∆(G[A]) ≥ t − 1, so every time a vertex

is added to S at least 1 + (t − 1) = t vertices are removed from A. In particular, at most n/t
vertices can be added to S, giving the result.

Actually, a closer inspection of the proof gives the following.

Lemma 14.3. Let G be a graph on n vertices and t ∈ R. There is a collection C of containers
and functions

f : I(G)→
(
V (G)

≤ n/t

)
, g :

(
V (G)

≤ n/t

)
→ C

such that the following hold.

(a) The function g is a surjection. In particular, |C| ≤
(

n
≤n/t

)
.

(b) We have ∆(G[C]) < t− 1 for all C ∈ C.

(c) For every I ∈ I(G) we have
f(I) ⊆ I ⊆ g(f(I)).

Proof. Consider the exact same algorithm as before. Define f(I) = S(I) and g(S) = C(S) (if
S 6= S(I) for any I, then assign g arbitrarily). It’s not hard to check that this works.

The extra source of power of this lemma is that for each I ∈ I we are given some set S = f(I)
contained in I. In many examples this extra information is needed to get tight upper bounds
when counting independent sets, though for pedagogical purposes we will often work with the
simpler Lemma 14.1 to get close to tight results.

In the coming subsections we’ll show how to use Lemma 14.1 to solve several combinatorial
problems. All of the proofs will be very similar to each other, though they’ll become increasingly
sophisticated as we go along.

Before going on, let us briefly note that there are many variants of Lemma 14.1 that one can
prove using a similar approach. These variants of Lemma 14.1 are both a blessing and a curse
since they give many options for how to solve a given problem (and it isn’t always clear which
is best).

1Because of this, S is often called a “certificate” or “fingerprint” of I.

67



14.1 Regular Graphs

Our first application of Lemma 14.1 will be to count the number of independent sets in a d-
regular graph. As a point of reference, it is not difficult to show that if G consists of n/2d
disjoint copies of Kd,d, then

|I(G)| = (2d+1 − 1)n/2d = 2n/2+n/2d+o(n).

Thus for d-regular graphs, we can’t possibly hope to prove an upper bound on |I(G)| stronger
than roughly 2n/2 when d is large. We can prove that this is close to best possible using
containers.

Theorem 14.4. Let G be a d-regular n-vertex graph with log n� d� n/2. Then

|I(G)| ≤ 2n/2+o(n).

In fact, it turns out that |I(G)| ≤ (2d+1 − 1)n/2d for all d-regular n-vertex graphs. This was
proven for bipartite graphs by Kahn [55] using entropy, and the problem was solved in full by
Zhao [91]. As far as I’m aware, the proof of Theorem 14.4 presented here is due to Balogh.

As a first step to proving Theorem 14.4, we will apply Lemma 14.1 to our graph G to get a
collection of containers C. We would like to conclude the result by the observation from (13):

|I(G)| ≤
∑
C∈C

2|C| ≤ |C|2maxC∈C |C|,

but there’s an issue with this. Namely, Lemma 14.1 only tells us that each C ∈ C induces a
graph in G with small maximum degree. For a general graph this tells us nothing about |C|,
but fortunately in d-regular graphs, G[C] having small maximum degree is only possible if C
is small. The following states a precise version of the contrapositive of the previous sentence.

Lemma 14.5. For any ε > 0, if G is a d-regular graph and C ⊆ V (G) with |C| = n/2 + εn,
then ∆(G[C]) ≥ 2εd.

This lemma is a form of supersaturation: a d-regular graph can have a subset of size n/2 with
G[C] empty (e.g. if G is bipartite), but if C is just a bit larger than this, then it must have
relatively high maximum degree. As we will see, supersaturation results are almost always a
necessary ingredient for applying the method of containers.

Proof. Because the maximum degree is always at least the average degree, we have

∆(G[C]) ≥ 2e(G[C])/|C| ≥ 2e(G[C])/n

, so it will suffice to show that e(G[C]) is large. To do this, we let C = V (G) \C and note that

d|C| =
∑
v∈C

d(v) = 2e(G[C]) + e(C,C) ≤ 2e(G[C]) + d|C|.

Because |C| = n/2 + εn and |C| = n/2− εn, in total this implies

2e(G[C]) ≥ 2εdn.

Combining this with the observation at the start gives the result.
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Corollary 14.6. For all t, if G is an n-vertex d-regular graph, then there exists a set of
containers C with |C| ≤

(
n
≤n/t

)
and |C| ≤ 1

2
n+ t

d
n for all C ∈ C.

Proof. Let C be a set of containers as guaranteed by Lemma 14.1. Because ∆(G[C]) < t−1 ≤ t,
Lemma 14.5 implies that |C| ≤ 1

2
n+ t

d
n.

With this we can prove Theorem 14.4.

Proof of Theorem 14.4. At this point all we need to do is use (13) after applying Corollary 14.6
with a carefully chosen value of t. Note that

|C| ≈
(
n

n/t

)
≈ 2n log(t)/t,

and we already know 2max |C| ≈ 2
1
2
n+ t

d
n. Thus to minimize |C| · 2max |C| we should choose t so

that t
d
≈ log(t)/t, and in particular t =

√
d log n is a reasonable choice. One can verify with a

more formal argument that this does indeed give the desired result after applying (13).

We note that the statement of Corollary 14.6 and the optimization of t in the proof of Theo-
rem 14.4 is in some sense independent1 of the problem of determining |I(G)| for G a d-regular
graph. That is, these results are effective for other problems which involve counting independent
sets of d-regular graphs.

For example, recall that a q-coloring of a graph G is a map χ : G→ [q] such that χ(u) 6= χ(v)
whenever uv ∈ E(G). Equivalently, a q-coloring is a partition of V (G) into independent sets
I1, . . . , Iq, With this latter formulation, we can use containers to get an effective bound on the
number of q-colorings of G, which we’ll denote by Xq(G).

Again, let’s consider a test case to figure out how strong of a bound we could possibly hope to
prove. Let G be n/2d disjoint copies of Kd,d. We know that G has close to as many independent
sets as it could possible have, so it seems plausible that it would have many q-colorings as well.
In particular, one can prove that Xq(G) ≈ (q/2)n, and once again we can prove that this is
essentially best possible.

Theorem 14.7 ([44]). Let G be an n-vertex d-regular graph and q an integer such that q2 log n�
d. Then

Xq(G) ≤ (q/2 + o(1))n.

We note that a stronger result was proven by Galvin [44] with a somewhat more involved proof.

Proof. By the same reasoning as in Theorem 14.4, there exists a set of containers C for G such

that |C| ≈ 2
√

logn
d
n and |C| ≈ 1

2
n for each C ∈ C. Consider all vectors of the form (C1, . . . , Cq)

with Ci ∈ C, noting that the number of such vectors is at most |C|q = 2o(n).

Observe that every q-coloring can be identified by a vector (I1, . . . , Iq) where each Ij is an
independent set and

⋃
Ij = V (G). Each of these vectors is “contained” in some “container

1Ha.
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vector” (C1, . . . , Cq) with Cj ∈ C in the sense that Ij ⊆ Cj for all j. Thus it’s enough to count
how many q-colorings each container vector contains.

A naive upper bound for the number of q-colorings contained in (C1, . . . , Cq) is roughly 2qn/2

since this is the number of ways to choose an independent set from each Ci. This bound is too
weak, so we have to utilize the extra information that the Ij partition V (G).

To this end, assume V (G) = {v1, . . . , vn}. Given (C1, . . . , Cq), let ai be the number of containers
Cj with vi ∈ Cj. It’s not difficult to see that the number of q-colorings contained in this vector
is then at most

∏
ai, and by the AMGM inequality this is at most (

∑
ai/n)n = (

∑
|Cj|/n)n.

Each of the q containers has size at most roughly n/2 +
√

logn
d
n, so this gives the desired

result.

14.2 A Randomized Sperner’s Theorem

Throughout this subsection we fix an integer n and define N := 2n and m =
(

n
bn/2c

)
. An

antichain of [n] is a subset S ⊆ 2[n] such that A 6⊆ B for any distinct A,B ∈ S. For example,(
[n]
k

)
is an antichain for all k. A famous result of Sperner’s says that an antichain of [n] has size

at most m.

Our first goal is to count the number of antichains of [n]. To do this, we form a graph where
independent sets correspond to antichains. Let GN denote the graph whose vertex set is 2[n] and
where A,B are adjacent to each other if either A ⊆ B or B ⊆ A. Analogous to Lemma 14.5,
we need a supersaturation lemma for GN which says that any collection of vertices that is much
larger than m induces many edges. In particular, the following suffices.

Lemma 14.8 ([60, 10]). If C ⊆ 2[n] has |C| > (1 + ε)m with 0 < ε ≤ 1/3, then e(GN [C]) ≥
εmn/2.

We won’t prove this, but we will briefly comment on some intuition for the result. Intuitively,
if you want to build a set of size (1 + ε)m which induces few edges, then a good place to
start is with the middle layer

(
[n]
bn/2c

)
since this is a maximum independent set. From there

one could greedily choose εm sets which have as few neighbors as possible in this middle layer,
and in particular choosing them allfrom

(
[n]

bn/2c+1

)
gives a total of (bn/2c + 1) · εm ≥ εmn/2

edges. Kleitman [60] proved that this is indeed the best construction, and the exact numerical
computation1 was done by Balogh, Mycroft, and Treglown [10].

With our supersaturation lemma in hand, we can easily prove the following result of Kleitman.

Theorem 14.9 ([61]). The number of antichains of [n] is 2m+o(m).

Proof. We obtain a set of containers C for GN by applying lemma 14.1 to GN with a parameter
t to be determined later. Let ε be such that (1 + ε)m = maxC∈C |C| and let C be a container

1The numbers in Lemma 14.8 are slightly different from those that appear in [10], but it’s not difficult to
refine their proof to give this result.
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achieving this bound. By Lemma 14.8 we have1

∆(GN [C]) ≥ 2e(GN [C])/|C| ≥ εmn/(1 + ε)m ≈ εn.

By assumption this quantity is at most t, or equivalently we roughly have max|C|∈C |C| ≤
(1 + t/n)m. By (13) we have an upper bound of roughly(

N

N/t

)
2(1+t/n)m ≈ 2

N
t

log(t)+(1+t/n)m.

This quantity is optimized when N log(t)/t ≈ tm/n. We have m ≈ N/
√
n, so in total we want

t ≈ n3/4/
√

log n, and one can verify that this choice of t gives the desired bound.

We next prove a random version of Sperner’s theorem. The setup is as follows. Choose a subset
Rp ⊆ 2[n] by including each set in Rp independently and with probability p. How large is the
size of a largest antichain in Rp (in expectation)? In terms of our graph GN , this is equivalent
to computing E[α(GN [Rp])].

Let’s consider some simple cases first. If p = 1, then GN [Rp] = GN and we know its
independence number is m. Somewhat more generally, we always have the lower bound
E[α(GN [Rp])] ≥ pm since this is the expected size of the set

(
[n]
bn/2c

)
∩ Rp. However (as will

often be the case), the behavior of E[α(GN [Rp])] changes considerably when p is very small.

For example, if p23n � p2n, then asymptotically we have E[α(GN [Rp])] ∼ |Rp| by a simple
deletion argument. Even above the deletion threshold it is possible to improve on the trivial
lower bound. Indeed, construct an independent set I by keeping each vertex in

(
[n]
bn/2c

)
∩ Rp

together with all the vertices in
(

[n]
bn/2c−1

)
∩Rp which are not contained in any of the vertices of(

[n]
bn/2c

)
∩ Rp. The expected number of vertices we get from this first part is p

(
n
bn/2c

)
, and from

the second is2 p(1 − p)n+1−bn/2c( n
bn/2c−1

)
. In particular, if p = c/n for a fixed constant c, then

this asymptotically gives (1 + ε)pm for some ε > 0.

It turns out that for larger p we do have E[α(GN [Rp])] ∼ pm. More precisely we have the
following due to Balogh, Mycroft, and Treglown [10].

Theorem 14.10 ([10]). For any ε > 0, there exists a constant c so that if p > c/n, then a.a.s.
α(GN [Rp]) ≤ (1 + ε)pm.

Roughly speaking the approach we would like to use is as follows. Observe that α(GN [Rp]) ≥ k
if and only if GN [Rp] contains an independent set of size k. The expected number of such sets
in GN [Rp] is exactly pkIk(GN), and if this quantity is small then we can conclude the result by
Markov’s inequality. Thus to solve this problem (and in general to solve extremal problems in
random sets), we need to get effective upper bounds on Ik(GN).

Unfortunately a naive application of Lemmas 14.1 and 14.8 together with (14) turns out to
be too weak. The bottleneck here is the supersaturation result from Lemma 14.8. While the

1Implicitly this assumes ε ≤ 1/3. One can get around this by taking C ′ ⊆ C a set of size exactly 4m/3, but
ultimately this computation is just to obtain intuition for what value t should be.

2To keep a vertex it has to be in Rp and all its neighbors in
(

[n]
bn/2c−1

)
have to be out.
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stated bound is essentially tight for |C| = (1 + ε)m with 0 < ε ≤ 1/3 and n sufficiently large,
the bound is not tight when e.g. |C| = (2 + ε)m. Intuitively in this case the extremal example
should come from taking two middle layers together with εm of the layer right above these two.
In particular, each of the εm vertices will have degree about n2, so we expect around εmn2

edges in GN [C]. And indeed, this is the case.

Lemma 14.11 ([60, 10]). If C ⊆ 2[n] has |C| > (2 + ε)m with 0 < ε ≤ 1/3, then e(GN [C]) ≥
εmn2/9.

With this we can prove the main result.

Proof of Theorem 14.10. The key idea is to apply the container lemma twice using the two
different levels of supersaturation from Lemmas 14.8 and 14.11. In particular, let C1 be a set
of containers coming from Lemma 14.1 using GN and some t1, and for each C1 ∈ C1, let C2(C1)
be a set of containers coming from Lemma 14.3 using GN [C1] and some t2.

We first want to choose t1 so that each C1 ∈ C1 has size roughly α(GN) = m. Observe that if
|C1| > 3m, then by Lemma 14.11, every C ′1 ⊆ C1 of size 3m has

∆(GN [C1]) ≥ ∆(GN [C ′1]) ≥ 2e(GN [C ′1])/|C ′1| ≥ n2/81.

Thus if we take t1 = n1.99 in Lemma 14.1, we find for n sufficiently large that |C1| ≤ 3m for all
C1 ∈ C1.

We now want to choose t2 so that each C2 ∈ C2(C1) has size very close to m. Let G′ = GN [C1].
If |C2| > (1 + γ)m with γ ≤ 1/3 we find that

∆(G′[C2]) ≤ 2e(G′[C2])/|C2| ≤ γn/3.

With some foresight we take t2 = εn/12 to guarantee that |C2| ≤ (1+ ε/4)m for all C2 ∈ C2(C1)
by Lemma 14.8.

Recall that we want to show with high probability no independent set I of size (1 + ε)pm lies in
the random set Rp. To this end, we note that we can identify each I with a pair (C1, S2) where

� C1 ∈ C1 contains I,

� S2 is the set f(I) from Lemma 14.3, i.e. |S2| ≤ |C1|/t2, S2 ⊆ I, and S2 determines a set
C2 ⊇ I in C2(C1).

Given this pair, if I ⊆ Rp has size at least (1 + ε)m, then (1) S2 ⊆ Rp since S2 ⊆ I, and (2)

|Rp ∩ (C2 \ S2)| ≥ (1 + ε)pm− |S2|,

since C2 \ S2 contains I \ S2. Observe that for p = c/n with c� ε−2 we have

|S2| ≤
|C1|
t1
≈ m

εn
≤ εpm

2
.
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With this in mind, we define A(S2) to be the event that S2 ⊆ Rp and B(S2) to be the event that
|Rp ∩ (C2 \ S2)| ≥ (1 + ε/2)pm. Observe that A(S2) and B(S2) are independent events, so by
a union bound over all pairs (C1, S2), we see that the probability that α(GN [Rp]) ≥ (1 + ε)pm
is at most ∑

C1∈C1

∑
S2:|S2|≤|C1|/t1

Pr[A(S2)] · Pr[B(S2)]. (15)

We have Pr[A(S2)] = p|S2|. By a Chernoff bound it is not difficult to show that Pr[B(S2)] ≤
e−c

′ε2pm for some c′ > 0. Thus if we fix some C1 in the first term of the sum we get∑
s≤|C1|/t2

(
|C1|
s

)
ps·e−c′ε2pm ≤

∑
s≤|C1|/t2

(ep|C1|/s)s·e−c
′ε2pm ≈ (p·εn/12)12|C1|/εn·e−c′ε2pm ≤ (εc)36m/εn·e−c′ε2cm/n,

where the approximation only looked at the term with s = |C1|/t2. Note that for c� ε−4 the
second term dominates, so this bound is roughly

e−c
′ε2cm/n. (16)

Note that this is the critical place where we used the two applications of the container lemma:
if we only applied the container lemma once to V (GN) instead of using C1, then the first term
here would be roughly eN/εn instead of em/εn, which would dominate the expression.

Returning to (15), we sum the bound of (16) for each element in C1, which multiplies (16) by(
N

≤ N/t1

)
≈ eN log(t1)/t1 ≈ emn

−1.49 log(n).

This is much smaller than e−c
′ε2cm/n, so the probability in (15) tends to 0 as n tends towards

infinity as desired.

We note that one can get almost as strong a result if one only uses Lemma 14.1, i.e. if one
doesn’t use the more refined Lemma 14.3. Indeed, the main consequence of using this refined
lemma was the extra term Pr[A(S2)] = ps appearing in (15). If one omits this turn, then
the same proof will go through provided p = c log n/n. This is a common phenomenon in
containers: if you don’t use the fact you have certificates S ⊆ I, then you’ll end up with a
bound which is worse by a log factor.

