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Preface

This is a work in progress. There are typos, missing references, and so on scattered through-
out. Please let me know if you notices such errors, find anything confusing, or if
you have any other suggestions! If you prefer, you can let me know about any of this
anonymously through this link.

The following is a set of lecture notes for a graduate level course in extremal combinatorics.
These notes focus on standard methods that have been used to solve a large number of prob-
lems in extremal combinatorics. Throughout I assume basic knowledge of asymptotic analysis,
probability theory, and linear algebra.

Due to the sheer scope of extremal combinatorics, there are many methods which I am not able
to cover at all (and there is no topic which I am able to cover in complete depth). Below is a
small list of methods and topics not currently covered by this text, as well as some sources for
thorough treatments of these topics.

� Extremal Combinatorics in general: see books of Lovasz [135] or Bollobás [29]; surveys
by Simonovits and Szemerédi [170] and Füredi and Simonovits [84]; and online courses
by Morris and Gowers [96].

� The Regularity Lemma: see the excellent book by Zhao [187] (as well as his corresponding
video lectures).

� Additive combinatorics and discrete Fourier analysis: again Zhao [187] is a good intro-
ductory text, see also the book by Tao and Vu [175] and the online course by Prendiville.

� Discrete geometry: see the books by Sheffer [168] and Matoušek [140], as well as the
online minicourse on finite geometry and Ramsey theory by Bishnoi.

� Statistical mechanics: see notes by Will Perkins.

� The discharging method: see the survey by Cranston and West [52].

Acknowledgments. We thank Patrick Bennett for clarifying several key points about the For-
bidden Submatching Method and Hong Liu for clarifying some points arounds VC-dimension.
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Major Updates

Here I list out any major additions/rewritings I have done since the last posting in case anyone
wants to check out what’s new.

� 6/14/25:

– Added a new chapter on Entropic Double Counting and the Mixture Bound.

– Added two new chapters on VC Dimension, with this and other chapters being
reshuffled into a new part on Simplifying Set Systems.

– Added a new chapter on Absorption.

– Added a new subsection to the Modular Intersections chapter around linear algebra
and stability results.

– Restructured the chapter on Dependent Random Choice.

� 8/21/24:

– Added new chapters on Linear Programming and Homomorphism Counting.

– Created a new part on Matchings in Hypergraphs, which includes a modified version
of my previous writeup on the Rödl Nibble, as well as a new chapter on the Forbidden
Submatching Method.

– Added a new example Theorem 3.5 to the chapter on the Local Lemma.

7



Part I

Basic Probabilistic Methods

This part is based heavily off of the book by Alon and Spencer [11] (which goes into much more
depth on the topic), as well as lecture notes by Verstraëte.
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1 Introduction

One of the most exciting developments in extremal combinatorics over the past century has
been the incorporation of ideas and tools from probability theory into solving combinatorial
problems. The first such use was by Erdős who proved an exponential lower bound for Ramsey
numbers. We recall that the Ramsey number R(s, t) is the smallest integer N such that any
2-coloring of the edges of KN contains a monochromatic clique.

Theorem 1.1 ([64]). For all n, we have

R(n, n) ≥ (1 + o(1))
n

e
√

2
2n/2.

This is essentially the best known lower bound (though we prove a slightly stronger bound in
Theorem 3.3). The best known upper bound is roughly 4n, so there’s still quite a gap!

For this proof and throughout the text, we make heavy use of the union bound: if A,B are
events in a probability space, then Pr[A∪B] ≤ Pr[A] + Pr[B]. Often we will use an equivalent
version: Pr[A ∩B] ≤ 1 − Pr[A] − Pr[B], which follows from De Morgan’s laws.

Proof. Let G be a random coloring of KN with N to be determined later1. That is, for each
edge of KN , we independently and uniformly choose the edge to be colored either red or blue.
The key observation is that if Pr[G contains no monochromatic Kn] > 0, then there exists a
coloring of KN with no monochromatic Kn (since otherwise the probability would be zero),
proving the desired lower bound.

If S is a set of n vertices, we let AS be the event that G contains a monochromatic Kn on S.
With this we have

Pr[G contains a monochromatic Kn] = Pr
[ ⋃
S∈([N ]

n )

AS

]
≤

∑
S∈([N ]

n )

Pr[AS] =

(
N

n

)
· 21−(n

2).

If this quantity is less than 1, then we can conclude that Pr[G contains no monochromatic Kn] >
0, so our goal is to choose N as large as possible so that this happens. By using the bound(
N
n

)
≤ (eN/n)n (which we will use many times throughout the text), we see that it suffices to

have2

1 > (eN/n)21−(n
2) = 2(eN/n2(n−1)/2)n.

Solving this shows that the desired bound holds if N < 21/n · n
e
√
2
2n/2, proving the result3.

1When trying to prove results in extremal and probabilistic combinatorics, one often uses a method that
depends on some parameter such as N or p. Typically it is best to proceed through the argument without
deciding what N, p is ahead of time, and only in the end do you optimize your parameter to give you the best
bounds possible.

2Finding the “right” way to bound expressions like this takes time and practice. A reasonable strategy for
these sorts of problems is try and get all of the main terms to have the same form (e.g. xn in this example).
Much more about the art of asymptotic analysis can be found in the book Asymptopia by Spencer [172].

3In fact, a closer analysis of this proof shows that asymptotically, almost every coloring of KN with N =
(2 − ϵ)n/2 contains no monochromatic Kn. Despite almost every coloring working, we know of no explicit
coloring that gives more than a polynomial lower bound for R(n, n). Thus the probabilistic method gives us a
way to find the hay in the haystack.
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The proof of Theorem 1.1 implicitly used the following general principle, which is at the heart
of the probabilistic method.

(*) Let T be an object chosen randomly from a set T (in some way) and P some property
that objects in T could have. If Pr[T has property P ] > 0, then there exists some T ′ ∈ T
with this property.

We now turn to another classical extremal problem with a slick probabilistic proof. Recall that
α(G) denotes the largest independent set of a graph G, i.e. the largest set of vertices I such
that there exist no edge contained in I.