14.3 Counting Sidon Sets

This is a neat example where you use roughly log n iterated supersaturation lemmas
to get the right result. I may write this at some point, but in any case it will be
nearly identical to Balogh’s notes [8].
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15 A Proof of an r-Uniform Container Lemma

In the previous section, we saw how Lemma 14.1 allowed us to effectively count the number of
independent sets in “sufficiently nice” graphs. In this section we present a proof of a hypergraph
container lemma which applies to “sufficiently nice” hypergraphs, but two things should be
noted.

The first is that there are many different variants of hypergraph container lemmas, though most
of them are quite similar and broadly speaking apply only to hypergraphs with small codegrees.

The second is that, quite frankly, one doesn’t need to know the proof of the container lemma
to use it or its variants. As such, the reader may just want to glance at the definition below,
and then skip over to latter sections to see some nice applications before jumping back over
here whenever they want to see the full proof.

15.1 An Informal Discussion

The hypergraph container lemma we prove comes from [?] (though we deviate somewhat from
their notation). We’ll formally state this as Theorem 15.5 below, but roughly our goal will be to
prove the following. Recall that ∆`(H) denotes the maximum `-degree of H, i.e. the maximum
number of edges containing a given set of ` vertices.

Proposition 15.1 (Informal). If H is an r-graph such that for all 1 ≤ ` ≤ r we have

∆`(H)� q`−1 e(H)

v(H)
,

then there exists δ > 0, S ⊆
(

V (H)
�q·v(H)

)
, and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H) → S

such that
g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

In other words, if H has small codegrees, then one can find a set of small certificates S which
are each associated with a container f(S) which is of size at most (1− δ)v(H).

The proof of Proposition 15.1 will in essence be a proof by induction on the uniformity r, and
the inductive step of the proof uses an algorithm which is similar to the one used in Lemma 14.1.

Definition 1 (Informal). The Scythe Algorithm takes as input a pair (Hk+1, I) with Hk+1 a
(k + 1)-uniform hypergraph and I ⊆ V (Hk+1) an independent set. It then outputs a triple
(Hk, Ak, Sk) with Hk a k-uniform hypergraph such that I ⊆ V (Hk) is an independent set with
I ⊆ Ak∪Sk, and Sk is a small set which uniquely determines Hk and Ak given Hk+1. Moreover,
if Hk+1 is “nice”, then either Hk will be “nice” or Ak will be small.

Given such an algorithm, we can start with any “nice” r-uniform hypergraph Hr and indepen-
dent set I. We then repeatedly apply this algorithm until we get some Hk which is not “nice”,
at which point

⋃
i≥k Si is a small certificate which determines a small container Ak ∪

⋃
i≥k Si

for I.
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While it’s not a priori clear what the “nice” conditions should be, they should in particular
guarantee that Hk+1 has few independent sets, as otherwise there’s no hope of this method
being effective. In particular, a reasonable set of conditions is to enforce that Hk+1 has many
edges and relatively low codegrees, and this will ultimately be the conditions that we use.

Now that we know what we want our algorithm to do, how should it actually work in practice?
Perhaps the most naive approach is to do what we did in Lemma 14.1, where we iteratively
select the vertex u of I ∩Hk+1 which has the largest degree and then adds this to Sk. Once we
identify such a u, we know that I does not contain any k-set of the form e \ {u} for any e 3 u
which is an edge in Hk+1, so it is natural to make all of these k-sets edges of Hk. If we do this
repeatedly, then Ak will be relatively small and I will be an independent set of Hk. Moreover,
if we enforce from the start that we’ll run this procedure at most s times, then we will have
|Sk| ≤ s, giving a small certificate.

Unfortunately we have to be more careful than this. Namely, we need to ensure that Hk is
“nice”, and in particular that it has small codegrees. As it currently stands this might not
work out, e.g. there may be some `-set T which is in many edges containing vertices of Sk. To
get around this, we define D`(Hk,∆) to be the set of “dangerous” `-sets of V (Hk) which have
degree at least ∆/2, where we think of ∆ as being the maximum `-degree we want Hk to have
(which is analogous to the t parameter used in the algorithm of Lemma 14.1).

We now adjust our naive algorithm by making it so that whenever a set T gets added to
D`(Hk,∆), we delete from Hk+1 all of the edges that contain T . This ensures that T never
passes over the enforced codegree threshold. With this it turns out that our algorithm will
succeed.

15.2 A Formal Algorithm

Motivated by our discussion in the previous section, we make the following definitions. For any
hypergraph H ′, we define the max-degree order on V (H ′) as follows. Fix an arbitrary ordering
of V (H ′). For each integer j, recursively define uj to be the maximum-degree vertex in the
hypergraph H ′[V (H ′) \ {u1, . . . , uj−1}] with ties broken based on the ordering of V (H ′). The
max-degree order is then the ordering u1, u2, . . ., and for all j we define WH′(uj) = {u1, . . . , uj}.

For any k-uniform hypergraph H ′, integer ` ≤ k, and real number ∆, we define

D`(H
′,∆) =

{
T ∈

(
V (H ′)

`

)
: degH′(T ) ≥ 1

2
∆

}
.

Definition 2. The Scythe Algorithm is defined as follows. It takes as input a (k + 1)-uniform
hypergraph Hk+1 with k ≥ 1, an independent set I ⊆ V (Hk+1), and parameters s,∆k

1, . . . ,∆
k
k.

At the start of the algorithm, we set H
(0)
k+1 = Hk+1, S

(0)
k = ∅, and we let H

(0)
k be the empty

hypergraph on V (Hk+1). For j = 0, . . . , s− 1, the algorithm proceeds as follows:

Step 1: If I ∩ V (H
(j)
k+1) = ∅, then set Hk = H

(0)
k , Ak = ∅, Sk = S

(j)
k . If this happens, stop the

algorithm and output (Hk, Ak, Sk).
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Step 2: Let uj be the vertex of I ∩ V (H
(j)
k+1) which is first according to the max-degree ordering

of H
(j)
k+1. Set S

(j+1)
k = S

(j)
k ∪ {uj}.

Step 3: Let H
(j+1)
k by the hypergraph on V (H) defined by

H
(j+1)
k ∪ {e \ {uj} : e ∈ H(j)

k+1, uj ∈ e}.

Step 4: Let H
(j+1)
k+1 be the hypergraph on V (H

(j)
k+1) \W

H
(j)
k+1

(uj) with

H
(j+1)
k+1 = {e ∈ H(j)

k+1 : e ∩W
H

(j)
k+1

(uj) = ∅ and T 6⊆ e for all T ∈
k⋃
`=1

D`(H
(j+1)
k ,∆k

` )}.

After running through the above procedure, set Hk = H
(s)
k , Ak = V (H

(s)
k+1), and Sk = S

(s)
k .

Output (Hk, Ak, Sk). �

We emphasize that this algorithm allows the hypergraphs Hk+1 and Hk to have repeated edges.

We now analyze this algorithm through a series of lemmas. We omit many of the proofs since
most are either straightforward or analogous to what was done in Lemma 14.1.

Lemma 15.2. Assume one runs the Scythe Algorithm with parameters s,∆k
1, . . . ,∆

k
k on inputs

(Hk+1, I), (Hk+1, I
′) and that the algorithm outputs (Hk, Ak, Sk), (H

′
k, A

′
k, S

′
k), respectively. If

Sk ⊆ I ′ and S ′k ⊆ I, then (Hk, Ak, Sk) = (H ′k, A
′
k, S

′
k).

For the rest of this subsection we will assume that we have run the Scythe Algorithm with pa-
rameters s,∆k

1, . . . ,∆
k
k on (Hk+1, I) which outputs some (Hk, Ak, Sk). We observe the following

basic properties.

Lemma 15.3. The following hold:

� I is an independent set of Hk,

� Sk ⊆ I ⊆ Ak ∪ Sk,

� Both Hk and Ak are determined by Hk+1 and Sk,

� |Sk| ≤ s,

� For all ` ≤ k we have ∆`(Hk) ≤ 1
2
∆k
` + ∆`+1(Hk+1).

We now turn to the main lemma of this subsection, which roughly says that if Hk+1 is “nice,”
then either Hk will also be “nice” or Ak will be small.

Lemma 15.4. Either

e(Hk) ≥ min

{
s

v(H)
,

∆k
1

∆1(Hk+1)
, . . . ,

∆k
k

∆k(Hk+1)

}
· e(Hk+1)

(k + 1)2k+2
,
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or

|Ak| ≤ v(Hk+1)− e(Hk+1)

4 ·∆1(Hk+1)
.

Note that this lemma will be most “effective” when each ratio of the minimum is roughly the
same. And indeed, we will end up choosing our parameters so that these ratios are all at least
s/v(H).

Proof. If the algorithm ever stops at Step 1, then |Ak| = 0 and there is nothing to prove, so we
can assume that Steps 2 through 4 are completed a total of s times. We observe that

|Ak| = v(H
(s)
k+1) = v(Hk+1)−

s−1∑
j=0

|Wj(uj)|,

where for ease of notation we let Wj = W
H

(j)
k+1

. Thus we can assume

s−1∑
j=0

|Wj(uj)| <
e(Hk+1)

4∆1(Hk+1)
. (17)

By construction, for all j we have

e(H
(j+1)
k )− e(H(j)

k ) = deg
H

(j)
k+1

(uj).

Because uj is the largest element of I ∩V (H
(j)
k+1) in the max-degree order, the degree of uj is at

least as large as the average degree of the subgraph of H
(j)
k+1 after deleting Wj(uj) \ {uj}, and

again by definition of the max-degree order, this is at least as large as the average degree of
H

(j)
k+1 (which has at most v(H) vertices). In total then we find

e(Hk) =
s−1∑
j=0

e(H
(j+1)
k )− e(H(j)

k ) ≥
s−1∑
j=0

(k + 1)e(H
(j+1)
k+1 )

v(H)
.

If we have (k+1)e(H
(j+1)
k+1 ) ≥ e(Hk+1) for all j, then the above sum is at least (s/v(H))·e(Hk+1),

giving the desired result. Thus we can assume this fails for some j, and this implies

e(H
(s)
k+1) ≤ e(H

(j+1)
k+1 ) <

e(Hk+1)

k + 1
. (18)

This means that many edges of Hk+1 were deleted in Step 4 of the algorithm. We claim that
this implies that one of the sets D`(Hk,∆

k
` ) is large. Indeed, observe that

e(H
(j)
k+1)− e(H(j+1)

k+1 ) ≤ |Wj(uj)| ·∆1(Hk) +
∑
`

|D`(H
(j+1)
k ,∆k

` ) \D`(H
(j)
k ,∆k

` )| ·∆`(Hk+1),

since edges are either deleted by deleting vertices in Wj(uj) or by deleting `-sets which are in

D` for H
(j+1)
k but not H

(j)
k . Summing this over all j gives

e(Hk+1)− e(H(s)
k+1) ≤

∑
j

|Wj(uj)| ·∆1(Hk+1) +
∑
`

|D`(Hk,∆
k
` )| ·∆`(Hk+1)

<
k · e(Hk+1)

2(k + 1)
+
∑
`

|D`(Hk,∆
k
` )| ·∆`(Hk+1),
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where this last step used (17) and k ≥ 1. Using (18) shows that

k · e(Hk+1)

2(k + 1)
≥
∑
`

|D`(Hk,∆
k
` )| ·∆`(Hk+1),

so for some ` we must have

|D`(Hk,∆
k
` )| ≥

e(Hk+1)

2(k + 1)∆`(Hk+1)
.

With ` as above, the handshaking lemma and definition of D` implies

e(Hk) =

(
k

`

)−1 ∑
T∈(V (Hk)

` )

degHk(T ) ≥
(
k

`

)−1

· |D`(Hk,∆
k
` )| ·

1

2
∆k
` ≥

e(Hk+1) ·∆k
`

(k + 1)2k+2∆`(Hk+1)
,

giving the desired result.

15.3 Proof of The Formal Result

We are now ready to prove the following formal statement.

Theorem 15.5 ([9]). For every integer r ≥ 2 and c ≥ 1, there exists δ > 0 such that the
following holds. Let q ∈ (0, 1) and suppose H is an r-uniform hypergraph such that for every
1 ≤ ` ≤ r we have

∆`(H) ≤ cq`−1 · e(H)

v(H)
.

Then there exists S ⊆
(

V (H)
≤(r−1)q·v(H)

)
and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H)→ S such

that for every I ∈ I(H) we have

g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

Moreover, S ∩ f(S) = ∅ for all S ∈ S, and if I, I ′ ∈ I(H) satisfy g(I) ⊆ I ′, g(I ′) ⊆ I, then
g(I) = g(I ′).

Proof. For all ` ≤ r let ∆r
` := ∆`(H), and inductively define

∆k
` := max{2 ·∆k+1

`+1 , q ·∆
k+1
` }.

The following is straightforward to prove given the hypothesis of the theorem.

Claim 15.6. For all k < r we have ∆k+1
1 ≤ C2rqr−k−1 e(H)

v(H)
.

For each I ∈ I(H), iteratively run through the Scythe Algorithm with the parameters above
and s = q · v(H), starting with Hr = H. Let (Hr−1, Ar−1, Sr−1), . . . , (H1, A1, S1) denote the
outputs of this algorithm.

It is straightforward to show that ∆`(Hk) ≤ ∆k
` for all `, k by using induction and Lemma 15.3.

For k < r we define ck = (Cr2r+1)k−r. Let K be the smallest integer such that |AK | ≤
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(1 − cK)v(H), and if no such K ≥ 1 exists we set K = 0. It is straightforward to prove that
e(Hk) ≥ ckq

k−re(H) for all k > K by using induction, Lemma 15.4, and Claim 15.6.

Let δ := c1. Before we define our functions, for technical reasons it will be convenient to
first define a function f ∗ : I(H) →

(
V (H)

≤(1−δ)v(H)

)
before defining f . Pick some I and let the

hypergraphs Hk and integer K be as defined above. Observe that if K ≥ 1, then |AK | ≤
(1− δ)v(H), so in this case we will set

g(I) =
⋃
k≥K

Sk, f ∗(I) = AK .

If K = 0, then we set

g(I) =
⋃
k≥1

Sk, f ∗(I) = {v ∈ V (H1) : {v} /∈ H1}.

Note that in this case |f ∗(I)| = v(H)−e(H1), which is at most (1−δ)v(H) by our observations
above. Lastly, we define S = {g(I) : I ∈ I(H)} and f(S) = f ∗(I) for any I ∈ g−1(S). The fact
that f is well defined is implied by the following claim, which itself follows from Lemma 15.3.

Claim 15.7. If I, I ′ ∈ I(H) with g(I) ⊆ I ′ and g(I ′) ⊆ I, then g(I) = g(I ′) and f ∗(I) = f ∗(I ′).

The fact that these definitions give the desired result, except possibly the condition S∩f(S) = ∅,
can be checked by using the properties from Lemma 15.3. This last condition can be established
by taking f ′(S) := f(S) \ S if needed.

The following weaker version of Theorem 15.5 is often good enough for most applications and
is conceptually simpler.

Corollary 15.8. For every integer r ≥ 2 and c ≥ 1, there exists δ > 0 such that the following
holds. Let q ∈ (0, 1) and suppose H is an r-uniform hypergraph such that for every 1 ≤ ` ≤ r
we have

∆`(H) ≤ cq`−1 · e(H)

v(H)
.

Then there exists a collection of sets C such that every independent set of H is a subset of some
C ∈ C, and moreover, |C| ≤ (1− δ)v(H) for all C ∈ C and |C| ≤

(
v(H)

≤(r−1)q·v(H)

)
.

Proof. In the notation of Theorem 15.5, we let C = {f(g(I)) ∪ g(I) : I ∈ I(H)}.

On its own, Corollary 15.8 (and even Theorem 15.5) isn’t terribly useful since the containers
it generates are rather large, and in practice one needs to reapply this lemma to each C ∈ C
which is large, and to keep repeating this argument until the contains are sufficiently small.
Because δ depends only on r and C, this only needs to be done a constant number of times.
However, to reapply the lemma, each large C ∈ C must satisfy essentially the same hypothesis
as H. While a generic hypergraph will fail to have this property, many nice hypergraphs will.

79



16 Hypergraph Containers and Triangle-Free Graphs

Let us restate our weak container theorem Corollary 15.8 for the special case of 3-uniform
hypergraphs.

Theorem 16.1 ([9]). For every c ≥ 1, there exists δ > 0 such that the following holds. Let
q ∈ (0, 1) and suppose H is a 3-uniform hypergraph such that

∆1(H) ≤ c
e(H)

v(H)
,

∆2(H) ≤ cq
e(H)

v(H)
,

∆3(H) ≤ cq2 e(H)

v(H)
.

Then there exists a collection of sets C such that every independent set of H is a subset of some
C ∈ C, and moreover, |C| ≤ (1− δ)v(H) for all C ∈ C and |C| ≤

(
v(H)

≤2q·v(H)

)
.

Note that for simple hypergraphs we have ∆3(H) = 1, so this last bound is equivalent to lower
bounding the average degree by c−1q−2. One important consequence of Theorem 16.1 is the
following.

Theorem 16.2. For all n, ε > 0, there exists a collection of n-vertex graphs C such that

(a) Every triangle-free graph G ⊆ Kn is a subgraph of some C ∈ C,

(b) Every C ∈ C has less than εn3 triangles, and

(c) We have |C| = nOε(n
3/2).

That is, there exists a small set of nearly triangle-free graphs which contains every triangle-free
graph.

Proof. Start with C = {Kn}, and note that C trivially satisfies (a). Iteratively proceed as
follows. If every C ∈ C has less than εn3 triangles then output the current collection C.
Otherwise, let C ∈ C be such that it contains at least εn3 triangles. Form a 3-graph H with
vertex set E(C) where three edges of C form a hyperedge in H if they form a triangle. Note
that e(H) ≥ εn3 and v(H) = e(C) ≤ n2. Every edge is contained in at most n triangles,

so ∆1(H) ≤ n ≤ ε−1 e(H)
v(H)

. We also have ∆2(H) = ∆3(H) = 1 ≤ ε−1(n−1/2)2 e(H)
v(H)

. With this

we see that we can apply Theorem 16.1 with q = n−1/2 and c = ε−1. This gives a collection
of containers C ′ for C, i.e. subgraphs C ′ ⊆ C such that every triangle-free subgraph of C is
contained in some C ′ ∈ C. Remove C from C and add every C ′ ∈ C ′ to C. Repeat this process.