Theorem 1.2 (Caro-Wei Bound). Let G be an n-vertex graph with degrees d1, . . . , dn. Then

α(G) ≥
∑ 1

di + 1
.

Moreover, equality holds if and only if G is a disjoint union of cliques.

Here and throughout the text we make heavy use of the principle of linearity of expectation:
for two (possibly dependent) real-valued random variables, we have E[X + Y ] = E[X] + E[Y ].

Proof. For π a bijection from V (G) to [n], we define

I(π) = {v ∈ V (G) : π(v) < π(u) ∀u ∈ N(v)}.

That is, I(π) is the set of vertices which are smaller than all of their neighbors under π. Observe
that I(π) is an independent set (if u, v are adjacent we must have, say π(v) < π(u), in which
case u /∈ I(π)), so in particular α(G) ≥ |I(π)| for all π.

Let π be a random bijection chosen uniformly amongst all bijections from V (G) to [n], and let
1v be the indicator variable which is 1 if v ∈ I(π) and 0 otherwise. Note that regardless of what
π is, we have α(G) ≥ |I(π)| =

∑
1v, so by linearity of expectation we have

α(G) ≥ E[I(π)] =
∑

E[1v] =
∑

Pr[1v = 1]. (1)

Observe that 1v = 1 if and only if π(v) = minu∈{v}∪N(v) π(u). Since π was chosen uniformly at
random, each u ∈ {v} ∪N(v) is equally likely to achieve this minimum, so Pr[1v = 1] = 1

d(v)+1
,

and plugging this into (1) gives the result.

Note that equality holds in (1) if and only if I(π) is an independent set of maximum size for
all bijections π. It is not too difficult to show that this holds if and only if G is a disjoint union
of cliques, and we leave this as an exercise to the reader.

Theorem 1.2 implies Turán’s theorem, which is essentially the result that jump started the
entire field of extremal combinatorics1 (though the original proof was not probabilistic).

1The first theorem in extremal combinatorics is typically attributed to Mantel, which is the r = 3 case of
Turán’s Theorem. However, it wasn’t until Turán’s result 30 years later that the field really took off.
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To state this result, we define ex(n, F ) to be the largest number of edges that an n-vertex F -free
graph can have1 which is called the Turán number or extremal number of F . We define the
Turán graph Tr(n) to be the complete n-vertex r-partite graph with parts of sizes as equal as
possible. We let tr(n) = e(Tr(n)). For example, T2(n) = K⌊n/2⌋,⌈n/2⌉ and t2(n) = ⌊n/2⌋·⌈n/2⌉ =
⌊n2/4⌋. More generally we have

tr(n) ≤
(
r

2

)
(n/r)2 =

r − 1

r
· n

2

2
=

(
1 − 1

r

)
n2

2
,

with equality holding if r|n and otherwise tr(n) is the floor of this upper bound.

Corollary 1.3 (Turán’s Theorem). For all r ≤ n we have

ex(n,Kr) = tr−1(n).

Moreover, Tr−1(n) is the unique n-vertex Kr-free graph with tr−1(n) edges.

Proof. The lower bound ex(n,Kr) ≥ tr−1(n) follows by considering Tr−1(n). Let G be an
n-vertex Kr-free graph with degrees d1, . . . , dn. Observe that the complement G contains no
independent set of size r, so by Theorem 1.2 we have

r − 1 ≥ α(G) ≥
∑ 1

n− di
. (2)

Observe that if x, y are positive numbers, then2

1

x
+

1

y
≥ 1

1
2
(x+ y)

+
1

1
2
(x+ y)

with equality holding if and only if x = y. In view of this inequality, we see that (2) is minimized
when all of the di are as close together as possible. Because

∑
di = 2e(G), we have

r − 1 ≥ n · 1

n− 2e(G)/n
=

n2

n2 − e(G)
=⇒ e(G) ≤

(
1 − 1

r − 1

)
n2/2,

so e(G) ≤ tr−1(n) as desired. Moreover, to have equality, G must be a union of cliques with
sizes as close as possible to each other, i.e. G must be a complete r-partite graph with parts
having sizes as close as possible to each other, i.e. G must be the Turán graph.

In addition to using the probabilistic method to get an upper bound for ex(n,Kn) as in Corol-
lary 1.3, one can also use it to give a general lower bound for ex(n, F ).

Theorem 1.4. Let F be a graph with v vertices and e ≥ 2 edges. If e ≥ v, then

ex(n, F ) = Ωv(n
2− v−2

e−1 ).

1Throughout the text, a graph being F -free means that it contains no subgraph which is isomorphic to F
(and we don’t care whether this subgraph is induced or not).

2By multiplying both sides of the above expression by xy(x + y), we see that this is equivalent to saying
y(x+ y) + x(x+ y) ≥ 4xy, which is equivalent to saying x2 − 2xy + y2 = (x− y)2 ≥ 0.
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For this proof we use an object that is fundamental to probabilistic and extremal combinatorics.
This is the Erdös-Renyi random graph Gn,p, which is the random graph on n vertices that
contains each edge e ∈ E(Kn) independently and with probability p. For example, Gn,1 = Kn

and Gn,1/2 is equally likely to be any labeled graph on n vertices. The random graph is an
incredibly fascinating object in its own right. We will not discuss it in too much depth in this
text, see the book by Frieze and Karoński [82] for a thorough treatment of it.

Proof. Let Gn,p be the random graph with p a quantity to be determined later. Let X denote
the number of copies of F in Gn,p. For S a set of v vertices, let 1S be the indicator variable
which is 1 if S contains a copy of F in Gn,p and which is 0 otherwise. With this,∑

1S ≤ X ≤ v!
∑

1S,

since each set of v vertices contains at most v! copies of F . To have 1S = 1, we in particular
need S to contain at least e edges, so

Pr[1S = 1] ≤
∑
k≥e

((v
2

)
k

)
pk(1 − p)(

v
2)−k ≤ v22v2pe ≤ 4v2pe.

In total this gives

E[X] ≤ v!

(
n

v

)
· 4v2pe ≤ (4vn)vpe.

Observe that when p≫ nv/e, the calculation above suggests that Gn,p will contain copies of F
(at least in expectation), so Gn,p will not work as an F -free graph for this range of p. However,
we can get around this by using the following trick known as the method of alterations. Let G
be any subgraph of Gn,p obtained by deleting an edge from each copy of F in Gn,p. By definition
G will be F -free. Moreover, the number of edges that G has is at least e(Gn,p) − X since at
most X of the original edges from Gn,p are deleted. Using linearity of expectation gives

E[e(G)] ≥ E[e(Gn,p) −X] ≥ p

(
n

2

)
− (4vn)vpe ≥ 1

4
pn2 − (4vn)vpe. (3)

At this point we want to choose p so that the above expression is roughly maximized. Intuitively
this will happen when both terms on the rightside of (3) are roughly equal to each other,

i.e. when pn2 ≈ nvpe. This suggests taking p ≈ n
2−v
e−1 . And indeed, after playing around

for a bit, one sees that, for example, taking p = 1
20·16vn

2−v
e−1 and plugging it into (3) gives1

E[e(G)] ≥ 1
160·16vn

2− 2−v
e−1 . Because G is a (random) F -free graph, by (*) there exists some

deterministic graph G′ which is F -free with this many edges, proving the result.

For many F , there are known constructions which give much better lower bounds for ex(n, F )
than Theorem 1.4. However, this is the best known lower bound which works for arbitrary F .

The method used in this proof is known as the method of alterations. Typically this works by
defining some initial random set A (e.g. a set of edges of a graph) which contains some bad

1Here we use 4v
2 ≤ 4ve and that e ≥ 2.
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subsets B (e.g. subsets of edges forming a forbidden graph F ). We then define a random set
A′ by deleting an element from each bad subset B, giving that |A′| ≥ |A| − |B| and that A′ has
no bad subsets. At this point we win provided

E[|A′|] = E[|A|] − E[|B|]

is large. Typically the expectations E[|A|],E[|B|] depend on some common parameter p, and
we often optimize this expression by finding p such that E[|A|] ≈ E[|B|], and then ultimately
choosing p to be a bit smaller than this so that, say, E[|B|] ≤ 1

2
E[|A|].

(**) The method of alterations detailed above is often very useful.

The last core tenant of the probabilistic method that we have implicitly used throughout this
section is the following.

(***) If one is trying to find a nice object, one should always try and see how well a random
object does (possibly after applying alterations).

For example, the most straightforward random coloring gave the bound of Theorem 1.1, and
the random graph together with alterations gave Theorem 1.4.

Lastly, we note that in principle many of these results could be proven without needing to use
probability. However, for certain problems a probabilistic perspective is genuinely useful since it
is allows one to use powerful tools from probability theory (e.g. martingales and concentration
inequalities). Even when it isn’t strictly needed, probability often provides for a much clearer
perspective on a problem.

13



2 Some Random Examples

This section consists of an assorted collection of examples which provides both practice with
the general principles of the probabilistic method, as well as proofs of many fundamental results
from extremal combinatorics.

2.1 Graphs with Small and Large Chromatic Numbers

We start with a very simple example that will be used throughout the text (often without
reference).

Lemma 2.1. If G is an n-vertex graph, then there exists a bipartite subgraph G′ ⊆ G such
that e(G′) ≥ 1

2
e(G). Moreover, we can choose G′ such that its partition classes U, V have sizes

⌊n/2⌋ , ⌈n/2⌉.

Given this lemma, if you want to prove a statement of the form “any graph G with Ω(m)
edges has some monotone graph property”, then you only need to consider graphs which are
(balanced) bipartite.

Proof. The first part is very easy: let U ⊆ V (G) be obtained by including each vertex inde-
pendently and with probability 1

2
, and let V = V (G) \ U . Let G′ be the graph which consists

of every edge e ∈ E(G) with one vertex in U and one vertex in V . It is easy to check that
E[e(G′)] = 1

2
e(G), so such a (bipartite) subgraph exists.

The second part is conceptually easy but computationally a little tedious. Let U ⊆ V (G) be
a set of size ⌊n/2⌋ chosen uniformly at random and let V = V (G) \ U . Let G′ be the graph
which consists of every edge e ∈ E(G) with one vertex in U and one vertex in V . Observe that
the probability that a given edge xy ∈ E(G) is in G′ is exactly

1 − ⌊n/2⌋ · (⌊n/2⌋ − 1)

n(n− 1)
− ⌈n/2⌉ · (⌈n/2⌉ − 1)

n(n− 1)
≥ 1

2
,

with the last step following from a case analysis based on whether n is even or odd. Thus
in expectation G′ has at least 1

2
e(G) edges, so such a balanced bipartite subgraph of G must

exist.

A graph G is said to have girth ℓ if its smallest cycle is of size ℓ, and we say that it has infinite
girth if G has no cycles. Observe that graphs of large girth locally look like a tree, i.e. if you
pick any vertex v, then the graph induced by every vertex within distance ℓ of v is a tree. In
particular, “locally” graphs of large girth can be properly colored using few colors, but does
this necessarily hold globally as well? That is, does there exist graphs with girth at least ℓ and
chromatic number at least k for all ℓ, k? A clever (random) argument of Erdős shows that such
a graph does indeed exist.

Theorem 2.2 (Erdős). For all ℓ, k there exist graphs of girth at least ℓ and chromatic number
at least k.

14



For this proof we use Markov’s inequality: if X is a non-negative real-valued random variable,
then Pr[X ≥ x] ≤ E[X]/x for x > 0.

Proof. Consider Gn,p with n, p to be determined later. Let X≤ℓ denote the number of cycles in
Gn,p of size at most ℓ. Linearity of expectation gives

E[X≤ℓ] ≤
ℓ∑

t=3

nt · pt ≤ ℓ(pn)ℓ.