Let C be the final collection that this algorithm produces. It is straightforward to show that (a)
holds inductively, and (b) holds by construction. To show that the final collection is small, first
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note that each time we apply the container lemma, the number of new graphs we create is at
most

( v(H)

≤2n−1/2v(H)

)
= nO(n3/2). Second, observe that each time we apply the container lemma to

C, the graphs in C ′ have at most (1−δ)e(C) edges, where δ depends only on ε. Because we only
iterate on C which have at least εn2 edges (since they need at least εn3 triangles), we iteratively
apply the lemma at most some bounded number of times b = b(ε) to reach any element in the

final collection C. Thus the total number of containers we create is
(
nO(n3/2)

)b
= nOε(n

3/2) as

desired.

For Theorem 16.2 to be useful, we need to get a handle on graphs with at most εn3 triangles.
As is typical with containers, this will come from a supersaturation lemma.

Lemma 16.3. For every δ > 0 there exists an ε > 0 such that if G is an n-vertex graph with
e(G) ≥ (1

2
+ δ)

(
n
2

)
, then G contains at least εn3 triangles.

I’m not crazy about the ordering of δ, ε but I admit the final thing should be about ε...well
actually in a lot of the applications it kind of makes more sense to do it the other way. Maybe
do the Kr version in general depending on what I need later on.

Proof. TODO

With this we can prove the following counting result.

Theorem 16.4. The number of n-vertex triangle-free graphs is equal to

2(1+o(1))n2/4.

Proof. The lower bound comes from considering all of the subgraphs of Kn/2,n/2. For the upper
bound, fix some δ > 0 and let ε be as in Lemma 16.3. Let C be the containers guaranteed
by Theorem 16.2 with parameter ε. Because every triangle-free graph is a subgraph of some
C ∈ C, the number of triangle-free graphs is at most∑

C∈C

2|C| ≤ nO(n3/2) · 2maxC∈C e(C),

Since each C ∈ C has less than εn3 and at triangles, Lemma 16.3 implies e(C) ≤ (1
2

+ δ)
(
n
2

)
for

all C ∈ C. In total we get an upper bound of

2( 1
2

+δ)(n2)+O(n3/2 logn),

and letting δ tend towards 0 gives the result.

While containers most directly allow one to solve problems that are equivalent to counting the
number of independent sets of a hypergraph, there are other related problems which they’re
effective for. For example, in the next subsection we show how containers can be used to prove
probabilistic analogs of classical extremal results. In the section after this we show how one can
use containers to count special kinds of independent sets, namely maximal independent sets.
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16.1 Mantal’s Theorem in Random Graphs

Given two graphs G,F , we let ex(G,F ) denote the largest F -free subgraph of G. For example,
ex(Kn, F ) = ex(n, F ). The following result can be viewed as a random version of Mantel’s
theorem.

Theorem 16.5. Define ex(Gn,p, K3) to be the largest triangle-free subgraph of Gn,p. We have
ex(Gn,p, K3) = (1 + o(1))pn2/4 whp provided p� n−1/2 log n.

Proof. The lower bound follows by considering Gn,p∩Kn/2,n/2, which is always triangle-free and
which has (1 + o(1))pn2/4 edges whp. For the upper bound, fix δ > 0, and let ε > 0 be as in
Lemma 16.3. Let C be the set of containers given by Theorem 16.2 with parameter ε, and as
before we have e(C) ≤ (1/2+δ)

(
n
2

)
for all C ∈ C. Because every triangle-free graph is contained

in some C ∈ C, in order to have ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4, there must exist some C ∈ C
such that |Gn,p∩C| ≥ (1 + 4δ)pn2/4. Let EC be the event that this bound holds. Observe that
|Gn,p ∩C| is a binomial random variable with probability p and at most (1 + 2δ)n2/4 trials. By
the Chernoff bound, we find Pr[EC ] ≤ e−Oδ(pn

2). In total then, we have

Pr[ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4] ≤ Pr

[⋃
C∈C

EC

]
≤ nOδ(n

3/2) · e−Oδ(pn2) → 0,

with this last step holding by hypothesis on p. We conclude the reuslt by taking δ arbitrarily
close to 0.

We note that for p � n−1/2, a simple deletion argument shows that for p � n−1/2 there exist
triangle-free subgraphs with (1 + o(1))p

(
n
2

)
edges, and this is certainly best possible since Gn,p

has at most this many edges asymptotically. Thus the bound for p in Theorem 16.5 is almost
optimal. In fact, we can obtain the optimal bound in this theorem by using the strong container
theorem Theorem 15.5, which in the case of 3-graphs can be written as follows.

Theorem 16.6. For every c ≥ 1, there exists δ > 0 such that the following holds. Let q ∈ (0, 1)
and suppose H is a 3-uniform hypergraph such that

∆1(H) ≤ c
e(H)

v(H)
,

∆2(H) ≤ cq
e(H)

v(H)
,

∆3(H) ≤ cq2 e(H)

v(H)
.

Then there exists S ⊆
(

V (H)
≤2q·v(H)

)
and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H) → S such

that for every I ∈ I(H) we have

g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

Moreover, S ∩ f(S) = ∅ for all S ∈ S, and if I, I ′ ∈ I(H) satisfy g(I) ⊆ I ′, g(I ′) ⊆ I, then
g(I) = g(I ′).
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This allows us to construct the following “strong” set of containers for triangle-free graphs.

Theorem 16.7. Let Gn, Tn denote the set of all n-vertex graphs and all n-vertex triangle-free
graphs, respectively. For all n, ε > 0, there exists a set of graphs S with at most Oε(n

3/2) edges,
as well as functions f : S → Gn and g : Tn → S such that for every G ∈ Tn, we have

g(G) ⊆ G ⊆ f(g(G)) ∪ g(G),

and such that f(S) has less than εn3 triangles for all S ∈ S.

Proof. We start with S consisting only of the empty graph and define g(G) = ∅ and f(∅) = Kn.
Iteratively assume we have constructed some S, f, g satisfying all of the conditions except
possibly that each S ∈ S has at most Oε(n

3/2) edges and that f(S) has less than εn3 triangles
(which holds for our initial step). If f(S) has less than εn3 triangles for all S ∈ S then we end
the procedure. Otherwise, let S be such that C = f(S) has at least εn3 triangles. By repeating
our computations from the proof of Theorem 16.2, we see that we can apply Theorem 16.6 to
the 3-graph H encoding triangles of C, and we let SC , fC , gC be the output of this theorem.

Claim 16.8. Let S ′ := (S \ {S}) ∪ {SC ∪ S : SC ∈ SC}, define g′(G) = g(G) if g(G) 6= S and
g′(G) = gC(G−S) otherwise, and define f ′(S ′) = f(S ′) if S ′ ∈ S \{S} and f ′(S ′) = fC(S ′−S)
otherwise. These maps are well defined and satisfy the conditions of the theorem except possibly
that each S ∈ S ′ has at most Oε(n

3/2) edges and that f ′(S) has less than εn3 triangles.

Proof. First observe that because C ∩ S = ∅, each element of SC (which is a subgraph of C) is
disjoint from S. This implies that all of the elements SC∪S for SC ∈ SC are distinct. Moreover,
none of these elements are equal to any element of S \ {S}. Indeed, if SC ∪S = S ′ ∈ S, then S
would contain two elements with S ( S ′. The last condition of Theorem 16.6 then implies that
we must have S = S ′. This all implies that g′, f ′ are well defined maps, and it is not difficult
to check that they inherit all of the other desired properties.

With this we can keep applying Theorem 16.6 until we get S, f, g which satisfies all of the
conditions except possibly that e(S) is small. As in the proof of Theorem 16.2, one can check
that each S ∈ S is obtained by applying Theorem 16.6 at most Oε(1) times, and each time its
applied at most O(n3/2) edges get added to S. With this we can conclude the result.

We note that there exists a somewhat stronger version of Theorem 16.6 (and more generally
Theorem 15.5) which allows one to prove the previous result with less work. However, the
theorem statement is somewhat more complicated conceptually (involving things called (F , ε)-
dense families), so for this exposition we have opted to use the simpler version. In any case,
with this enhanced version of Theorem 16.2, we can improve upon our threshold for the random
Mantel theorem by dropping a logarithmic term.

Theorem 16.9. Define ex(Gn,p, K3) to be the largest triangle-free subgraph of Gn,p. We have
ex(Gn,p, K3) = (1 + o(1))pn2/4 whp provided p� n−1/2.

Proof. The lower bound follows by considering Gn,p ∩ Kn/2,n/2, which is always triangle-free
and which has (1 + o(1))pn2/4 edges whp. For the upper bound, fix δ > 0, and let ε > 0
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be as in Lemma 16.3. Let S, f, g be as in Theorem 16.7. Note that each f(S) has at most
(1/4+2δ)n2 edges by Lemma 16.3. For each S ∈ S, let ES be the event that S ⊆ Gn,p and that
|f(S)∩Gn,p| ≥ (1+4δ)pn2/4. Note that in order to have ex(Gn,p, K3) ≥ (1+4δ)pn2 +Oε(n

3/2),
some ES event must occur, and moreover that Pr[ES] = p|S| · e−Oδ(pn2). With this we have

Pr[ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4 +Oε(n
3/2)] ≤ Pr

[⋃
S∈S

ES

]
≤

Oε(n3/2)∑
s=0

∑
S∈S:|S|=s

pse−Oδ(pn
2).

As the number of S ∈ S with |S| = s is trivially at most
(
n2

s

)
≤ (en2/s)s, we find that the

above is at most
Oε(n3/2)∑
s=0

(epn2/s)se−Oδ(pn
2).

One can check that the function (epn2/s)s is increasing for s ≤ pn2. Since we know s ≤ Cεn
3/2

for some suitable Cε, we get that the sum above is at most

Cεn
3/2 · (eC−1

ε pn1/2)Cεn
3/2

e−Oδ(pn
2),

and this tends to 0 provided pn1/2 →∞ (since pn2 � n3/2 log(pn1/2)), proving the result.

Note that in this proof, the main extra power we gained by utilizing Theorem 16.7 is that S
must be contained in our subgraph. This makes it so that the S ∈ S with many edges “cost
more”, allowing us to gain.

We note that in general, it is very common that by using the weak container lemma, one ends up
getting tight bounds up to a logarithmic factor, and this extra factor can usually be remedied
by utilizing the strong container lemma in some straightforward (if slightly more tedious) way.

16.2 Maximal Triangle-Free Graphs

In this subsection we use containers to count maximal independent sets, i.e. those that are
maximal with respect to set inclusion. To do this, we again apply the container lemma to find
a small collection of containers C for a hypergraph H. We then argue that each C ∈ C contains
few maximal independent sets, which gives the result.

In order for this approach to be effective, we need a supersaturation result saying that if H[C]
has few edges, then C contains few maximal independent sets, and these results are typically
a bit more complicated to prove compared to the non-maximal setting, and often these proofs
invoke facts about the number of maximal independent sets in special kinds of graphs.

One case where we can pull off the scheme outlined above is in counting maximal triangle-free
graphs. By Theorem 16.4, we know that there are 2n

2/4+o(n2) triangle-free graphs on n vertices,
and moreover, it is a well known result of Erdős, Kleitman, and Rothschild [32] that almost all
of these graphs are bipartite. However, a bipartite triangle-free graph is a maximal triangle-free
graph if and only if it is a complete bipartite graph, and there are less than 2n such graphs. A
different set of constructions gives the following.
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Proposition 16.10. There are at least 2n
2/8 maximal triangle-free graphs on n-vertices.

Proof. Write the vertices of [n] as a1, . . . , an/4, b1, . . . , bn/4, c1, . . . , cn/2. Add every edge of the
form aibi. For every 1 ≤ i ≤ n/4 and 1 ≤ j ≤ n/2, add exactly one of the edges aicj or bicj. In
total this gives 2(n/4)(n/2) = 2n

2/8 different graphs {G1, G2, . . . , }, and it’s not hard to see that
each of these are triangle-free. Let G′k be any maximal triangle-free graph containing Gk (so
G′k = Gk if Gk is maximal). One can check that each of the G′k graphs are distinct from each
other, giving the desired result.

Our goal is to show that this result is best possible. This was originally proven by Balogh and
Petř́ıčková [11], and our proof follows their same approach.

Similar to the proof of Theorem 16.4 where we counted the number of triangle-free graphs, we’ll
begin by constructing a set of using Theorem 16.2 to obtain a set of containers C where each
element is a graph which contains few triangles. From there it remains to show that each of
these C ∈ C contains at most roughly 2n

2/8 maximal triangle-free graphs.

Essentially the only thing we know about each C ∈ C is that they contain few triangles, and
fortunately quite a lot can be said about such graphs: the triangle removal lemma says that
we can delete a small number of edges from C to get a triangle-free graph, and supersaturation
says that e(C) is not much larger than 1

4
n2. With these ideas in mind we prove the following.

Lemma 16.11. Let ε, γ > 0 be constants. Let δ(ε) be as in REF, δ(γ) be as in REF, and
δ = min{δ(ε), δ(γ)}. If G is an n-vertex graph with at most δn3 triangles, then the number of
maximal triangle-free subgraphs of G is at most

2n
2/8+γn2/2+εn2

.

Proof. By Triangle-removal, there exists a set F ⊆ E(G) of size at most εn2 such that G−F
is triangle-free. For F ′ ⊆ F , let M(F ′) denote the set of maximal triangle-free subgraphs
G′ ⊆ G with G′ ∩ F = F ′. Observe that the M(F ′) sets partition the maximal triangle-free
subgraphs into 2εn

2
sets, so it suffices to show that for any F ′ ⊆ F ,

|M(F ′)| ≤ 2n
2/8+γn2/2.

The result is trivial if F ′ contains a triangle (since there are 0 graphs which contain F ′ and
which are triangle-free), so from now on we’ll assume F ′ is triangle-free. Define an auxiliary
graph T via

V (T ) = G− (F − F ′)− {e : ∃f, g ∈ F ′ and e, f, g form a triangle},

and where two edges f, g ∈ V (T ) are adjacent in T if there exists an edge e ∈ F ′ which forms
a triangle with f, g. We make these definitions so that the following holds.

Claim 16.12. Every G′ ∈M(F ′) is a maximal independent set of T .

Proof. Fix some G′ ∈M(F ′). We first claim that

G′ ⊆ V (T ) = G− (F − F ′)− {e : ∃f, g ∈ F ′ and e, f, g form a triangle}.
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Indeed, we must have G′ ⊆ G − (F − F ′) in order to have G′ ∩ F = F ′, and given this, G′

cannot contain any edge e for which there exist f, g ∈ F ′ forming a triangle with e since G′ is
triangle-free. This proves the claim.

We next claim that G′ is an independent set of T . Indeed, if f, g ∈ G′ were adjacent in T ,
then there exists some edge e ∈ F ′ ⊆ G′ forming a triangle with f, g, contradicting G′ being
triangle-free.

It remains to show that G′ is a maximal independent set. To this end, consider any f ∈
V (T ) \G′. Because G′ is a maximal triangle-free graph, there must exist edges e, g ∈ G′ which
form a triangle with f . Observe that at least one of e, g must be in F ′, since by assumption of
G−F being triangle-free, every triangle must contain at least one edge of F (and the only such
edges in V (T ) are in F ′). Thus we may assume e ∈ F ′. We also note that g does not form a
triangle with two edges of F ′, as this would contradict g ∈ G′ and G′ being triangle-free. Thus
we have f, g ∈ V (T ), and e ∈ F ′ implies that these two edges are adjacent in T . This implies
that G′ is indeed a maximal independent of T , completing the proof.

It remains to show that T has few maximal independent sets. For this we make the following
key observation.

Claim 16.13. The graph T is triangle-free.

Proof. Assume for contradiction that there existed edges f1, f2, f3 forming a triangle in T . By
definition of T , this is only possible if these edges are intersecting, and hence these edges either
form a triangle or a star. If they form a triangle, then by definition of T we in fact have fi ∈ F ′
for all i, and hence F ′ forms a triangle, a contradiction to our assumption on F ′. If these edges
form a star, say with leaves x, y, z, then again by definition of T we must have xy, yz, xz ∈ F ′,
a contradiction to our assumption of F ′ being triangle-free. We conclude the result.

Thus we’ve reduced the problem to upper bounding the number of maximal independent sets
in a triangle-free graph T . A well known result of Moon and Moser [70] says that an N -vertex
triangle-free graph has at most 2N/2 maximal independent sets, so the number of maximal
independent sets of T is at most

2|V (T )|/2 ≤ 2e(G)/2 ≤ 2n
2/8+γn2/2,

where the last step used δ ≤ δ(γ). This implies the result.

From here one can prove that there are at most 2n
2/8+o(n2) maximal triangle-free graphs on

n-vertices analogous to how we proved Theorem 16.4 I should check this more carefully.

Before moving on, it is natural to ask how many maximal K4-free graphs there are. Unfortu-
nately the present argument completely fails to generalize to this setting.

Essentially, the issue is that T can be viewed as the link graph of a 3-uniform hypergraph. More
precisely, let H be the 3-graph with V (H) = G− (F −F ′) and whose hyperedges are triangles.
Then the link hypergraph H[F ′] contains the graph T together with a 1-edge on every edge
e such that there exist f, g ∈ F ′ forming a triangle with e. For the K4 problem, one could
again consider the link set of some 6-graph, but the structure you end up getting is some very
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non-uniform hypergraph which avoids some strange set of subgraphs, and as such the analysis
becomes somewhat unwieldy.
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17 Counting F -free graphs TODO

Ferber-McKinley-Samotij.
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Part VI

Linear Algebra Methods

Very roughly speaking, the linear algebra method in combinatorics works as follows:

1 Associate a “linear algebraic object” M to your problem (e.g. a matrix, list of vectors).

2. Determine algebraic information about M (e.g. its rank, eigenvalues, eigenvectors),

3. Use this algebraic information to say something about your original problem.

The linear algebra method applies to a broad range of problems. We only scratch the surface
here, and we refer the reader to books by Babai and Frankl [7] and by Matoušek [67] for a more
thorough treatment of this versatile method.
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18 Modular Intersections

We begin with a very classical application of the linear algebra method: Oddtown.

Consider the following (somewhat whimsical) setup. The city of Oddtown has a variety of
clubs, each of which follows the following odd set of rules: each club must have an odd number
of people, and every two distinct clubs must have an even number of people in common.

The main question now becomes: if Oddtown has n people, what’s the maximum number of
clubs it can have? Equivalently, if F = {F1, F2, . . . , Fm} ⊆ 2[n] is a set system such that |Fi| is
odd for all i and such that |Fi ∩ Fj| is even for all i 6= j, then what is the maximum size of F?

A very simple construction is to take Fi = {i} for all i, which trivially satisfies the stated
conditions. However, it’s far from the only construction. For example, if n is even one can
also take each Fi to be either {i} or [n] \ {i}, and there are many, many more constructions
achieving a bound of n (in fact, there’s close to 2n

2
non-isomorphic constructions due to Szegedy

[7, Exercise 1.1.14]).

Given all of these constructions, it seems plausible that (1) the true answer is indeed n, and
(2) proving this might be difficult (since we have to come up with an argument that somehow
deals with all of these constructions in a unified way). Fortunately, the linear algebra method
manages to give a unified approach for all of these constructions in an extremely elegant way.
More generally, we note that it’s a good rule of thumb is that if there are many distinct looking
constructions, then the linear algebra method might come in handy.

Theorem 18.1 (Oddtown). Let F ⊆ 2[n] be a set system such that |F | is odd for all F ∈ F
and such that |F ∩ F ′| is even for all F 6= F ′ ∈ F . Then |F| ≤ n.

Proof. Given a set F ⊆ [n], define its characteristic vector χF ∈ Fn2 by having (χF )i = 1 if
i ∈ F and (χF )i = 0 otherwise. Note crucially that for any F, F ′, the dot product satisfies

〈χF , χF ′〉 = |F ∩ F ′| mod 2.

We claim that {χF : F ∈ F} is a set of linearly independent vectors. Indeed, say we had∑
F∈F

λFχF = 0.

Take any F ′ ∈ F and apply the dot product on both sides to get∑
F∈F

λF 〈χF , χF ′〉 = 0.

By the observation above and the hypothesis of the theorem, we see 〈χF , χF ′〉 = 0 if F 6= F ′ and
that 〈χF ′ , χF ′〉 = 1. Thus the above says λF ′ = 0, and as F ′ ∈ F was arbitrary, we conclude
that these vectors are indeed linearly independent.

Since we have |F| linearly independent vectors in Fn2 , we must have |F| ≤ n, giving the result.
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Since that was so clean, let’s give another (essentially equivalent) proof of this result using
slightly different language, which in some situations might be simpler to think about.

Proof. Write F = {F1, . . . , Fm} and let M be the m× n matrix over F2 which has Mi,j = 1 if
j ∈ Fi and Mi,j = 0 otherwise. Let L = MMT . We claim that L is the m×m identity matrix.
Indeed, one can verify that Li,j ≡ |Fi ∩ Fj| mod 2, so the hypothesis of the theorem gives this
claim.

Using the general fact
rank(AB) ≤ rank(A) ≤ #columns of A,

which is valid for any two matrices A,B for which AB makes sense; we see that we can apply
this with A = BT = M to conclude that

m = rank(Im) ≤ rank(M) ≤ n,

proving the result.

While the proof of Oddtown is extremely nice, one might complain that the problem itself is
rather ad hoc. Here we give a far reaching generalization of the Oddtown problem which, in
addition to being nice on its own, has a number of important applications.

To this end, we adopt the following (non-standard) notation. For an integer p and a set
L ⊆ {0, 1, . . . , p − 1}, we say that a family F is (p, L)-modular intersecting if |F | mod p /∈ L
for all F ∈ F and if |F ∩ F ′| mod p ∈ L for all F 6= F ′ ∈ F .

For example, a family is (2, {0})-modular intersecting if and only if it follows the rules of
Oddtown. By following a somewhat similar strategy as in Oddtown, we can prove the following.

Proposition 18.2. For any prime p and L ⊆ {0, 1, . . . , p − 1}, if F ⊆ 2[n] is (p, L)-modular
intersecting then

|F| ≤
|L|∑
i=0

(
n+ i− 1

i

)
.

Proof. Similar to before, we define the characteristic vector χF ∈ Fnp by having (χF )i = 1
if i ∈ F and (χF )i = 0 otherwise, and we again observe that 〈χF , χF ′〉 = |F ∩ F ′| mod p.
Unfortunately we can’t conclude that these vectors are linearly independent like we could in
the Oddtown case, but we can do this if we generalize our vectors somewhat.

To this end, for each F ∈ F , define the polynomial pF : Fnp → Fp by

pF (~x) =
∏
`∈L

(〈χF , ~x〉 − `) .

Note that by hypothesis, we have pF (χF ′) = 0 if F 6= F ′ ∈ F (since 〈χF , χF ′〉 ≡ |F ∩ F ′| ≡ `
mod p for some ` ∈ L) and that pF (χF ) 6= 0 (since |F | 6≡ ` mod p for any ` ∈ L).

We claim that the polynomials {pF : F ∈ F} are linearly independent. Indeed, say we had∑
F∈F

λFpF = 0.
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By plugging in χF ′ for some F ′ ∈ F into both sides of this equality, the observation above
implies cF ′λF ′ = 0 for some cF ′ 6= 0, and hence λF ′ = 0, proving the claim.

Observe that each polynomial pF has degree at most |L|. It is a basic exercise to show that
the dimension of the space of polynomials in n variables with degree at most |L| is equal to∑|L|

i=0

(
n+i−1

i

)
. Since we constructed a set of |F| linearly independent polynomials that lie in a

space of dimension
∑|L|

i=0

(
n+i−1

i

)
, we must have |F| ≤

∑|L|
i=0

(
n+i−1

i

)
, proving the result.

The bound of Proposition 18.2 is relatively close to tight. Indeed, if L = {0, 1, . . . , s− 1}, then
F =

(
[n]
s

)
is (p, L)-modular intersecting and has size

(
n
s

)
≈
∑s

i=0

(
n+i−1

i

)
. However, one can

do better by refining our argument (though we emphasize that the present weaker bound of
Proposition 18.2 is all one typically needs for most applications).

Towards refining this proof/bound, one might first turn to the simplest case of p = 2, L = {0}.
As this is just Oddtown, we know the answer here should be n, but the bound we get is n+ 1.
By carefully analyzing the proof, one realizes that the one place our argument isn’t sharp is
when we argue about the dimension of the space spanned by the pF polynomials. Indeed, we
naively said that they lived in the space of degree at most 1 polynomials, but in fact they are
all in the span of the monomials {xi}, which gives the optimal bound.

We are thus left with the problem of trying to find a smaller subspace for us to work in while
achieving the same conclusion, and there are a couple of semi-standard ways of doing this. One
way is to try and find polynomials which are more “efficient”, i.e. of lower degree, for which
our conclusion still holds. And indeed, if you look back through the proof of Proposition 18.2,
one sees that although we defined our polynomials to have codomain Fnp , we only fed them 0-1
vectors to show linear independence. As such, it would suffice to look at polynomials p̄F which
agree with the pF polynomials on 0-1 vectors, and this can be done simply by replacing each
xαi in the expansion of pF by xi (i.e. by replacing pF by a multilinear function). By using this
we can prove the following.

Theorem 18.3. For any prime p and L ⊆ {0, 1, . . . , p − 1}, if F ⊆ 2[n] is (p, L)-modular
intersecting then

|F| ≤
|L|∑
i=0

(
n

i

)
.

We note that this theorem was originally proven by Deza, Frankl, and Singhi [26], with the
following simpler proof due to Alon, Babai, and Suzuki [2].

Proof. Define pF as before, and define the multilinear polynomial p̄F by replacing each xαi in the
expansion of pF by xi. Note that pF (χF ′) = p̄F (χF ′) for all F ′, so by following the same proof as
before we conclude that the p̄F polynomials are linearly independent. Moreover, these linearly
independent polynomials all lie in the space of multilinear polynomials in n variables with degree
at most |L|, which is a space of dimension

∑|L|
i=0

(
n
i

)
. We thus must have |F| ≤

∑|L|
i=0

(
n+i−1

i

)
,

proving the result.

The reader might still complain that, although we have improved our bound, it still fails to
be tight for Oddtown. As far as we are aware, it is still an open problem as to whether
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the present bound can be replaced by |F| ≤
(
n
|L|

)
for all L, which would be tight whenever

L = {0, 1, . . . , s− 1}. However, such a general result is known to hold when F is uniform.

Theorem 18.4 (Frankl-Wilson [38]). For any prime p and L ⊆ {0, 1, . . . , p− 1}, if F ⊆ 2[n] is
(p, L)-modular intersecting and k-uniform, then

|F| ≤
(
n

|L|

)
.

We omit their proof, which utilizes the powerful tool of incidence matrices, and instead refer
the reader to [7, Chapter 7] for more on this. Instead, we will prove a weaker version of this
result which holds in the non-modular setting.

For this, given a set of integers L, we say that a set system F is L-intersecting if |F ∩ F ′| ∈ L
for all F 6= F ′ ∈ F .

Theorem 18.5 (Ray-Chaudhuri-Wilson [76]). If L is a set of integers and F ⊆ 2[n] is L-
intersecting and k-uniform, then

|F| ≤
(
n

|L|

)
.

Proof. Note that we may assume L ⊆ {0, 1, . . . , k − 1} since these are the only intersections
that can actually occur, and in particular we may assume |L| ≤ k.

Similar to before, we define polynomials pF : Rn → R by pF (~x) =
∏

`∈L(〈χF , ~x〉 − `) and we
define p̄F to be their multilinearizations. As before, we find that these p̄F polynomials are
linearly independent, giving a bound of

∑|L|
i=0

(
n
i

)
since these polynomials lie in the vector space

V of multilinear polynomials of degree at most |L|.

Observe that the bound above fails to be sharp if and only if these p̄F do not span all of V . In
particular, to prove the result, it suffices to find a set of

∑|L|−1
i=0

(
n
i

)
polynomials of V which are

linearly independent with the p̄F vectors.

Say we write these supposed polynomials as qI for I ⊆ [n] with |I| ≤ |L| − 1, what would be a
good choice for these? Well, to mimic the previous proof we would like to have qI(χF ) = 0 for
all F ∈ F . Since all we know about the individual elements of F is that they each of size k,
perhaps a reasonable condition is to demand

qI(~x) = q′I(~x)

(
n∑
j=1

xj − k

)
,

where q′I is some appropriate polynomial of degree at most |L| − 1. Indeed, if we do this and if
we have ∑

F

λF p̄F +
∑
I

λIqI = 0,

then by plugging in χF ′ into both sides of this equality we see that λF = 0 for all F ∈ F . As
such, all we have to do is choose the q′I polynomials such that the qI vectors themselves are
linearly independent. One possibility is to set

qI(~x) =
∏
i∈I

xi ·

(
n∑
j=1

xj − k

)
.
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Note that with this, for any set J ⊆ [n] with |J | ≤ |L| − 1 < k, we have qI(χJ) = 0 if I 6⊆ J ,
and we have qI(χJ) 6= 0 if I ⊆ J (here we implicitly use |J | < k to ensure

∑n
j=1(χJ)j − k 6= 0).

With this in mind, say we had ∑
I

λIqI = 0,

and let J be a smallest set such that λJ 6= 0. By plugging χJ into both sides of this expression,
the observation above implies that we get cJλJ = 0 for some cJ 6= 0, and hence λJ = 0,
a contradiction. We conclude that the qI polynomials are linearly independent, and hence
all of the polynomials {p̄F}F ∪ {qI}I are linearly independent vectors. Unfortunately the qI
polynomials aren’t in V , i.e. aren’t multilinear, but this can be easily remedied by considering
{p̄F}F ∪{q̄I}I , and again we conclude that these vectors (in V ) are linearly independent, giving
the desired bound on |F|.

We note that the exact proof as written almost goes through if instead of demanding |F | = k
for F ∈ F , we only demand |F | ≡ k mod p. A careful reading shows that this will go through
if we assume k /∈ [|L|− 1] mod p (which holds if e.g. |L| ≤ k), but without this assumption we
can’t assume qI(χJ) 6= 0 whenever I ⊆ J . Nevertheless, it does turn out that this bound does
continue to hold under the weaker hypothesis |F | ≡ k mod p, but of the proof of this ends up
being somewhat more involved and we refer the interested reader to [7, Theorem 5.37].
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19 Pseudo-Adjacency Matrices

Given a graph G, we define its adjacency matrix A to be the matrix whose rows and columns
are indexed by V (G) and where Ai,j = 1 if i ∼ j and Ai,j = 0 otherwise. While A is a natural
way to encode a graph G, it is not at all obvious that its spectral properties should tell you
anything about G, but this remarkably does turn out to be the case! For example, we’ll see
below that σ(A) can give effective bounds on its maximum degree, as well as its independence
number.

Many of these results which hold for A (and which perhaps are most naturally proven by
thinking about A) can be tweaked to hold for a wider class of “pseudo-adjacency matrices”,
which exhibit behavior similar to A but which are cooked up to deal with the specific problem
at hand. We exhibit this phenomenon in the next two subsection. In each subsection, we begin
by highlighting important lemmas relating the spectrum of A to G, after which we generalize
these lemmas apply to a slightly broader class of pseduo-adjacency matrices M , and we then
carefully choose such an M to solve a cool problem.

Before moving on, we note that much more broadly, the area of spectral graph theory concerns
studying matrices M associated to graphs G and how the spectral properties of M relate to
combinatorial properties of G. We will not have time to dive very deeply into this fascinating
area, and we refer the interested reader to the appendix for more on this.

19.1 Huang’s Theorem

In this subsection we give a simple proof of Huang’s, which solved what used to be a 30 year
old problem known as the sensitivity conjecture. Our proof relies on two basic results from
linear algebra, both of which are used heavily throughout spectral graph theory. First we have
the Rayleigh quotient, which gives an analytic way to compute the eigenvalues of a symmetric
matrix. Here λ1(M) denotes the largest eigenvalue of M .

Lemma 19.1. Let M be a real symmetric matrix. Then

λ1(M) = max
x6=0

x∗Mx

x∗x
,

and any x achieving equality is an eigenvector corresponding to λ1(M).

As a small application, we use the Rayleigh quotient to establish a connection between eigen-
values and combinatorial information of graphs.

Lemma 19.2. Let G be a graph and A its adjacency matrix. Then

λ1(A) ≤ ∆,

where ∆ is the maximum degree of G.

Proof. let x be an eigenvector of A corresponding to λ1(A) and let v ∈ V (G) be such that |xv|
is maximized. Then by our definitions, we have

|λ1(A)xv| = |(Ax)v| = |
∑
u

Av,uxu| ≤
∑
u∼v

|xu| ≤ deg(v)|xv| ≤ ∆|xv|.
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This shows |λ1(A)| ≤ ∆, proving the result.

Examining this proof, we see that we hardly used any of the properties of A in our argument.
In particular, word for word the same argument gives the following.

Lemma 19.3. Let G be a graph and M a symmetric matrix such that Mi,j = ±1 if ij ∈ E(G)
and Mi,j = 0 otherwise. Then

λ1(M) ≤ ∆,

where λ1(M) is the largest eigenvalue of M and ∆ is the maximum degree of G.

Next we have the Cauchy interlacing theorem, which allows us to bound the eigenvalues of
sumbatrices of B in terms of the eigenvalues of B.

Theorem 19.4 (Cauchy interlacing theorem). Let B be a real symmetric n× n matrix and C
an m ×m principal sumbmatrix of B with m ≤ n. If B has eigenvalues λ1 ≥ · · · ≥ λn and C
has eigenvalues µ1 ≥ · · · ≥ µm, then for all i

λi ≥ µi ≥ λi+n−m.

Remark 19.5. Personally, I always forget the exact statement of Cauchy’s interlacing theorem,
so here’s a bit of “mnemonic” to help remember it. By the Raleigh quotient we always have

µ1 = max
x6=0

x∗Cx

x∗x
≤ max

x 6=0

x∗Bx

x∗x
= λ1,

so that gives the first inequality. We also have µ1 ≥ λ1 if m = n, and each time we decreases
m this bound has to get weaker, so we end up getting µ1 ≥ λ1+n−m in general. We then get
the rest of the inequalities by translating λ1 ≥ µ1 ≥ λ1+n−m by i− 1.

With these standard spectral graph theory lemmas established, we can now state the main
theorem of this subsection.

Theorem 19.6 (Huang [51]). Let Qn be the hypercube graph on 2n vertices. If V ⊆ V (Qn) is
a subset of size 2n−1 + 1, then the induced subgraph Qn[V ] has maximum degree at least

√
n.

This result is sharp in several ways. First, it is easy to find subsets of size 2n−1 such that Qn[V ]
is the empty graph, so in order to get any non-trivial lower bound on the maximum degree one
needs V to have size at least 2n−1 +1. Second, Chung et. al. [18] proved that there exist choices
of V such that Qn[V ] has maximum degree d

√
ne, so this bound is essentially best possible.

It was shown by Gotsman and Linial [46] that proving a result of this form is equivalent to
showing that two notions of “sensitivity” for Boolean functions are equivalent, which led to a
great deal of interest in resolving it. Nevertheless, it remained unanswered for 30 years until
Huang came up with the following remarkable proof.