Thus if we wantedGn,p to have girth smaller than ℓ with high probability, by Markov’s inequality
it would suffice to take p ≪ n−1. Unfortunately this naive approach is too weak since in this
case Gn,p will have very small chromatic number. To get around this, we will take p slightly
larger than n−1 and then use alterations to delete a vertex from every small cycle of Gn,p. With
some foresight1 we will take p = n−1+1/2ℓ. With this we see that

Pr[X≤ℓ ≥ n/2] ≤ E[X≤ℓ]/(n/2) ≤ 2ℓn−1/2. (4)

We now turn to the chromatic number of Gn,p, which is a slightly trickier quantity to get a
handle on. To do this we use the inequality χ(G) ≥ |V (G)|/α(G), which follows from the fact
that a k-coloring of G is a partition of V (G) into independent sets. Thus for Gn,p to have
large chromatic number, it suffices to show that all of its independent sets are small . For m
an integer we let Ym be the number of independent sets of size m in Gn,p. Using linearity of
expectation and (1 − x) ≤ e−x gives for m ≥ 2

E[Ym] =

(
n

m

)
· (1 − p)(

m
2 ) ≤ nm ·

(
e−p(m−1)/2

)m ≤
(
ne−pm/4

)m
.

By Markov’s inequality and our choice of p = n−1+1/2ℓ, we find for m = n/2k and n sufficiently
large in terms of k, ℓ that

Pr[Yn/2k ≥ 1] ≤ (ne−n1/2ℓ/8k)m <
1

2
. (5)

By combining (4) and (5), we see for n suffiiciently large that X≤ℓ < n/2 and Yn/2k = 0 both
occur with positive probability, i.e. there exists a graph G such that both of these events occur.
Let G′ be G after deleting a vertex from each cycle of length at most ℓ in G. This deletes at
most half the vertices of G by assumption of X≤ℓ, and we have α(G′) ≤ α(G) ≤ n/2k. Thus

χ(G′) ≥ |V (G′)|/α(G′) ≥ k,

proving the result.

2.2 Random Permutations and Extremal Set Theory

In this subsection, we use random permutations (similar to the proof of Theorem 1.2) to
prove two famous results from extremal set theory, which is roughly speaking the study of

1The exact choice of p doesn’t matter here, the important thing is to take p = n−1+α with 0 < α < 1/ℓ.
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extremal problems for hypergraphs. We only scratch the surface of this topic, see Frankl and
Tokushige [77] for a more thorough treatment.

We start with the most fundamental theorem in extremal set theory: the Erdős-Ko-Rado
theorem.

Theorem 2.3 (Erdős-Ko-Rado Theorem). Let F ⊆
(
[n]
k

)
be an intersecting family, i.e. F∩F ′ ̸=

∅ for any F, F ′ ∈ F . If n ≥ 2k, then

|F| ≤
(
n− 1

k − 1

)
.

This bound is sharp by taking F to consist of every set containing the element 1 (and in fact,
up to isomorphism this is the unique extremal construction when n > 2k). Note that if n < 2k,
then F =

(
[n]
k

)
is an intersecting family, so we need n ≥ 2k for us to be able to prove a non-trivial

bound.

Proof. The proof uses what is known as Katona’s circle method, which involves choosing a
random cyclic ordering π : [n] → Zn, where Zn is the integers mod n. Given such a π and a set
A ∈ F , we let 1A be the indicator variable with 1A = 1 if A = {π(i), π(i) + 1, . . . , π(i) + k− 1}
for some i ∈ [n]. We claim that 1A = 1 for at most k sets A.

Indeed, if 1A = 0 for all A then there is nothing to prove, so assume 1A = 1 for some A, say
with A = {π(i), π(i) + 1, . . . , π(i) +k−1}. Let Sj = {π(i) + j, π(i) + j+ 1, . . . , π(i) + j+k−1},
and observe that if B ∈ F has 1B = 1, then we must have1 B = Sj for some −k < j < k.
Moreover, for each pair {S−k+ℓ, Sℓ} with 0 ≤ ℓ < k, at most one B ∈ F is equal to one of these
sets since S−k+ℓ, Sℓ are disjoint, so in total we conclude that 1A = 1 for at most k different
A ∈ F .

Observe2 that Pr[1A = 1] = n
(
n
k

)−1
, and this together with the claim above implies

k ≥ E[
∑
A∈F

1A] =
∑
A∈F

Pr[1A = 1] = |F| · n
(
n

k

)−1

,

and rearranging gives the desired bound.

There are many, many proofs of the Erdős-Ko-Rado theorem, as well as many generalizations
and applications. Again, we refer the reader to [77] for more on this. Our second result related
to extremal set theory is the following.

Theorem 2.4 (Bollobás Set Pairs Inequality). Let A = {A1, . . . , Am} and B = {B1, . . . , Bm}
be set systems such that Ai ∩Bi = ∅ for all i and Ai ∩Bj ̸= ∅ for all i ̸= j. Then

m∑
i=1

(
|Ai| + |Bi|

|Ai|

)−1

≤ 1

1Here we use that each B ∈ F intersects A and that n ≥ 2k implies Sk is disjoint from A
2This follows because for any cyclic ordering π there are exactly n sets S which have 1S = 1
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Pairs of families as in Theorem 2.4 are called cross-intersecting.

Proof. Let π be a random permutation of the underlying ground set (the size of which is
irrelevant for the conclusion/proof). Let 1i be the indicator variable with 1i = 1 if π(x) < π(y)
for all x ∈ Ai and y ∈ Bi. That is, 1i is the indicator for the event that Ai appears completely

before Bi under π. A simple counting argument shows that Pr[1i = 1] =
(|Ai|+|Bi|

|Ai|

)−1
(where

here we implicitly use that Ai ∩Bi = ∅, as otherwise Pr[1i = 1] = 0).