The key idea is to define the 2n × 2n matrix Bn recursively by

B0 = [0], Bn =

[
Bn−1 I
I −Bn−1

]
,
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where here I denotes the identity matrix of dimension 2n−1. Observe that if the negative sign
in the definition of Bn wasn’t there, then this would just define the adjacency matrix of Qn.
Thus this is a sort of “twisted adjacency matrix” which has −1’s in some of the positions where
there are usually 1’s. This choice of signings turns out to spread out the spectrum of Bn in a
nice way.

Lemma 19.7. The spectrum σ(Bn) consists of ±
√
n each occurring with multiplicity 2n−1.

Proof. It is straightforward to prove by induction that B2
n = nI, which implies that every

eigenvalue λ of Bn satisfies λ2 = n. Thus σ(Bn) consists of ±
√
n, and each must appear with

equal multiplicity because Tr(Bn) = 0.

Shockingly, we have everything we need for our proof.

Proof of Theorem 19.6. Let B = Bn be as described above. Let V ⊆ V (G) be any subset of
size 2n−1 + 1 and let C be the submatrix of B indexed by the rows and columns corresponding
to B. Let G = Qn[V ]. Observe that C satisfies the conditions for M of Lemma 19.3 since
B is a (symmetrically) signed version of the adjacency matrix. By Lemma 19.3, the Cauchy
interlacing theorem, and the previous lemma, we conclude that

∆(G) ≥ λ1(C) ≥ λ2n−1(B) =
√
n,

proving the result.

19.2 Hoffman’s Bound and Erdős-Ko-Rado

One of the most important results in spectral graph theory is Hoffman’s bound, which gives an
upper bound on the independence number of a regular graph in terms of its eigenvalues.

Lemma 19.8 (Hoffman). Let G be a non-empty n vertex d-regular graph and A its adjacency
matrix. Then

α(G)

n
≤ −λmin

d− λmin

,

where λminis the smallest eigenvalue of A.

Proof. Let I be an independent set of size α = α(G), and let x be the characteristic vector with
xi = 1 if i ∈ I and xi = 0 otherwise. Observe that because I is an independent set, we have

xTAx = 0.

Let v1, . . . , vn be an orthonormal eigenbasis for A with eigenvalues λ1, . . . , λn. Since G is regular,
the all 1’s vector 1 is an eigenvector with eigenvalue equal to d, so we can assume v1 = 1/

√
n

and λ1 = d. Writing x =
∑
civi for some real numbers ci, we see that

α = xTx =
∑

c2
i ,

and
α/
√
n = 〈x, v1〉 = c1.
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Putting all of this together, we find

0 = xTAx = xT
∑

ciλivi =
∑

c2
iλi = (α2/n)d+

∑
i 6=1

c2
iλi

≥ (α2/n)d+
∑
i 6=1

c2
iλmin = (α2/n)d+ (α− α2/n)λmin.

Dividing both sides by α and rearranging gives

α(λmin − d)/n ≥ λmin.

Dividing both sides by λmin−d (which is negative because λmin < 0 since G is non-empty) gives
the result.

This result gives yet another proof of Erdős-Ko-Rado.

Sketch of Proof of Erdős-Ko-Rado. Let G be the graph with vertex set
(

[n]
r

)
where two sets

are adjacent if and only if they are disjoint. Observe that independent sets of G are exactly
intersecting families, so Erdős-Ko-Rado is equivalent to saying that

α(G) =

(
n− 1

r − 1

)
provided n ≥ 2r. In this case, one can verify that G has eigenvalues (−1)j

(
n−r−j
r−j

)
for 0 ≤ j ≤ r

(each appearing with multiplicity
(
n
j

)
−
(
n
j−1

)
), and hence

λmin = −
(
n− r − 1

r − 1

)
= − r

n− r

(
n− r
r

)
.

Since G has
(
n
r

)
= n

r

(
n−1
r−1

)
vertices and is regular with degree

(
n−r
r

)
, plugging things into

Lemma 19.8 gives α(G) ≤
(
n−1
r−1

)
as desired.

Perhaps the biggest constraint in Lemma 19.8 is the need for G to be regular, which we used
in this proof to guarantee that the all 1’s vector is an eigenvector, allowing us to extract
α = 〈x,1〉. We can get around this issue if we change how we measure independent sets. To
this end, given a graph G together with a vector w indexed by V (G) and a set of vertices I,
define |I|w =

∑
i∈I w

2
i , and define αw(G) = maxI |I|w where I ranges over all independent sets

of G.

With this we can generalize Lemma 19.8 by both allowing G not to be regular, and by allowing
A to only be a “pseudo-adjacency matrix.” It will also be important for our main application to
allow G to have loops, where we emphasize that no independent set of G can contain a vertex
which has a loop.

Lemma 19.9. Let G be a graph with loops and M a matrix such that Mi,j = 0 whenever i 6∼ j
and such that M has a basis of eigenvectors. If λmin is the smallest eigenvalue of M , and if w
is a unit eigenvector of M with eigenvalue λ > λmin, then

αv(G) ≤ −λmin

λmin − λ
.
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The proof of Lemma 19.9 is nearly identical to that of Lemma 19.8, and we leave the details as
an exercise to the reader.

In order to use Lemma 19.9, we need a problem where we care about independent sets which
are weighted in non-standard ways. Motivated by our application of Lemma 19.8, we will do
this for a weighted version of the Erdős-Ko-Rado problem.

Specifically, given an n-vertex set system F , we define its p-biased measure by

µp(F) =
∑
F∈F

(1− p)n−|F |p|F |.

In this setting, our main question is: what is the largest size (in the p-biased sense) of an
intersecting set system? Here we emphasize that we consider the non-uniform families, as
otherwise this is just equivalent to Erdős-Ko-Rado. The answer to this question is more or less
what one would expect (after observing that µp(F) = p when F consists of all sets containing
a given element).

Theorem 19.10. If F is an n-vertex intersecting family and p ∈ [0, 1/2], then µp(F) ≤ p.

One can show that this result is false for p > 1/2. It also turns out that for p < 1/2 the unique
construction with µp(F) = p is the star, but we’ll refrain from going into this.

One can also get uniqueness but I don’t know how much extra work this is. Also note that this
result is false for larger p

Just like with the original EKR theorem, there exist many proofs of Theorem 19.10 (in fact,
Friedgut has a talk going through 5 and a half proofs of this theorem REF). The spectral proof
we present here is due to Friedgut [40], and this proof ends up having the advantage that a
closer analysis of the proof gives stability results.

Mimicking our proof of EKR using Lemma 19.8 described above, we define the graph Gn on
2[n] where two sets are adjacent if and only if they are disjoint. Note that G has a loop at the
vertex ∅. Again, independent sets of Gn are intersecting families, and proving Theorem 19.10
is equivalent to showing αw(Gn) ≤ p where w is the vector defined by wS = (1 − p)n−|F |p|F |
(which is a unit vector).

To complete the proof using Lemma 19.9, it remains to cook up a pseudo-adjacency matrix Mn

which in particular has w as an eigenvector. To develop some intuition, we focus on the case
n = 1. Here G1 is just an edge where one vertex has a loop, so the M1 we are looking must

have the form M1 =

[
∗ ∗
∗ 0

]
. To limit our search space a little, we will try and find such a

matrix which is symmetric (though this isn’t required to use Lemma 19.9), at which point we
can scale M appropriately so that it has the form

M1 =

[
c 1
1 0

]
,

for some value c to be determined. Again, we must have that w = (
√

1− p,√p) is an eigenvector
for this matrix, which means there exists some λ with λw1 = cw1 + w2 and with λw2 = w1.
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Plugging things in, we see that λ =
√

(1− p)/p, and hence that

M1 =

[√
1−p
p
−
√

p
1−p 1

1 0

]
We also observe that the other eigenvector of this matrix is w′ = (

√
p,−
√

1− p), which has

eigenvalue λ′ = −
√
p/(1− p). Plugging this into Lemma 19.9, we find

αp(G) ≤
√
p/(1− p)√

(1− p)/p+
√
p/(1− p)

=
p

1− p+ p
= p,

proving the result when n = 1.

It remains to generalize M1 to work for larger n. While it isn’t hard to do this directly, we’ll
do this in one go with the following linear algebra fact about tensor products.

Lemma 19.11. Given real symmetric matrices B1, B2 with rows and columns indexed by V1, V2

respectively, define the tensor product matrix B1 ⊗ B2 by having its rows and columns indexed
by V1 × V2 with (B1 ⊗B2)(i1,i2),(j1,j2) = (B1)i1,j1(B2)i2,j2.

If u1, . . . , u|V1| and v1, . . . , v|V2| are orthonormal sets of eigenvectors for M1,M2 with ui having
eigenvalue µi and vi having eigenvalue λi, then the vectors ui ⊗ vj defined by (ui ⊗ vj)(k1,k2) =
(ui)k1(vj)k2 are an orthonormal set of eigenvectors for M1 ⊗M2 with eigenvalue µiλj.

This is pretty easy to prove once you unwind the definitions. With this in mind, we inductively
define Mn = Mn−1⊗M1 (i.e. Mn is the nth tensor power of M1). Equivalently, this is the matrix

defined by (Mn)S,T = 0 whenever S ∩ T = ∅ and which has (Mn)S,T = (
√

1−p
p
−
√

p
1−p)n−|S∪T |

otherwise. The point is that by the lemma above, the vector w with wS = (1− p)(n−|S|)/2p|S|/2

is an eigenvector corresponding to the eigenvalue ((1 − p)/p)n/2. Further, if p ≤ 1/2, then we
have

λmin = min
i

(−1)i(p/(1− p))i/2((1− p)/p)(n−i)/2 = −
√
p/(1− p)) · ((1− p)/p)(n−1)/2.

Plugging this into Lemma 19.9 gives

αw(Gn) ≤
√
p/(1− p)) · ((1− p)/p)(n−1)/2

((1− p)/p)n/2 +
√
p/(1− p)) · ((1− p)/p)(n−1)/2

= p,

proving Theorem 19.10.

Comment on uniqueness and stability; maybe go through this for t = 1.

With some work, one can extend the approach of this subsection to work for t-intersecting
families. Unfortunately the most naive approach of solving the problem for n = 1 and then
tensorizing doesn’t work (since the n = 1 case is too small to capture the situation for for
t > 1). The way Friedgut gets around this in [40] is by doing linear algebra over the ring
R[X]/(X t = 0) instead of just R. In this setting, he roughly considers matrices where the S, T
entry is equal to cS,TX

|S∩T | for some real number cS,T , which makes it so that these entries are
0 whenever |S ∩ T | ≥ t. A lot of the steps become more intricate in this setup, but eventually
everything does end up going through.
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20 The Polynomial Method I: Slice Rank

Roughly speaking, the polynomial method is the method of using polynomials to solve problems,
though there is no real agreed upon definition of what does and does not constitute an instance
of this method.

One might argue that the modular intersection section used this method, in that we obtained
our results by cooking up a system of (low degree) polynomials which “encoded” our problem
(i.e. by choosing them so that the roots of the polynomials corresponded to intersections being
of a given size). Over the next two sections, we will look at two other systematic ways one can
take (low degree) polynomials which “encode” your problem and translate them into bounds
for an extremal problem: slice rank and combinatorial Nullstellensatz. We note that these two
methods are independent of each other and can be read in any order.

20.1 Slice Rank

In the previous section we considered proofs using linear algebra. Here we go a step further
and use multilinear algebra.

To this end, given a set S and an integer k, we let Sk denote the set of all k-tuples of elements
of S. Given a field F, we will say that any function of the form f : Sk → F is a k-tensor. Note
that when k = 2, we can express f as a matrix whose rows and columns are indexed by S,
and as such we can think of k-tensors as “higher order” matrices. Our main goal here is to use
“ranks” of tensors to obtain bounds for combinatorial problems, analogous to what we did in
our second proof of Oddtown.

There are various non-equivalent ways one can generalize the notion of rank from matrices to
tensors. One way is through slice rank. For this, we say that a k-tensor f is a slice if

f(x1, . . . , xk) = g(xi)h(x1, . . . , xi−1, xi+1, . . . , xk),

where i is some integer, g is a 1-tensor, and h is a (k − 1)-tensor. Note that when k = 2, slices
are exactly rank 1 matrices, i.e. the outer product of two vectors g and h. We define the slice
rank sr(f) of a k-tensor f to be the smallest integer r such that f can be written as the sum
of r slices. Again note that in the case k = 2 this exactly corresponds to the usual notion of
rank.

Although not every property of matrix rank carries over to the setting of slice rank, one impor-
tant property that does is the fact that the slice rank of a “diagonal tensor” equals the number
of non-zero entries it has. To this end, we say that a tensor is proper diagonal if f(~x) 6= 0 if
and only if xi = xj for all i, j.

Lemma 20.1. If f : Sk → F is a proper diagonal k-tensor, then sr(f) = |S|.

Proof Sketch. We first show sr(f) ≤ |S|. For each a ∈ S, let ga(x) be the 1-tensor with
ga(a) = 1 and ga(b) = 0 otherwise. We observe

f(~x) =
∑
a∈S

ga(x1)f(a, x2, . . . , xk),
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proving that f has slice rank at most |S| as desired.

The proof of the lower bound sr(f) ≥ |S| is a somewhat fiddly induction argument that takes
about two pages to do; we refer the reader to a nice writeup by Martinez [66, Lemma 2.2.9] for
the full details.

Our general approach using Lemma 20.1 will be as follows:

(1) Start with some set S which has some desired properties.

(2) Using the properties of S, we construct a proper diagonal k-tensor f : Sk → F which is
“simple” (e.g. a polynomial of low degree).

(3) Using the fact that f is “simple”, we find some explicit way to write f as the sum of r
slices.

(4) In total, steps (2) and (3) imply

|S| = sr(f) ≤ r,

giving us an effective bound on sets S with our desired properties.

We note that this sort of approach was first used by Croot, Lev, and Pach [23]. This method
was then adapted by Ellenberg and Gijswitj [30] before being systemetized by Tao [87].

We will use the general approach outlined above to give very short proofs of two problems
which were previously thought to be incredibly difficult. Throughout this section, we suggest
before the reader goes through each proof that they first sit down and try to construct an f as
in the framework outlined above in order to solve the problem.

20.2 The Capset Problem

Given an abelian group G, we say that a triple of elements (x, y, z) ∈ G3 forms a 3-term
arithmetic progression (or 3AP for short) if y− x = z− y, and we say this is a non-trivial 3AP
if we do not have x = y = z. A fundamental question in additive combinatorics is to determine
how large a subset S ⊆ G can be if it contains no non-trivial 3AP. For example, Roth’s theorem
famously says that when G = Z such a set must have density 0.

Another natural case to consider is Fnp for prime p. The case p = 2 is trivial (if S ⊆ Fn2 contains
two distinct elements x, y, then (x, y, x) forms a non-trivial 3AP). As such, the first interesting
case is to look at Fn3 , and in this setting sets S ⊆ Fn3 without non-trivial 3AP’s are referred to
as cap sets. Using a difficult Fourier analytic argument, Bateman and Katz [12] showed that
capsets can have size at most O(3n/n1+ε) and Edel [29] gave the best known lower bound of
about 2.2n. At one point Tao mentioned that this capset problem was perhaps his favorite open
problem and that he thought the answer was probably (3− o(1))n. It was thus a major shock
when Ellenberg and Gijswijt [30] gave a remarkably short proof showing an upper bound of
(3− ε)n.
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Theorem 20.2 (Ellenberg-Gijswijt [30]). For all primes p, there exists a real number ε > 0
such that any set S ⊆ Fnp which contains no non-trivial 3AP has |S| ≤ (p− ε)n.

Again, the reader is encouraged to try and come up with a tensor f which might work to give
the result before going through the details of this proof.

Proof. For slight ease of notation we will only deal with the case p = 3, the proof for general
p being almost identical. As outlined above, our goal will be to use S to construct a proper
diagonal tensor f of low degree. Given the inputs of the problem, perhaps the most natural
kind of tensor to consider is one of the form f : S3 → F3, where again we want to ensure that
if x, y, z ∈ S then f(x, y, z) 6= 0 if and only if x = y = z. Critically, because of our hypothesis
that S contains no non-trivial 3AP, we see that we want f(x, y, z) 6= 0 if and only if x, y, z is a
3AP, and as such our goal is essentially equivalent to constructing an f which is the indicator
function for 3AP’s!

By definition, (x, y, z) is a 3AP if and only if y− x = z− y, and rearranging gives x− 2y+ z =
0. As such, we’re essentially left with the problem of constructing an indicator function for
x − 2y + z 6= 0, or equivalently that xi − 2yi + zi 6= 0 for all i. And this is somewhat easy:
simply take

f(x, y, z) =
n∏
i=1

(1− (xi − 2yi + zi)
2),

which one can readily check is an indicator function for 3AP’s in S, and hence is a proper
diagonal tensor.

It remains to estimate the slice rank of f . That is, we want to show that f can be written as
the sum of a small number of functions of the form e.g. g(x)h(y, z). To this end, we make the
observation that by the definition of f given above, each of its monomials has degree at most
2n, and as such each of its monomials has one of its x-degree, y-degree, or z-degree is at most
2n/3. The idea now is to group each of these monomials with the same low degree variable and
then bound the slice rank of each of these groups by using the low degree variable.

To be somewhat more precise, given a vector α ∈ {0, 1, 2}n, define xα =
∏
xαii , and similarly

define yβ and zγ. Let |α| :=
∑
αi, and let M denote the set of all triples (α, β, γ) with

α, β, γ ∈ {0, 1, 2}n and |α| + |β| + |γ| ≤ 2n. Observe that each monomial of f is of the form
xαyβzγ for some (α, β, γ) ∈M.