We claim that there is at most one i such that 1i = 1. Indeed, say 1i = 1. Then for any j ̸= i,
by hypothesis there is some x ∈ Aj ∩Bi ⊆ Aj and y ∈ Ai ∩Bj ⊆ Bj, and since 1i = 1, we have
π(x) > π(y). Thus 1j = 0 for all j ̸= i. With this claim we have

1 ≥ E
[∑

i

1i

]
=
∑

Pr[1i = 1] =
∑(

|Ai| + |Bi|
|Ai|

)−1

.

Theorem 2.4 has many applications. One such application involves antichains, which are col-
lections of sets F such that there exist no distinct A,B ∈ F with A ⊆ B.

Corollary 2.5 (LYM Inequality). If F ⊆ 2[n] is an antichain, then

∑
A∈F

(
n

|A|

)−1

≤ 1.

Proof. Let F = {A1, . . . , Am} and define Bi = [n] \Ai. It is not difficult to check that since F
is an antichain, Ai∩Bj = ∅ if and only if i = j. The bound then follows from Theorem 2.4.

We note that the proof of Corollary 2.5 is a nice simplification of the proof of Theorem 2.4:
now 1i = 1 if and only if Ai = {π(1), . . . , π(|Ai|)}.

Corollary 2.6 (Sperner’s Theorem). If F ⊆ 2[n] is an antichain, then

|F| ≤
(

n

⌊n/2⌋

)
.

This result is sharp, as can be seen by taking F =
(

[n]
⌊n/2⌋

)
or
(

[n]
⌈n/2⌉

)
.

Proof. We have
(
n
k

)
≤
(

n
⌊n/2⌋

)
for all k, so by the LYM inequality

1 ≥
∑
A∈F

(
n

|A|

)−1

≥ |F|
(

n

⌊n/2⌋

)−1

,

and moving things around gives the desired result.
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2.3 The Crossing Lemma and Incidence Geometry

Our final result concerns drawings of graphs. Without being too precise with our definitions,
we define the crossing number of a graph G to be the minimum number of crossings that an
embedding ϕ(G) in the plane will have. For example, a graph is planar if and only if cr(G) = 0.

Lemma 2.7. If G is an n-vertex graph with m edges, then cr(G) ≥ m− 3n.

Sketch of Proof. Let ϕ(G) be an embedding of G with cr(G) crossings. By deleting an edge
from each crossing, we obtain a planar graph G′ with n vertices and at least m− cr(G) edges.
A simple consequence of Euler’s formula shows that this means m − cr(G) ≤ 3n, giving the
result.

We will use the probabilistic method to “amplify” the elementary bound of Lemma 2.7 and
give a bound that is effective for dense graphs.

Lemma 2.8 (Crossing Lemma). If G is an n-vertex graph with m ≥ 4n edges, then

cr(G) ≥ m3

64n2
.

Proof. Let ϕ(G) be an embedding of G which has cr(G) crossings. Let Vp ⊆ V (G) be obtained
by keeping each vertex of V (G) independently and with probability p, and let Gp = G[Vp].
Observe that there is a natural embedding of Gp, namely the restriction of ϕ to Gp.

Let X denote the number of crossings in ϕ(Gp), and note that E[X] = p4cr(G) since a crossing
survives if and only if all four of its relevant vertices lie in Vp. Using Lemma 2.7, we see that

p4cr(G) = E[X] ≥ E[e(G′) − 3|Vp|] = p2m− 3pn =⇒ cr(G) ≥ p−2m− 3p−3n.

This lower bound will roughly be optimized when p−2m = p−3n, i.e. when p = n/m. More
precisely, taking p = 4n/m gives the desired bound. However, implicitly this argument requires
that 0 ≤ p ≤ 1, i.e. that m ≥ 4n, and this holds by hypothesis.

In addition to being interesting in its own right, the crossing lemma gives a short proof of a
fundamental result in incidence geometry.

Theorem 2.9 (Szemeredi-Trotter Theorem). Let P be a set of n points and L a set of m lines
in the plane, and let I ⊆ P ×L denote their set of incidences, i.e. pairs (p, ℓ) with p ∈ ℓ. Then

|I| = O(m2/3n2/3 +m+ n).

This bound is essentially best possible, though we omit the details of the (not too difficult)
construction.

Proof (due to Székely). Without loss of generality, we can assume every point and line is in at
least one incidence (otherwise we can delete these points/lines). Let G be the graph on P which
makes two points p1, p2 adjacent if there exists a line ℓ ∋ p1, p2 such that there is no third point
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q on the line segment p1p2. In other words, G is the graph obtained by drawing the points and
lines on the plane, and then erasing the rays of lines which go off to infinity.

If i(ℓ) denotes the number of points incident to ℓ, then it is not difficult to see that e(G) =∑
i(ℓ)− 1 = |I| −m, where here we implicitly used that i(ℓ) ≥ 1 for all ℓ. If |I| ≤ 2m, then in

particular |I| = O(m) and the result follows, so we can assume e(G) ≥ 1
2
|I|, and similarly we

can assume |I| ≥ 8m and hence e(G) ≥ 4n. Thus by the crossing lemma we have

cr(G) ≥ |I|3

29n2
.

The critical observation is that cr(G) ≤
(
m
2

)
since each crossing corresponds to two lines of L

intersecting. Plugging this into the expression above gives the desired result.

As a brief aside, we note that this idea of taking a weak result (Lemma 2.7) and amplifying
it to a stronger result (Lemma 2.8) shows up in many other places in extremal combinatorics.
For example, it is easy to prove a weak version of the Szemeredi-Trotter theorem with a bound
of roughly O(mn1/2 + n) by observing that there exist no points p1, p2 and ℓ1, ℓ2 such that all
of the incidences (pi, ℓj) are present, i.e. the “incidence graph” on P ∪ L contains no C4. One
can then use the method of polynomial partitioning to dissect R2 into small regions where this
bound is effective. For much more on incidence geometry and polynomial partitioning, we refer
the reader to the excellent book by Sheffer [168].
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3 The Lovász Local Lemma

We say that an event Ai is mutually independent of a set of events {Aj : j ∈ J} if for any
J ′ ⊆ J , we have Pr[Ai ∩

⋂
j∈J ′ Aj] = Pr[Ai] ·Pr[

⋂
j∈J ′ Aj]. We say that A1, . . . , An are mutually

independent events if Ai is mutually independent of {Aj : j ∈ [n] \ {i}} for all i. Note that in
this case we have Pr[

⋂
Ai] =

∏
Pr[Ai]. In this section we consider a result which roughly says

that if the Ai’s are “almost independent”, then we have Pr[
⋂
Ai] ≈

∏
Pr[Ai].

Theorem 3.1. [Lovász Local Lemma] Let A1, . . . , An be events and let D1, D2, . . . , Dn ⊆ [n] be
such that Ai is mutually independent of {Aj : j /∈ Di∪{i}} for all i. If there exist real numbers
γi ∈ [0, 1) such that Pr[Ai] ≤ γi

∏
j∈Di

(1 − γj) for all i, then

Pr[
⋂

Ai] ≥
∏

(1 − γi) > 0.

This result is often just referred to as “the local lemma”. Note that if the Ai were all mutually
independent, then we could take Di = ∅ and γi = Pr[Ai] for all i and conclude from the local
lemma that Pr[

⋂
Ai] ≥

∏
Pr[Ai].

Proof. We claim that for all i and S ⊆ [n], we have

Pr[Ai|
⋂
j∈S

Aj] ≥ 1 − γi.

This will give the result since then

Pr[
⋂
i

Ai] =
∏
i

Pr[Ai|
⋂

j∈[i−1]

Aj] ≥
∏
i

(1 − γi).

We prove this claim by induction1 on |S|. The base case |S| = 0 is equivalent to saying
Pr[Ai] ≤ γi for all i, and this follows from Pr[Ai] ≤ γi

∏
j∈Di

(1−γj) ≤ γi. Now consider any set
S, and in particular assume we have proven the result for all S ′ ⊊ S. If i ∈ S then the result
is trivial, so we can assume i /∈ S. Observe that

Pr[Ai|
⋂
j∈S

Aj] =
Pr[Ai ∩

⋂
j∈S Aj]

Pr[
⋂

j∈S Aj]
≤

Pr[Ai ∩
⋂

j∈S\Di
Aj]

Pr[
⋂

j∈S\Di
Aj] · Pr[

⋂
k∈S∩Di

Ak|
⋂

j∈S\Di
Aj]

=
Pr[Ai]

Pr[
⋂

k∈S∩Di
Ak|

⋂
j∈S\Di

Aj]
, (6)

where the first inequality used that we are taking a product over fewer events, and the second
equality used that Ai is mutually independent of events not in Di. Let S ∩Di = {k1, . . . , kp}.
Then we can rewrite the probability in the denominator of (6) as

p∏
q=1

Pr[Akq |
⋂

j∈(S\Di)∪{k1,...,kq−1}

Aj] ≥
p∏

q=1

(1 − γkq) ≥
∏
j∈Di

(1 − γj),

1It is perhaps more natural to try and prove the result by induction on n rather than on this somewhat
weird looking claim. However, if one plays around with this problem, one quickly sees that one needs to prove
something like the stated claim.
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where the first inequality used the inductive hypothesis and the last step used kq ∈ S∩Di ⊆ Di

for all q. This together with (6) and the hypothesis Pr[Ai] ≤ γi
∏

j∈Di
(1 − γj) implies that

Pr[Ai|
⋂

j∈S Aj] ≤ γi, which is equivalent to saying Pr[Ai|
⋂

j∈S Aj] ≥ 1 − γi. This proves the
inductive hypothesis of our claim, and hence proves the result.

The following version of the local lemma is often sufficient for most applications (and again this
is often referred to as “the local lemma”).

Corollary 3.2 (Symmetric Lovász Local Lemma). Let A1, . . . , An be events and let D1, D2, . . . , Dn ⊆
[n] be such that Ai is mutually independent of {Aj : j /∈ Di ∪ {i}} for all i. If ∆ ≥ 1 is such
that |Di| ≤ ∆ and Pr[Ai] ≤ 1

e(∆+1)
for all i, then Pr[

⋂
Ai] > 0.

Proof. Observe that for all i we have

1

∆ + 1

∏
j∈Di

(
1 − 1

∆ + 1

)
≥ 1

∆ + 1

(
1 − 1

∆ + 1

)∆

≥ 1

e(∆ + 1)
≥ Pr[Ai],

where the second to last inequality used that (1 − 1/x)x−1 > 1/e for x ≥ 2. Thus the (asym-
metric) local lemma applies with γi = 1

∆+1
for all i, proving the result.

We note that this result is essentially best possible. Indeed, consider rolling a fair (∆ + 1)-
sided dice and let Ai be the event that the dice rolls i. In this case Ai is dependent on all of
Di = [∆ + 1] \ {i} and we have Pr[Ai] = 1

∆+1
> 1

e(∆+1)
, so the local lemma does not apply

(which is good since we have Pr[
⋂
Ai] = 0). In particular, this example shows that we can

not improve the requirement Pr[Ai] ≥ 1
e(∆+1)

in the symmetric local lemma to Pr[Ai] ≥ 1
∆+1

in
general. Thus the hypothesis in the symmetric local lemma is sharp up to a factor of e, and in
fact Shearer proved that this factor of e is necessary [167].

3.1 Applications to Ramsey Theory

Our first application of the local lemma will be an asymptotic improvement to our lower bound
for Ramsey numbers from Theorem 1.1.

Theorem 3.3 (Spencer [171]). For all n we have

R(n, n) ≥ (1 + o(1))

√
2n

e
2n/2.