LetMx ⊆M be the set of triples with |α| ≤ 2n/3, letMy ⊆M\Mx be those with |β| ≤ 2n/3,
and let Mz ⊆ M \ (Mx ∪My) be those with |γ| ≤ 2n/3. As noted above, Mx ∪My ∪Mz

partition M. Given α with |α| ≤ 2n/3, define the polynomial

hα(y, z) =
∑

β,γ:(α,β,γ)∈Mx

cα,β,γy
βzγ,

where cα,β,γ is the (possibly 0) coefficient of xαyβzγ in f . Similarly define hβ(x, z) and hγ(x, y).
By definition and the fact that Mx ∪My ∪Mz partition M, we have

f(x, y, z) =
∑

α:|α|≤2n/3

xαhα(y, z) +
∑

β:|β|≤2n/3

yβhβ(x, z) +
∑

γ:|γ|≤2n/3

zγhγ(x, y).
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With this, we conclude that the slice rank of f is at most 3 times the number of terms in
eahc sum, which is equal to the number of vectors α ∈ {0, 1, 2}n with |α| ≤ 2n/3. It is not
convince oneself that the number of such vectors is at most (3 − ε)n for some ε (essentially
because a random α ∈ {0, 1, 2}n behaves like the sum of two bionomial random variables with
total expectation n), proving the result.

We note in particular in the case p = 3 one can go through the analysis and get an upper
bound of roughly |S| = O(2.756n) for sets S ⊆ Fn3 not containing a capset. In fact, it turns
out that this upper bound continues to hold for a slightly more general problem: we say that
three sets X, Y, Z ⊆ Fn3 contain no rainbow 3AP if the only 3AP’s (x, y, z) ∈ X × Y × Z are
trivial. With a bit more work one can show that the above proof yields that if X, Y, Z contains
no rainbow 3AP then |X|+ |Y |+ |Z| = O(2.756n), and moreover there exist constructions that
essentially match this upper bound. Thus any improvement to the bound for capsets has to
somehow utilize that we only allow triples from S3 and not from three distinct sets. We refer
to the interested reader to the nice survey article by Grochow [47] for more on this topic.

20.3 Nonuniform Sunflowers

Recall that a k-sunflower is a collection of sets h1, . . . , hk such that hi ∩ hj is equal to the same
set for all i 6= j. In the setting of uniform hypergraphs, the famous Erdős-Rado sunflower
conjecture says that there exists a constant C = C(k) such that every r-uniform hypergraph
with at least Cr hyperedges contains a k-sunflower.

Here we consider an analogous conjecture in the non-uniform setting due to Erdős and Szemerédi
[33]: there exists a constant ε = ε(k) > 0 such that for all n ≥ ε−1, every H ⊆ 2[n] with at least
(2 − ε)n hyperedges contains a k-sunflower. This conjecture turns out to be weaker than the
Erdős-Rado sunflower conjecture [33].

The slice rank method allows us to give an easy proof of this non-uniform sunflower conjecture
when k = 3.

Theorem 20.3 (Naslund-Sawin [73]). If H is an n-vertex hypergraph without any 3-sunflower,
then

|H| ≤ (n+ 1)
∑
t≤n/3

(
n

t

)
≤ 1.89n.

Proof. Let S be the set of characteristic vectors corresponding to the hyperedges of H. As
a first attempt for this problem, one would probably try to work with the set S directly to
construct a tensor f , but this causes some technical issues pop up.

To get around these issues, we let Sr ⊆ S be those characteristic vectors with r 1’s. The insight
here is that maxr |Sr| ≤ |S| ≤ (n + 1) ·maxr |Sr|, so up to some negligible factor it suffices to
bound the size of each Sr set. This will allow us to get around the previously mentioned issues.

With this, our goal is to construct a 3-tensor f , now with domain S3
r , such that f(x, y, z) 6= 0

if and only if x = y = z. The crucial insight here is that if we do not have x = y = z, then
there exists some i such that xi + yi + zi = 2. Indeed, if this were not the case and x, y, z were

104



all pairwise distinct from each other, then this would imply that every i is either contained in
0, 1, or 3 of the sets x, y, z, which would imply these distinct hyperedges form a 3-sunflower.
If, say x = y 6= z, then the non-existence of such an i would imply x ⊆ z, a contradiction to
x 6= z both being in Sr, i.e. both having the same number of elements.

With this observation in mind, we see that our desired f is essentially the indicator function
for [no coordinate i having xi + yi + zi = 2]. Thus we can take f : S3

r → F3 by defining

f(x, y, z) =
n∏
i=1

(xi + yi + zi − 2),

and one can easily check that f is a proper diagonal tensor given that Sr ⊆ S contains no
3-sunflowers, so it remains to bound the slice rank of f . Similar to before, we observe that
each monomial of f has either x, y or z degree at most n/3, so by a similar trick as before we
conclude

max
r
|Sr| ≤ sr(f) ≤

∑
t≤n/3

(
n

t

)
≤ 2nH(1/3),

where H(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. Evaluating this
(and multiplying by n+ 1) gives the desired upper bound.
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21 The Polynomial Method II: Combinatorial Nullstel-

lensatz

Roughly speaking, the main idea of the previous section was to construct low degree polynomials
f that were capable of encoding any set S with a given property; and from there we used slice
rank to show that any such set S must be small in terms of deg(f).

In this subsection we take a subtlely different approach: we construct polynomials f in terms
of some given set S (generally with degree |S|), and then use the properties of S to argue that
f must have relatively small degrees.

To emphasize, in the previous subsection we constructed f which was independent of the specific
S we were given with some property, but here we construct f which will defined based off of
whatever S is given to us. This is somewhat more reminiscent of the approach we took with
modular intersections.

In any case, the main tool we will use for this new approach is the following result of Alon’s,
which is inspired by Hillbert’s Nullstellensatz theorem from algebraic geometry. Roughly speak-
ing, it says that if f has small degree, then f can not vanish on a large cartesian product.

Theorem 21.1 (Alon’s Combinatorial Nullstellensatz [1]). Let F be a field and f ∈ F[x1, . . . , xn]
a polynomial. If t1, . . . , tn are non-negative integers such that deg(f) =

∑
ti > 0 and such that

the monomial
∏
xtii has a non-zero coefficient in f , then for any sets Si ⊆ F satisfying |Si| > ti

for all i, there exist elements si ∈ Si such that f(s1, . . . , sn) 6= 0.

We will somewhat informally write the conclusion of this statement as f(S1, . . . , Sn) 6= 0 (and
we will also write f(S1, . . . , Sn) = 0 whenever this conclusion fails to hold). We note that this
result is best possible, as can be seen by taking the function

∏
s∈S1

(x1− s)g(x2, . . . , xn) for any
set S1 ⊆ F and function g.

Proof. We give a short proof due to Micha lek [69] by induction on deg(f), the case deg(f) = 1
being straightforward. Let f , t1, . . . , tn, and S1, . . . , Sn be as in the hypothesis, and assume we
have proven the result for all polynomials of degree smaller than deg(f) > 1. Without loss of
generality, we can assume t1 > 1, and we let s ∈ S1 be an arbitrary element. Using polynomial
division, we can write

f(x1, . . . , xn) = (x1 − s)g(x1, . . . , xn) + h(x1, . . . , xn)

such that deg(g) = deg(f) − 1 and such that h does not depend on x1. If we assume for
contradiction that f(S1 × · · · × Sn) = 0, then in particular we have

0 = f({s} × S2 × · · · × Sn) = 0 + h({s} × S2 × · · · × Sn).

Because h does not depend on x1, this implies h(S1×· · ·×Sn) = 0. Again using that h does not
depend on x1 and the hypothesis of the theorem, g must have a monomial xt1−1

1

∏
i 6=1 x

ti
i with a

non-zero coefficient, so by induction we can find some (s1, . . . , sn) ∈ (S1 \ {s})× S2 × · · · × Sn
which g does not vanish on. Note that h(s1, . . . , sn) = 0 by our previous observation, so in total
we conclude that f(s1, . . . , sn) = (s1 − s)g(s1, . . . , sn) 6= 0, a contradiction.
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We will now showcase a slew of examples which use the combinatorial Nullstellensatz, with many
more examples being found in Alon’s original paper [1]. We note that in most cases, proofs of
these results were known well before the introduction of the combinatorial Nullstellensatz, but
this tool allows for elegant and unified solutions to all of them. Again, the reader is encouraged
to try and figure out which polynomial to use before reading through the proof.

21.1 Cauchy-Davenport

We begin with a basic result from additive combinatorics. Given two subsets A,B of an abelian
group G, we define A + B = {a + b : a ∈ A, b ∈ B}. If G = Z, then it is not difficult to
show that |A+B| ≥ |A|+ |B| − 1, which is best possible. However, if G is a finite group, then
this bound no longer holds for the simple reason that one could have |A|+ |B| − 1 > |G|. The
Cauchy-Davenport theorem says that this is the only obstruction for Fp.

Proposition 21.2 (Cauchy-Davenport). If A,B ⊆ Fp for some prime number p, then |A+B| ≥
min{|A|+ |B| − 1, p}.

Proof. Let’s think for a moment about what parameters we might choose when utilizing The-
orem 21.1. Seemingly we should take F = Fp. Since we ultimately want to conclude something
about the size of A + B, it seems reasonable that we want to construct our polynomial f to
depend on A+B, and in particular to have degree equal to |A+B|. The only relevant sets we
have that could play the role of the Si are A,B,A+B and Fp. Since we’re already planning to
use A+B to construct our polynomial, it perhaps makes the most sense to try and use S1 = A
and S2 = B.

Roughly then, we want to construct a polynomial f(x, y) of degree equal to |A + B|, which
means that if |A+B| = deg(f) ≤ (|A|−1)+(|B|−1), then by the combinatorial Nullstellensatz
we will have f(A,B) 6= 0. We want to then derive a contradiction from this and from this; that
is, we want to define f in such a way that we obviously have f(A,B) = 0.

With the discussion above in mind, we want to define an f such that f(A,B) = 0 and such
that f has degree |A+B|. An obvious candidate for this is to take

f(x, y) =
∏

c∈A+B

(x+ y − c),

which has all of the properties described above.

To complete the proof, we assume for contradiction that |A+B| ≤ min{|A|+ |B|−2, p−1}. To
apply the Nullstellensatz with S1 = A, S2 = B, we need to show that there exists a monomial
xt1yt2 with t1 + t2 = |A + B|, t1 < |A|, and t2 < |B|. To this end, consider t1 = |A| − 1 and
t2 = |A+ B| − |A|+ 1 ≤ |B| − 1, with this inequality coming from our assumption on A+ B.
It is not difficult to see that the coefficient of xt1yt2 in f is equal to

(|A+B|
|A|−1

)
. Crucially, because

|A+B| < p, this binomial coefficient is not a multiple of p and hence is non-zero. We can thus
apply the Nullstellensatz with S1 = A, S2 = B to conclude that f(A,B) 6= 0, a contradiction
to how we defined f .
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21.2 Covering the Hypercube

How many hyperplanes in Rn does it take to cover all of the points of the hypercube {0, 1}n?
It’s not difficult to see that the minimum you need is 2. To make things more interesting, we
ask the following variant for affine hyperplanes: how many hyperplanes do you need to cover all
of {0, 1}n \ (0, . . . , 0) such that none of the hyperplanes contain (0, . . . , 0)? It isn’t too difficult
to work out that n hyperplanes suffice, but proving this is best possible isn’t as easy. However,
this becomes doable with the Nullstellensatz.

Proposition 21.3 (Alon-Füredi [3]). If h1, . . . , hm are a set of hyperplanes in Rn which do not
contain the origin and which contain every other point of {0, 1}n, then m ≥ n.

Proof. Again let us discuss what sort of parameters we might choose in applying the Null-
stellensatz. The most natural choice for field is probably R. Again our polynomial f should
probably have degree m, and a natural way to do this is to take f to be a product over terms
indexed by the hj. Motivated by this, for each j let aj ∈ Rn and bj ∈ R be such that hj contains
all of the points x ∈ Rn satisfying 〈x, aj〉 = bj, and we note for later that bj 6= 0 for all j since
the origin is not contained in any hj. Then a natural choice of f : Rn → R to consider is

f(x) =
m∏
i=1

(bj − 〈x, aj〉),

since by hypothesis we know that our choice of f vanishes on all of {0, 1}n except the origin.

At this point, if we assume for contradiction that m ≤ n−1, then we know f has degree at most
n− 1, and hence there’s a chance we can find a monomial of the form

∏
i 6=k xi for some k with

a non-zero coefficient. In this case we could apply the Nullstellensatz with Si = {0, 1} for i 6= k
and Sk = {1} to find a point which isn’t the origin that f fails to vanish on, a contradiction to
how we defined f .

While the above approach is theoretically possible, it’s not at all clear how you could correctly
choose the value of k given the very limited information of the problem setup. Thus instead
of doing the above, we’ll modify our polynomial f so that it vanishes at every point of {0, 1}n
(including the origin). Since f only fails to vanish at the origin, this can easily be done by
taking

g(x) =
m∏
j=1

(bj − 〈x, aj〉)−
m∏
j=1

bj ·
n∏
i=1

(1− xi),

and it is striaghtforward to check that g now vanishes on all of {0, 1}n. Moreover, because f(x)
had degree m ≤ n − 1 and because

∏
bj 6= 0 (as noted at the start of the proof); we have

that g(x) has degree equal to n with its only monomial of this degree equal to
∏
xi. Thus

we can apply the Nullstellensatz with Si = {0, 1} for all i to conclude that g({0, 1}n) 6= 0, a
contradiction to how we constructed g. We conclude that we must have m ≥ n as desired.

We note that this proof features a common trick with the Nullstellensatz: often you will have
some “main term” in your polynomial which encodes the bulk of your problem, and from there
you add in some additional terms to forbid certain “bad” witnesses s1, . . . , sn.
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21.3 Regular Subgraphs mod p

Our last example concerns finding subgraphs of graphs which are “regular mod p”. The proof
will showcases a useful trick one can utilize together with the Nullstellensatz: over the finite
field Fp, the function 1 − xp−1 is the indicator function for x being equal to 0 (since xp−1 = 1
whenever x 6= 0).

Proposition 21.4. Let p be a prime. If G is an n-vertex graph with more than (p− 1)n edges,
then G has a non-empty subgraph H where every degree is a multiple of p.

Proof. Again lets consider the parameters. We should take F = Fp. One might first consider
taking f : Fnp → Fp with our variables indexed by vertices of G, but in fact the more appropriate

domain is Fe(G)
p where each variable xe corresponds to an edge e ∈ G. This is because we

ultimately want to construct a subgraph of G, which is most naturally thought of as a subset
of the edges. Since we want our edges to either be in or out of this subgraph, it seems most
natural to take Se = {0, 1}, where we’ll think of xe = 1 meaning e ∈ H. As in the proof of
Alon-Füredi, we’ll need to ensure f(0) = 0 so that H will be non-empty.

Given this setup, we need to cook up an f which encodes the degrees of our vertices being a
multiple of p in H. The degree of a vertex v in H is exactly equal to

∑
e3v xe, and as noted

before the proof, we can turn this into an indicator function for being a multiple of p by taking
1− (

∑
e3v xe)

p−1. We again want to make sure we vanish at x = 0, so in total the function we
come to is

f(x) =
∏
v

1−

(∑
e3v

xe

)p−1
−∏

e

(1− xp−1
e ).

Note that the degree of the left term is (p−1)n while the degree on the right is e(G) > (p−1)n.
Thus f is a polynomial of degree e(G) with

∏
xp−1
e a monomial achieving this. Thus we can

apply the Nullstellensatz with Se = {0, 1} for all e to conclude there’s some x ∈ {0, 1}n on which
f does not vanish. By construction we know x 6= 0, and hence the graph H = {e : xe 6= 0} is
a non-empty subgraph of G, which by construction has every vertex a multiple of p (since if
some vertex failed to have this, then we would have f(x) = 0).
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Part VII

Other Methods
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22 The Delta-system Method

Recall that a k-sunflower (also called a delta-system) is a hypergraph S with edges e1, . . . , ek
such that there exists a set K called the kernel which has ei ∩ ej = K for all i 6= j. Roughly
speaking, the Delta-system method is any proof using the following observation, which is usually
credited to Deza, Erdős, and Frankl [25].

Lemma 22.1. If H is an r-graph which contains an (r+ 1)-sunflower with kernel K, then for
every edge e ∈ H, there exists an edge f ∈ H with e ∩ f ⊆ K.

Proof. Let e1, . . . , er+1 be the edges of the sunflower. Since each of the sets e1 \K, . . . , er+1 \K
are non-empty disjoint sets, one of these ei \ K sets must be disjoint from e. Taking f = ei
gives the result.

An effective tool to use in conjunction with this observation is Füredi’s intersection semilattice
lemma (which itself is proven using the Delta-system method). The full statement is a little
intimidating, so we’ll start by just stating a consequence of it.

Lemma 22.2 (Weak intersection semilattice lemma). For all r, s, there exists c = c(r, s) > 0
such that for every r-graph H, there exists a subgraph H′ ⊆ H with |H′| ≥ c|H| such that for
all e, f ∈ H′, e ∩ f is the kernel of an s-sunflower.

That is, we can approximate H by a hypergraph H′ such that any two edges of H′ are petals of
a large sunflower. This quickly gives the following strengthening of the Erdős-Rado sunflower
lemma due to Mubayi and Zhao [72].

Corollary 22.3 ([72]). For all r, s there exists a constant C = C(r, s) such that if H is an
n-vertex r-graph with |H| ≥ Cnr−t−1, then H contains an s-sunflower which has core of size at
most t.

Proof. We may assume n is sufficiently large in terms of r, as otherwise one can trivially find
a sufficiently large C. Let C = 2c−1 with c the constant from the previous lemma. Then
|H′| ≥ 2nr−t−1 >

(
n−t−1
r−t−1

)
. By the Erdős-Ko-Rado theorem for (t+ 1)-intersecting hypergraphs

(see Theorem 12.4), H′ must contain two edges e, f which intersect in less than t+ 1 vertices.
By assumption e ∩ f is the core of a sunflower with at least s petals, proving the result.

We’ll now state the full intersection semilattice lemma. For this, if H is an r-partite r-graph
with partition

⋃
Vi and if S is a set of vertices, then we define proj(S) := {i : S ∩ Vi 6= ∅}.

That is, proj(S) records which coordinates its vertices are in. Given a hypergraph H and a set
of vertices S, define d∗(S) to be the largest integer d such that there exist edges e1, . . . , ed ∈ H
with ei ∩ ej = S for all i 6= j. In other words, d∗(K) is the size of the largest sunflower which
contains K as its kernel.

It’s unfortunate that here H′ is the part we can approximate while it’s the opposite
for spread approximations. Probably change one of these, most likely the spread
approximation one.

111



Lemma 22.4 (Intersection semilattice lemma). For all r, s, there exists c = c(r, s) > 0 such
that for every r-graph H, there exists an r-partite subgraph H′ ⊆ H with |H′| ≥ c|H| and a
hypergraph J ⊆ 2[r] not containing the edge of size r such that:

(1) J is intersection closed, i.e. I, J ∈ J implies I ∩ J ∈ J .

(2) For every e ∈ H′, {proj(e ∩ f) : f ∈ H′ \ {e}} = J .

(3) d∗H′(e ∩ f) ≥ s for all e, f ∈ H′.

Note that if we ignore (1) and (2) we get back Lemma 22.2. Roughly speaking, this result says
that we can approximate a large chunk of H, namely H′, by a small hypergraph J such that
for any edge e ∈ H′, the hypergraph J tells you exactly how other edges can intersect e, and
moreover, (3) guarantees that each possible intersection occurs at least s times. We say that
an H′ as in the conclusion of this lemma is (s,J )-homogeneous.

We postpone proving this result for the moment and instead look at some consequences. For
J ⊆ 2[r] \ [r], define the rank

rank(J ) = min{|T | : T ⊆ [r], T 6⊆ I ∀I ∈ J },

i.e. this is the smallest integer t such that there exists a t-set not contained in an edge of J .
For example, rank(J ) > 1 if and only if every vertex of [r] is contained in an edge of J .

Lemma 22.5. If H′ is an n-vertex (s,J )-homogeneous r-graph, then |H′| ≤
(

n
rank(J )

)
.

Note that s does not appear in this bound. Before looking at the proof, the reader may want
to try proving this result for themselves when rank(J ) = 1 in order to get a sense for the
definitions.

Proof. Let T ⊆ [r] be a set such that |T | = rank(J ) and such that T 6⊆ J for all J ∈ J . Given
an edge e ∈ H′, let φ(e) = e ∩

⋃
i∈T Vi. We claim that φ is injective. Indeed, if φ(e) = φ(f),

then T ⊆ proj(e ∩ f) ∈ J , a contradiction to our assumption on T . Since φ maps edges of H′
injectively to sets of size rank(J ), we conclude the result.

We can use this result to give yet another proof of the Erdős-Ko-Rado theorem for t-intersecting
hypergraphs, whose statement we recall below.

Theorem 22.6. Let H be an n-vertex r-graph such that |e ∩ f | ≥ t for all e, f ∈ H. If n is
sufficiently large in terms of r, then |H| ≤

(
n−t
r−t

)
with equality holding if and only if H consists

of every edge containing some fixed set T of size t.

Proof. Apply Lemma 22.4 with s = r+ 1 and let H′,J be the resulting hypergraphs with
⋃
Vi

the r-partition of H′. First note that if rank(J ) < r − t, then by Lemma 22.5 we have

|H| ≤ c−1|H′| ≤ c−1

(
n

r − t− 1

)
<

(
n− t
r − t

)
,
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where this last step holds for n sufficiently large in terms of c = c(r, r+ 1). Thus if |H| ≥
(
n−t
r−t

)
,

we must have rank(J ) ≥ r − t.

Let S be with |S| = rank(J ) such that no edge of J contains S, and let T = [r] \ S. By the
above we may assume |S| ≥ r− t, and hence |T | ≤ t. By definition of rank(J ) = |S|, for every
i ∈ S, there exists an edge Ji ∈ J such that S \ {i} ⊆ Ji. Note that i /∈ Ji by assumption
of S not being contained in any edge of J , which means J :=

⋂
i∈S Ji ⊆ T . Because J is

intersection closed, we have J ∈ J .

We claim that |J | ≥ t. Indeed, by definition of J ∈ J , there exist two edges of H′ ⊆ H whose
intersection is exactly J , and by the t-intersecting property we must have |J | ≥ t. Because
|T | ≤ t and J ⊆ T , we conclude that J = T ∈ J .

Now let e ∈ H′ and K = e ∩
⋃
i∈T Vi, noting that |K| = t. Then Lemma 22.4 guarantees that

there is a sunflower with at least r + 1 petals and K as its kernel. This implies that for every
edge f ∈ H, there exists an edge e′ ∈ H′ which contains K and which is disjoint from f \K.
Thus to have |e′ ∩ f | ≥ t, we must have K ⊆ f . In other words, every edge of H must contain
the t-set K. This implies the result.

The above argument actually gives the following stability result: for all r, t there exists a
constant c′ = c′(r, t) such that if H is t-intersecting with |H| > c′

(
n−t
r−t

)
, then there exists a set

of size t which is contained in every edge of H.

Remark 22.7. Stronger versions of Theorem 12.4 are known. For example, REFdetermined
the maximum size of a t-intersecting family for any value n. In another direction, Frankl and
Füredi [36] showed that the conclusion of the theorem holds if we only impose the hypothesis
|e ∩ f | 6= t for e 6= f provided r ≥ 2t + 2, with their proof using a somewhat more involved
version of the Delta-system method.

A similar argument works for more general kinds of intersection problems. Given a set L ⊆
{0, 1, . . . , r − 1}, we say that a hypergraph H is an (n, r, L)-system if it’s an n-vertex r-graph
such that |e ∩ f | ∈ L for all e, f ∈ H distinct. For example, (n, r, {t, t+ 1, . . . , r})-systems are
t-intersecting hypergraphs. Little is known about how large (n, r, L)-systems can be for general
L, but one can get effective bounds in terms of ranks. To this end, for any L ⊆ {0, 1, . . . , r−1},
define

rank(r, L) = max
J

rank(J ),

where the maximum ranges over all J ⊆ 2[r] containing no edges of size r which are intersection-
closed with |J | ∈ L for all J ∈ J .

Theorem 22.8. If H is an (n, r, L)-system, then

|H| = O(nrank(r,L)).

Proof. Let H′,J be as in Lemma 22.4. Observe that J is intersection closed and that |J | ∈ L
for all J ∈ J (since otherwise two edges of H′ ⊆ H would fail to have |e∩e′| ∈ L). Thus letting
c be the constant from Lemma 22.4, we have

|H| ≤ c−1e(H ′) ≤ c−1

(
n

rank(J )

)
≤ c−1

(
n

rank(r, L)

)
,
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where this second inequality used Lemma 22.5 and the last inequality used the definition of
rank(r, L). We conclude the result.

It’s conjectured by Frankl that for all r, L there exist (n, r, L)-systems of size ω(nrank(r,L)−1). This
is unknown in general, but see e.g. [37, Theorem 16.6] for a construction of size Ω(n1+1/(r−1))
whenever rank(r, L) ≥ 2.

One of the best general bounds on the size of (n, r, L)-systems is the Deza-Erdős-Frankl theorem,
which states that such a system H satisfies

|H| ≤
∏
`∈L

n− `
r − `

= O(n|L|).

One can prove this result using a variant of the Delta-system method, though we omit doing
so here. Instead, we give an easy proof of the asymptotic result by utilizing the following.

Lemma 22.9. Every L ⊆ {0, 1, . . . , r − 1} satisfies rank(r, L) ≤ |L|.

Proof. We prove the result by induction on |L|, the case |L| = 0 being trivial. Assume we
have proven the result for all L with |L| < k. We first consider the case |L| = k and 0 ∈ L.
Let J be an intersection closed hypergraph on 2[r] \ [r] with |J | ∈ L for all J ∈ J and
rank(J ) = rank(r, L). For any vertex x ∈ [r], let Jx = {J − x : x ∈ J ∈ J } be the link
hypergraph. If L′ = {` − 1 : ` ∈ L, ` 6= 0}, then we see that Jx is intersection closed
with |J | ∈ L′ for all J ∈ Jx. Because |L′| = |L| − 1, our inductive hypothesis implies that
rank(r − 1, L′) ≤ |L| − 1, i.e. there exists some set T of size |L| − 1 in [r] \ {x} which is not
contained in any edge of Jx, which implies T ∪{x} is a set of size |L| not contained in any edge
of J . We conclude rank(r, L) = rank(J ) ≤ |L|.

Now assume 0 /∈ L, and again let J be an intersection closed hypergraph on 2[r] \ [r] with
|J | ∈ L for all J ∈ J with rank(J ) = rank(r, L). Let I =

⋂
J∈J J . Note that by definition I is

contained in every edge of J , and by the intersection closed property we have I ∈ J , and hence
|I| ∈ L. Define L′ = {`−|I| : ` ≥ |I|}, and note that the link hypergraph JI = {J \ I : J ∈ J }
has all of its edge sizes lying in L′. Since |L′| ≤ |L| and 0 ∈ L′, the previous case implies
rank(JI) ≤ |L|, which implies there exists some set J ⊆ [r] \ I of size L not contained in an
edge of JI , and hence this set continues to not be contained in an edge of J (since every edge
of J is the union of an edge of JI with I). We conclude rank(r, L) = rank(J ) ≤ |L|, proving
the result.

This together with the previous theorem immediately gives the following.

Corollary 22.10. If H is an (n, r, L)-system, then

e(H) = O(n|L|).

It is not difficult to show that this result is tight if L = {0, 1, . . . , t− 1}.

Before moving on, we note that while all of our applications here came from extremal set theory,
the intersection semilattice lemma has application to other areas of extremal combinatorics as
well. See for example [71], where this lemma is used to bound the Turán number of a class of
linear hypergraphs called “expansions.”
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22.1 Proof of the Semilattice Intersection Lemma

We first recall that for every r-graph H there exists a subgraph H′ ⊆ H which is r-partite and
which keeps a constant proportion of its edges. Thus it suffices to prove that ifH has r-partition⋃
Vi, then one can find a subgraph H′ ⊆ H and J ⊆ 2[r] \ [r] such that |H′| ≥ c(r, s)|H| and

(1) J is intersection closed, i.e. I, J ∈ J implies I ∩ J ∈ J .

(2) For every e ∈ H′, {proj(e ∩ f) : f ∈ H′ \ {e}} = J .

(3) d∗H′(e ∩ f) ≥ s for all e, f ∈ H′.

Claim 22.11. If there exists H′,J satisfying (2) and (3) with s ≥ r+1, then they automatically
satisfy (1).

Proof. Let J1, J2 ∈ J . This means that for any edge e ∈ H′, there exist edges e1, e2 such
that e, ei intersect exactly in the coordinates of Ji and that this intersection is the kernel of a
sunflower in H′ on at least r + 1 petals. In particular, there must exist an edge f ∈ H′ which
contains e ∩ e1 and which is otherwise disjoint from e2 (namely, f is one of the edges of the
sunflower with core e ∩ e1). With this proj(f ∩ e2) = J1 ∩ J2, so necessarily J1 ∩ J2 ∈ J .

With this claim in mind, we only have to find H′,J satisfying (2) and (3) (this is immediate if
s ≥ r + 1, and for all other values of s we can take c(r, s) = c(r, r + 1) and apply the s = r + 1
result). For the rest of the proof, given a hypergraph H, we define

I(H) = {proj(e ∩ f) : e, f ∈ H, e 6= f}.

Note that if (2) are (3) are satisfied for some J , then it must be that J = I(H).

Claim 22.12. For any r-partite r-graph H, one can decompose H as H = H0 ∪
⋃
I∈I(H)HI

such that H0 satisfies (2) and (3) for some J , and such that I 6= proj(K) for any set K which
is the kernel of a sunflower on at least s petals in HI .

Proof. Initially start with H0 = H and HI = ∅ for all I ∈ I. Consider the following procedure.
If at any point H0 satisfies (2) and (3) for some set J , then we stop and output the current
sets. Otherwise, it is not difficult to see that there must exist some edge e ∈ H0 and K ⊆ e
such that proj(K) ∈ {proj(f ∩ g) : f, g ∈ H0, f 6= g} but K is not the kernel of a sunflower
with at least s petals in H0 (otherwise the conditions would be satisfied with J = {proj(f ∩g) :
f, g ∈ H0, f 6= g}). Delete e from H0 and add it to Hproj(K).

We claim that this procedure gives the desired result. Indeed, H0 satisfies (2) and (3) by
construction. Assume for contradiction that there existed some I withHI containing a sunflower
on at least s petals with kernel K satisfying proj(K) = I. Let e be the first edge of this sunflower
that was added to HI during the procedure. This implies that every edge of the sunflower was
in H0 right before e was removed, i.e. that H0 contains a sunflower with at least s petals and
kernel K. This contradicts us removing e from H0 at this step, so we include no such sunflower
exists in any HI .
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Claim 22.13. Let H be an r-partite r-graph and I a set such that I 6= proj(K) for any
K which is the kernel of a sunflower with at least s petals. Then one can decompose H as
H = H1 ∪ · · ·Hr(s−1) such that I /∈ I(Hj) for all j.

Proof. Note that for each edge e ∈ H, there exists a unique set K ⊆ V with proj(K) = I. For
each set of this form, let H(K) be its link hypergraph, i.e. H(K) = {e \ K : K ⊆ e ∈ H}.
By hypothesis, none of the H(K) sets contain a matching of size s (since this translates to
a sunflower of size s in H with kernel K). It is not difficult to see that one can decompose
each (r − |K|)-graph H(K) into at most (r − |K|)(s − 1) ≤ r(s − 1) intersecting hypergrpahs
H1(K), . . . ,Hr(s−1)(K) (e.g. by taking a largest matching M in H(K) and then assigning edges
to Hi(K) if they contain the ith vertex which is contained in an edge of M). Let Hi[K] =
{e′∪K : e′ ∈ Hi(K)} and letHi =

⋃
K Hi(K). Note that this decomposesH, and that K 6= e∩f

for any K with proj(K) = I and e, f ∈ H i (as this would imply e \ K, f \ K ∈ Hi(K), and
hence e, f contain an additional vertex since Hi(K) is intersecting).

By repeatedly applying the above two times a bounded number of times, one can decompose
H as

⋃
Hi where each Hi satisfies (2) and (3). Taking the largest of these hypergraphs gives

the desired result.

22.2 Other Hypergraph Approximations

The results of this section are very similar in spirit to those of Section 12. To close this section,
we briefly compare and contrast these results.

By using the Delta-system method (and more precisely the semi-lattice intersection lemma), we
are able to conclude that many of the links of each e ∈ H′ contains large sunflowers. In contrast,
the spreadness of Theorem 12.2 not only gives us large sunflowers, but the stronger fact that a
random partitioning of our vertex set is likely to give a large sunflower (which is a more robust
condition). Moreover, the “error term” of Theorem 12.2 is typically much smaller than that
of Lemma 22.4 (which only approximates a constant proportion of H, which is in some sense
necessary since it can only perfectly approximate r-partite r-graphs). On the other hand, the
approximating hypergraph of Theorem 12.2 is more “complex”, in the sense that it is not just a
hypergraph on [r] but all of V (H), and moreover here you lose the homogeneity of Lemma 22.4
which implies that every two edges have the same intersection pattern. In conclusion, the two
methods are overall incomparable to each other, with each finding different uses in different
situations.

We also note that there is another famous hypergraph approximation called the Junta method,
which was developed by Dinur and Friedgut [27]. This roughly says that if H is an intersecting
hypergraph, then there exists a hypergraph J on a small set of vertices J of H such that almost
every edge e ∈ H has e∩ J ∈ J . We omit going into this in detail and refer the reader to [27].

Finally, we emphasize a fundamental weakness in all of these approaches, which is that they
only work when n is quite large. In many cases we’re okay with this, but for some results like the
t-intersecting Erdős-Ko-Rado theorem, it is of interest in nailing down the exact dependency
on n. In cases such as these a more careful argument is needed.
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23 Expansion and α-maximality

This almost surely needs to be rewritten to incorporate improvements to the
bounds, as well as the claimed simplification mentioned at the end of “Towards
the Erdős-Gallai Cycle Decomposition conjecture”

One of the nice features of random graphs is that they have good expansion properties; e.g.
any set of vertices B ⊆ V (Gn,p) is likely to have about pn|B| edges leaving B provided B is not
too small. It is too much to ask that a graph has such strong expansion properties in general,
but it is often the case that one can find subgraphs of arbitrary graphs which have reasonable
expansion properties. There are many techniques in the field that achieve this end. The focus
on this chapter will be an approached introduced by Tomon [89] which has the advantage of
being both simple to state and powerful in applications.

Definition 3. Given a real number α, we say that a graph G is α-maximal if e(G)/v(G)1+α =
maxH⊆G e(H)/v(H)1+α. Equivalently, this says that if e(G) = γ · v(G)1+α, then e(H) ≤ γ ·
v(H)1+α for all H ⊆ G.

Observe that every graph has an α-maximal subgraph.

The motivation for this definition is that often in extremal graph theory, one wants to prove that
graphs with e(G) ≥ γv(G)1+α contain some desired structure. If such a result were true, then
in particular any α-maximal subgraph of G must contain this structure, so being α-maximal
is essentially the hardest case that one can consider. Moreover, it turns out that by reducing
to α-maximal graphs, one gains a lot of nice expansion properties. Here and throughout this
section we let N(B) be the set of vertices y /∈ N(B) which are adjacent to a vertex in B, and
we let d(G) denote the average degree of G.

Proposition 23.1. Let G be an n-vertex α-maximal graph with α ∈ (0, 1] and d(G) = γnα,
and let B ⊆ V (G) be such that |B| ≤ n/2.

(i) If G is non-empty, then γ ≥ 1
2
.

(ii) The minimum degree of G is at least 1
2
d(G) = 1

2
γnα.

(iii) We have e(B,N(B)) ≥ 1
4
γnα|B|(1 + α− (2|B|/n)α).

(iv) We have |N(B)| > |B|((1 + 1
2
α)( n

2|B|)
α/(1+α) − 1).