Proof. Uniformly at random color the edges of KN . For S ∈
(
[N ]
n

)
, let AS be the event that G

contains a monochromatic Kn on S, and as before we note that Pr[AS] = 21−(n
2). Let DS consist

of all the sets T ∈
(
[N ]
n

)
\{S} such that |S∩T | ≥ 2. It is not difficult to see that AS is mutually

independent of {AT : T /∈ DS ∪ {S}} since the color given to each pair of S is independent
of these events. A weak bound gives |DS| ≤

(
n
2

)(
N

n−2

)
− 1 ≤ n2(eN/(n − 2))n−2 − 1, so by the

(symmetric) local lemma we have that Pr[
⋂
AS] > 0 provided 21−(n

2) < 1
en2 (eN/n − 2)2−n, i.e.

if

(2en2)1/n−2 · 2(n
2)/n−2 · n− 2

eN
= (2en2)1/n−2 · 2n/2+1/2−1/(n−2) · n− 2

eN
< 1,
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and this happens if N = (1− ϵ)
√
2n
e

2n/2 for any ϵ > 0 provided n is sufficiently large, giving the
desired result.

The local lemma works best if there are few dependencies between events. As such, it performs
much better for off-diagonal Ramsey numbers.

Theorem 3.4. For all n we have

R(3, n) = Ω(n2/ log2 n).

Proof. Randomly color each edge of KN red with probability p and blue otherwise. Given a set
S ∈

(
[N ]
3

)
, we let RS be the event that the vertices of S form a red triangle, and similarly for

T ∈
(
[N ]
n

)
we define BT . Observe that Pr[AS] = p3 and Pr[BT ] = (1 − p)(

n
2).

Given S ∈
(
[N ]
3

)
∪
(
[N ]
n

)
, we define DS to be the sets of sizes 3 and n which intersect S in at

least two vertices. Observe that if |S| = 3, then DS contains at most 3N set of size 3 and at
most

(
N
n

)
sets of size n, and if |S| = n, we have that DS contains at most N

(
n
2

)
sets of size 3

and at most
(
N
n

)
sets of size n. Our goal now is to choose some parameters γS, γT so that the

(asymmetric) local lemma applies to the RS, BT events.

At this point there’s a lot of undetermined variables floating around: N, p, γS. Let’s think about
reasonable guesses for how to optimize things. First of all, it seems clear that we probably want
two parameters γ3, γn such that we set γS = γ|S| when applying the local lemma. With this we
in particular need

p3 ≤ γ3(1 − γ3)
3N(1 − γn)(

N
n). (7)

In particular we need γ3 ≥ p3, so let’s naively take γ3 = Cp3 for some large constant C. Given

this, we also need γn ≤ c
(
N
n

)−1
in order to have the (1 − γn)(

N
n) term be no larger than a

constant. If we take γn = c
(
N
n

)−1
, we see that (7) is satisfied provided p = o(N−1/3) and c, C

are chosen appropriately.

The other condition we need to satisfy is

(1 − p)(
n
2) ≤ γn(1 − γ3)

N(n
2)(1 − γn)(

N
n),

and by plugging in our choices for γ3, γn and the assumption that p must be fairly small, we
essentially need to have

e−p(n
2) ≤ (n/N)n · e−p3N(n

2),

and for this to hold we in particular need something like p
(
n
2

)
≥ p3N

(
n
2

)
, i.e. p = O(N−1/2).

Taking p = c′N−1/2, we see that we also need roughly

p

(
n

2

)
≈ c′N−1/2n2 ≥ n log(N/n).

Assuming N ≥ n1+ϵ for some small ϵ > 0, this reduces to N1/2 ≤ n/ log n, i.e. N = n2/(log n)2.

Thus in total, a heuristic argument suggests that we can apply the local lemma with N =
Θ(n2/(log n)2) by taking p = Θ(N−1/2), γ3 = Θ(N−3/2), and γn = Θ(

(
N
n

)
). And indeed, a

careful analysis shows that this will work out for n sufficiently large.

22



We note that the bound of n2/ log2 n is the best one can do using this approach. However,
it turns out that R(3, n) = Θ(n2/ log n). This improved lower bound was originally proved
by Kim [125]. The idea of their proof was to start with a KN which is entirely colored blue,
and then to iteratively randomly pick an edge of KN and color it red if it does not create a
red triangle. A careful analysis shows that with positive probability the final graph at the
end contains no large blue clique, and it contains no red clique by construction. We will see a
shorter proof of this lower bound in a later section (Jacques-Dhruv spectral expanders)
if I ever write this up.

We close with a problem from “generalized Ramsey theory.” To this end, we define a (p, q)-
coloring of a graph G to be an edge-coloring of G such that every p-clique of G receives at
least q distinct colors. For example, a (p, 2)-coloring is just an edge-coloring without any
monochromatic Kp’s. We define the generalized Ramsey number GR(n, p, q) to be the smallest
number of colors needed in a (p, q)-coloring of Kn. Until very recently, the best known bounds
for GR(n, p, q) come from an old result of Erdős and Gyárfás [68] proved using the local lemma.

Theorem 3.5 ([68]). For all p, q with p ≥ 3 and 1 ≤ q ≤
(
p
2

)
, we have

GR(n, p, q) ≤ p

p2

(p
2)−q+1n

p−2

(p
2)−q+1 .

We note that the original result of [68] only stated the bound GR(n, p, q) = Op,q(n
(p−2)/((p

2)−q+1))
with no explicit dependencies on p, q for the implicit constants. Here we emphasize this depen-
dency only because we will later improve upon it using some more advanced machinery; see
our forthcoming Theorem 24.5 for more.

Proof. We wish to show that there exists some (p, q)-coloring of Kn using at most C :=

p

p2

(p
2)−q+1n

p−2

(p
2)−q+1 edges, and for this we consider a uniform random coloring of the edges of

Kn using the colors {1, 2, . . . , C}.

Given a set P of p vertices, we let Ap denote the event that our random coloring gives less than
q distinct colors to the edges between vertices of P . Observe that

Pr[AP ] ≤ Cq−1(q − 1)(
p
2) · C−(p

2),

since out of the C(p
2) equally likely coloring of the edges of P , at most Cq−1(q − 1)(

p
2) use at

most q− 1 colors (since such a coloring can be identified by first choosing the set of colors used

in at most Cq−1 ways, and then these colors can be assigned to the edges in at most (q − 1)(
p
2)

ways).