The main benefit of (i) is that the bound is an absolute constant independent of α. Condition (ii)
is obviously convenient to have. Note that in Gn,p with p = γnα/n, we have E[[e(B,N(B))] ≈
γnα|B| as long as |B| ≤ n/2, so the level of expansion in (iii) is about as much as we could hope
for. The bound for (iv) is roughly (nα|B|)1/(1+α), which is best possible when |B| ≈ n Though
beyond this I don’t have much intuition for why this is a reasonable condition to
shoot for.

Proof. For (i), taking H ⊆ G to be a single edge implies d(H)/v(H)α = 2−α ≥ 1
2
, so the same

bound holds for G.
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For (ii), let v be a vertex of minimum degree δ and let H = G − v. We have d(H)/v(H)α ≤
d(G)/v(G)α by definition of α-maximality, which is equivalent to

d(G)n− 2δ

(n− 1)1+α
≤ d(G)

nα
.

This implies
1

2
d(G)(n− (n− 1)1+α

nα
) ≤ δ,

showing δ ≥ 1
2
d(G).

For (iii) and (iv), let C = V (G) \B. With this we have

e(B,N(B)) = e(G[B ∪ C])− e(G[B])− e(G[C]) =
1

2
γ(|B|+ |C|)1+α − e(G[B])− e(G[C])

≥ 1

2
γ|C|1+α((1 + |B|/|C|)1+α − 1

2
γ|B|1+α − 1

2
γ|C|1+α.

Using (1 + |B|/|C|)1+α ≥ 1 + (1 + α)|B|/|C| and that |C| ≥ (n/2)α ≥ 1
2
nα, we find that this is

at least
1

2
γ(1 + α)|B||C|α − 1

2
γ|B|1+α ≥ 1

2
γ|B|(1

2
(1 + α)nα − |B|α),

giving (iii).

Similarly for (iv) we observe

e(G[B ∪N(B)]) ≥ e(G[B ∪C])− e(G[C]) ≥ 1

2
γ(|B|+ |C|)1+α− 1

2
γ|C|1+α ≥ 1

2
γ(1 +α)|B||C|α.

However, by α-maximality we have e(G[B ∪N(B)]) ≤ 1
2
γ(|B|+ |N(B)|)1+α. Combining these

inequalities gives
|N(B)| ≥ ((1 + α)|B||C|α)1/(1+α) − |B|,

giving the result.

Our main application of α-maximal graphs will be to something called rainbow Turán numbers,
which were first introduced by Keevash, Mubayi, Sudakov, and Verstraëte [58]. We say that a
colored graph F is rainbow if all of the colors of its edges are distinct. Given a set of graphs
F , we define ex∗(n,F) to be the maximum number of edges a properly colored n-vertex graph
G can have without containing a rainbow copy of any F ∈ F .

Note that ex(n,F) ≤ ex∗(n,F) for all F (since we can take any extremal F -free graph and
give each edge a distinct color), and in general these two quantities can be somewhat far from
each other. Indeed, let C denote the set of all cycles, which means ex(n, C) = n − 1. On the
other hand, we have ex∗(n, C) ≥ n log2 n when n is a power of 2. This is because one can take
G to be an n-vertex hypercube where an edge uv is colored i if u, v differ in the ith bit. It is
not difficult to see that this is a proper coloring which contains no rainbow cycles.

Even though the problem of determining ex(n, C) is easy, determining ex∗(n, C) is an open and
seemingly difficult problem. The first non-trivial upper bounds on ex∗(n, C) were established by
Das, Lee, and Sudakov [24], and later O. Janzer [52] managed to prove ex∗(n, C) = O((log n)4n).
Currently the best known upper bound is the following result due to Tomon [89].
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Theorem 23.2 ([89]). We have ex∗(n, C) = (log n)2+o(1)n.

The main lemma we need to prove this is the following. Here a Q-rainbow path refers to a
rainbow path which only uses colors in the set Q.

Lemma 23.3. Given pc ∈ (0, 1), there exists a constant C such that the following holds. Let
λ > C(log log n)10, and let G be an n-vertex α-maximal graph with proper coloring c : E(G)→ R
and d(G) > Cλ2α−2nα. If Q ⊆ R is chosen by including each color independently and with

probability pc, then for every v ∈ V (G), with probability at least 1−O(α−1e−Ω(λ1/2)) at least n/3
vertices of G can be reached by a Q-rainbow path.

Before proving this lemma, let us first show how this implies the main result.

Proof of Theorem 23.2. Let G be an n-vertex graph with e(G) ≥ 2(log n)2+εn and c : E(G)→
R a proper coloring, and let α = 1/ log2(G) and λ = (log n)ε/10. Let H be a subgraph of
G maximizing d(H)/v(H)α and m = v(H). Note that H is α-maximal and d(H) ≥ d(G) ·
(v(H)/v(G))α ≥ 1

2
d(G) due to our choice of α, and this quantity is at least Cλ2α−2mα for n

sufficiently large.

Pick some v ∈ V (H). Partition R into four parts Q1, Q2, Q3, Q4 be independently and uniformly
at random assigning each color to one of these sets, and let Bi be the set of vertices that can
be reached by v with a Qi-path. By Lemma 23.3 with pc = 1/4, we see that with probability
at least 4/5 we have |Bi| ≥ n/3, so there exists some partition Q1, . . . , Q4 such that |Bi| ≥ n/3
holds for all i.

Note that Bi∩Bj 6= ∅ for some i 6= j, and let w ∈ Bi∩Bj. By definition this means there exist
rainbow paths Pi, Pj from v to w using colors in Qi, Qj. Thus the union of these two paths is
a rainbow graph which contains a cycle, proving the result.

It remains to prove Lemma 23.3. Given a graph G and a proper coloring c : E(G)→ R, define
NQ,φ(v) with φ : V (G)→ 2V (G)∪R to be the set of vertices w with vw ∈ E(G), c(vw) ∈ Q\φ(v),
and w /∈ φ(v). That is, the is the neighborhood if we restrict to colors in Q and forbid some set
of neighbors/colors for v to use. We define NQ,φ(B) =

⋃
v∈B NQ,φ(v)\B. To prove Lemma 23.3,

we show that α-maximal graphs have vertex expansion about as strong as in Proposition 23.1
even when forbidding some colors/vertices.

Lemma 23.4. Let pc, α ∈ (0, 1], let n be a positive integer and λ > 1010. Let G be an n-vertex
graph, c : E(G)→ R a proper edge coloring, and B ⊆ V (G) such that the following hold:

� G is α-maximal

� d := d(G) ≥ λ(pc · α)−1,

� φ : V (G)→ 2V (G)∪R is such that |φ(v)| ≤ dα/32 for all v ∈ V (G), and

� 2λ2p−1
c < |B| < n/2.
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Let Q ⊆ R be obtained by including each color independently and with probability pc. Then with
probability at least 1− e−Ω(λ1/2) we have

|NQ,φ(B)| ≥ 1

4
|B|min

{
d · pc · α
64λ1/2

,

(
n

2|B|

)α/(1+α)

− 1

}

Proof. Let d = γnα, and let H be the bipartite (uncolored) graph on B ∪ N(B) such that
x ∈ B and y ∈ N(B) are adjacent if xy ∈ E(G), y /∈ φ(x) and c(xy) /∈ φ(x). Let HQ ⊆ H
be the (random) subgraph which only includes edges xy with c(xy) ∈ Q. Thus our problem is
equivalent to showing |NHQ(B)| is large with high probability.

Since we’re aiming something comparable to that of Proposition 23.1 (namely, this is basically
what we get when the right term in the lemma achieves the minimum), one might try to just
naively replicate that proof. This almost works, but to get things to occur with high probability
we need the vertices of NH(B) to have large degrees. To this end, let S ⊆ NH(B) be the vertices
w such that |NH(w) ∩B| ≥ λ1/2p−1

c =: ∆, and let T = NG(B) \ S.

Claim 23.5. If eG(B, T ) ≤ dα|B|/16, then the result follows.

Note that the claim involves edges of the original graph G, not H.

Proof. Let C = V (G) \ B, noting that |C|α ≥ (1
2
n)α ≥ 1

2
nα, and since d ≥ 1

2
γnα by Proposi-

tion 23.1, we conclude

eG(B, T ) ≤ 1

8
αγ|B||C|α.

Note that
E(G) = E(G[B ∪ S]) ∪ E(G[C]) ∪ E(G[B, T ]),

where E(G[B′, T ]) denotes the set of edges of G with one end in B′ and the other in T . To see
this, we note that vertices of B can only be adjacent to vertices of B ∪ NG(B) = B ∪ S ∪ T .
With this we have

eG(B ∪ S) ≥ e(G)−e(G[C])− eG(B, T )

≥ 1

2
γ(|B|+ |C|)1+α−1

2
γ|C|1+α − 1

8
αγ|B||C|α,

where this inequality used e(G) = 1
2
γn1+α = 1

2
γ(|B′|+|C|)1+α, α-maximality, and the inequality

noted above. Note that

(|B|+ |C|)1+α = |C|1+α(1 + |B|/|C|)1+α ≥ |C|1+α + (1 + α)|B||C|α.

Using this gives

eG(B ∪ S) ≥ 1

2
γ(1 + α)|B|C|α − 1

8
αγ|B||C|α ≥ 1

2
γ(1 +

1

2
α)|B||C|α.

By α-maximality we have eG(B ∪ S) ≤ 1
2
γ(|B|+ |S|)1+α, so in total this implies

|S| ≥
(

(1 +
1

2
α)|B||C|α

)1/(1+α)

− |B|.
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For w ∈ S, let Xw be the indicator random variable for the event w /∈ NHQ(B). Then

Pr[Xw = 1] = (1− pc)dHQ (w) ≤ (1− pc)∆ ≤ e−λ
1/2

.

Thus if X =
∑

w∈S Xw then E[X] ≤ |S|e−λ1/2
, and by Markov’s inequality this means Pr[X ≥

|S|/2] ≤ 2e−λ
1/2

. This gives the result.

From now on we assume eG(B, T ) > dα|B|/16. For each w ∈ T , let Yw be the indicator random
variable for the event w ∈ NHQ(B). Then by the inequality (1− a)b ≥ 1− 1

2
ab for ab < 1

2
,

E[Yw] = 1− (1− pc)dH(w) ≥ 1

2
min{1, pc · dH(w)}.

We partition T into two sets based on which term prevails in this minimum. Namely, let
T1 = {w ∈ T : dH(w) ≤ p−1

c } and T2 = T \ T1. If Y =
∑

w∈T Yw, then

E[Y ] ≥
∑
w∈t1

1

2
pc · dH(w) +

1

2
|T2| =

1

2
pceH(B, T1) +

1

2
|T2| ≥

1

2
pceH(B, T1) +

1

2
λ−1/2pceH(B, T2),

where this last step used that each vertex of T2 ⊆ T has degree at most ∆ = λ1/2p−1
c in H.

Thus

E[Y ] ≥ 1

2
λ−1/2pceH(B, T ).

By hypothesis,

eH(B, T ) ≥ eG(B, T )−
∑
v∈B

|φ(v)| ≥ 1

32
dα|B|.

This together with the hypothesis d ≥ λ1/2(pc · α)−1 implies E[Y ] ≥ 1
64
λ1/2|B|.

Note that Y is a function of which colors survive in Q. Each color appears at most |B|
times since G is properly colored, so changing Q by a single element changes Y by at most
|B|, i.e. Y is |B|-Lipschitz. By the multiplicative Azuma inequality (Lemma 6.6), we have
Pr[Y ≤ 1

2
E[Y ]] ≤ e−Ω(λ). Since Y = |NHQ(B)|, we conclude the result.

Proof of Lemma 23.3. Similar to our proofs involving spread hypergraphs, we will iteratively
generate random sets Qi a total of ` = 100α−1 log log(n) times and take Q =

⋃
Qi, iteratively

arguing that each Qi is likely to have good properties.

Let qc be the unique solution to pc = 1− (1− qc)`; the main take away being that qc = Ω(pc/`).
For 1 ≤ i ≤ `, letQi be obtained by including each color ofR independently and with probability
qc (and independent of any other Qj set), noting that

⋃`
i=1 Qi has the same distribution as Q.

Let Bi be the set of vertices x that can be reached from v by some (Q1∪· · ·∪Qi)-rainbow path
Px of length at most i. Let φi : V (G) → 2V (G)∪R be the function which maps to the vertices
and colors of Px if x ∈ Bi, and otherwise φ(x) = ∅. Note that |φi(x)| ≤ 2i ≤ 2`. We wish to
show that |Bi| is rapidly increasing with high probability.
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First note that B1 is just the set of neighbors of v with c(vx) ∈ Q1. By Proposition 23.1 we have
d(v) ≥ 1

2
d, so E[|B1|] ≥ 1

2
dqc. Thus by the Chernoff bound we will have |B1| ≥ 1

4
dqc > 2λ2q−1

c

with high probability, so from now on we assume this is the case..

Note that NQi,φi(Bi ∩ Ui) ⊆ Bi+1. Since d ≥ λ2(α · qc)−1nα by hypothesis, and since |Bi| ≥
|B1| > 2λ2q−1

c , as long as |Bi| < n/3 we can apply Lemma 23.4 to get

NQi,φi(Bi) ≥
1

4
|Bi|min

{
d · qc · α
64λ1/2

,

(
n

2|Bi|

)α/(1+α)

− 1

}
with probability at least 1− e−Ω(λ1/2). Note that the leftside of the minimum is always at least
nα, so the minimum is always achieved by the righthand side. Using this and α ≤ 1 gives

|NQi,φi(Bi)| ≥
1

4
|Bi|((n/2|Bi|)α/2) − 1)

with probability at least 1 − e−Ω(λ1/2). Thus with probability at least 1 − `e−Ω(λ1/2) = 1 −
O(α−1e−Ω(λ1/2)) this holds for all i (note that the log log(n) gets absorbed by e−Ω(λ1/2)) since
λ ≥ (log log n)2). We claim that this implies |B`−1| ≥ n/3. And indeed, using that |Bi+1| ≥
|Bi|+ |NQi,φi(Bi)| (since Bi and N(Bi) ⊇ NQi,φi(Bi) by definition), one can prove by induction

that |Bi| ≥ (n/2)1−(1−α/16)i provided |Bi−1| ≤ n/3. This gives the result.

Tomon [89] proved several other nice results using a result which extends Lemma 23.3 in two
ways. The first way is by enforcing short paths from v provided we don’t require v to reach
as many vertices (and it is easy to adapt our current proof to achieve this end). The other
extension is that it allows one to sample a random set of vertices U ⊆ V (G) in addition to a
random set of colors, and which guarantees short paths from v to a large set of vertices. To
state such a result, we say that a path is a (U,Q)-rainbow path if it is a rainbow path whose
internal vertices all lie in U and whose colors all lie in U .

Lemma 23.6. There exists a sufficiently large constant C such that the following holds. Let
p, pc, α ∈ (0, 1], n a positive integer, τ ∈ [1/ log3 n,

1
2
), and λ > C(log log n)10. Let G be an

n-vertex α-maximal graph with proper edge coloring c : E(G)→ R with average degree d = d(G)
satisfying either d > Cλ2(α2 · p2

c)
−1nα if p = 1, and otherwise d > Cλ2(α3 · p · p2

c)
−1nα.

Let U ⊆ V (G) be obtained by including each vertex independently and with probability p, and

similarly define Q ⊆ R. For each v ∈ V (G), with probability at least 1−O(α−1e−Ω(λ1/2)), at least
n1−τ vertices of G can be reached from v by a (U,Q)-path of length at most O(α−1 log(1/τ)).

To prove this, one needs to extend Lemma 23.4 to say that the same conclusion holds for
NQ,φ(U) with U ⊆ B obtained by including each vertex independently and with probability p.
This isn’t too hard to prove if the vertices of B all have reasonable maximum degree, and one
extra case deals with the situation where this doesn’t happen.

With Lemma 23.6 it is possible to prove results about rainbow Turán numbers of subdivisions of
Kt. To this end, let Kt denote the set of subdivisions of Kt (i.e. the graphs which can be obtained
by subdividing each edge of Kt some number of times). Mader [65] showed ex(n,Kt) = Ot(n),
and again the hypercube shows ex∗(n,Kt) = Ω(n log n) for t ≥ 3. Jiang, Letzter, Methuku, and
Yepremyan [53] showed ex∗(n,Kt) = O((log n)60n). These bounds were improved significantly
by Tomon [89].
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Theorem 23.7 ([89]). For all fixed t we have ex∗(n,Kt) ≤ (log n)6+o(1)n.

Proof Sketch. Let G be an n-vertex graph with e(G) ≥ 2(log n)6+εn and c : E(G)→ R a proper
coloring, and let α = 1/ log2(G), s = (log n)1+ε/10, p = pc = 1/s, and λ = (log n)ε/10. For some
slight ease of notation we assume G is α-maximal (though it’s easy for the rest of the proof to
go through by reducing to an α-maximal subgraph). Note that by our choice of parameters,
d(G) ≥ Cλ(α3p · p2

c)
−1nα.

Define an auxiliary graph H where two vertices v, w are adjacent if there exist at least s/6
internally disjoint paths from v to w such that no color is used more than once int he union of
the paths.

We claim that if H has minimum degree at least n/6, then G contains a rainbow Kt-subdivision.
Indeed, by Theorem 5.4, H (easily) contains a 1-subdivision ofKt. One can then greedily replace
each edge with a rainbow path which doesn’t use any vertices or colors that have already been
used.

To show that H has this minimum degree, we apply Lemma 23.6 with the stated parameters
and τ = 1/ log3(n) to any vertex v. By a similar argument to before, this implies there exist
partitions U1, . . . , Us and Q1, . . . , Qs such that the sets Bi of vertices we can reach from v with
a (Ui, Qi)-rainbow path all have size at least n/3. This implies that there exist at least n/6
vertices w in at least s of the Bi sets, proving that dH(v) ≥ n/6.
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