It is not difficult to see that each AP event is independent of all but at most
(
p
2

)(
n

p−2

)
− 1 other

such events, so by the symmetric local lemma we have Pr[
⋂
AP ] > 0 provided

e

(
p

2

)(
n

p− 2

)
· Cq−1(q − 1)(

p
2) · C−(p

2) ≤ 1.

Using e
(
p
2

)(
n

p−2

)
≤ p2np−2 for all p ≥ 3 and (q − 1)(

p
2) ≤ pp

2−p ≤ pp
2−2, we see that this bound

does indeed hold for C = p

p2

(p
2)−q+1n

p−2

(p
2)−q+1 , so we conclude that there exists some C-coloring

where none of the AP events occur, giving the desired (p, q)-coloring using at most C colors.
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3.2 Related Lemmas

While the local lemma is very powerful, there are certain circumstances where it doesn’t give
you quite what you want. Fortunately there are many other lemmas which allow one to prove
bounds on Pr[

⋂
Ai] even when the Ai depend on each other in some way. For example, it is

not too difficult to generalize the local lemma as follows (and as an exercise the reader should
convince themselves that they can prove this result).

Theorem 3.6. Let A1, . . . , An be events. Assume there exists partitions Di ∪ Ei = [n] \ {i}
for all i and real numbers 0 ≤ δ, γ ≤ 1 such that γ(1 − γ)|Di| ≥ δ and for all E ⊆ Ei we have
Pr[Ai|

⋂
e∈E Ae] ≤ δ and . Then

Pr[
⋂

Ai] ≥ (1 − γ)n > 0.

Note that when δ = γ we more or less recover Theorem 3.1 when γi = γ for all i. The power here
is that we allow each Ai to possible be dependent of every event, but it is not “very dependent”
on the events of Ei.

Another result in a similar spirit as the local lemma is Janson’s inequality. Given a set S ⊆ X
and p⃗, let AS be the set containing

Theorem 3.7 (Janson’s inequality). Let H be a hypergraph on a set V , and let Vp be the set
obtained by including each vertex of V independently and with probability p. Let Ai denote the
event that Vp contains the ith edge of H and define

µ =
∑

Pr[Ai], ∆ =
∑

(Si,Sj):Si∩Sj ̸=∅

Pr[Ai ∩ Aj].

Then ∏
i

Pr[Ai] ≤ Pr[
⋂
i

Ai] ≤ e−µ+∆
2 .

Note that if all of the edges of H are disjoint, then these bounds are roughly e−µ ≤ Pr[
⋂

iAi] ≤
e−µ/2. Again there are many variants of Theorem 3.7 which are useful in different situations.
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4 Concentration Inequalities

Up to this point, we have largely applied the probabilistic method by showing that random
variables X are sufficiently large with some arbitrarily small positive probability. In more
advanced uses of the method, one often needs to go beyond this and say that X is in fact
fairly likely to be quite close to its expectation. There are a plethora of tools throughout the
probability literature for accomplishing exactly this goal, and below we survey some of the
most common ones used in probabilistic and extremal combinatorics. We will omit the proofs
of all but the simplest of these results, focusing instead on their main applications. We refer
the reader to the book of Dubhashi and Panconesi [61] for complete proofs, and we note that
the appendix of [61] consists of a very nice summary of these inequalities as well as many of
their generalizations.

4.1 Markov and Chebyshev

Perhaps the most famous (one-sided) concentration inequality is Markov’s inequality. We al-
ready saw this around the proof of Theorem 2.2, but for good measure we’ll formally state it
here.

Lemma 4.1 (Markov’s inequality). If X is a non-negative real-valued random variable, then
for all λ > 0 we have

Pr[X ≥ λ] ≤ E[X]

λ
.

In particular, if X is integer-valued, then

Pr[X ̸= 0] ≤ E[X].

Proof. For simplicity we only prove the result when X is integer valued. In this case we have

Pr[X ≥ λ] =
∑
k≥λ

Pr[X = k] ≤
∑
k≥λ

k

λ
· Pr[X = k] =

E[X]

λ
.

The second statement follows by taking λ = 1.

The “in particular” part of this lemma is probably the most common usage of Markov’s in-
equality. To reiterate, this says that E[X] → 0 implies X = 0 with high probability, and this
application of Markov’s inequality is often known as the first moment method.

Unfortunately it is not true in general that E[X] → ∞ implies X > 0 with high probability
(e.g. take X = n with probability n−1/2 and X = 0 otherwise). However, for many reason-
able examples this implication does hold. Often one can show this by utilizing Chebyshev’s
inequality. We recall that the variance of a random variable is Var(X) = E[(X − E[X])2].

Lemma 4.2 (Chebyshev’s inequality). Let X be a real-valued random variable with Var(X) =
σ2. Then for all λ > 0, we have

Pr[|X − E[X]| ≥ λσ] ≤ 1

λ2
.
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Proof. We have

Pr[|X − E[X]| ≥ λσ] = Pr[(X − E[X])2 ≥ λ2σ2] ≤ 1

λ2
,

where this last step used Markov’s inequality applied to the (non-negative) random variable
Y := (X − E[X])2 after noting that E[Y ] = σ2 by definition.

Morally speaking, Chebyshev’s inequality says that if σ = o(E[|X|]), then X is close to its
expectation with high probability. The usage of Chebyshev’s inequality is often referred to as
the second moment method.

Chebyshev’s inequality is perhaps the most flexible concentration inequality out there, in that
it applies to arbitrary random variables with finite second moments. While the second moment
method can often be used to give good enough bounds for applications (see for example our
forthcoming proof sketch of Theorem 23.1), the extreme flexibility of the method means that the
bounds obtained from it will often be far from the true concentration behavior of our random
variables. If one needs better bounds than what Chebyshev gives, then one needs to employ a
concentration inequality which applies to a narrow set of random variables. We consider three
such results in the following subsections.

4.2 The Chernoff Bound

The Chernoff bound says that binomial random variables have exponential concentration around
their means. This version is incorrect, need to adjust.

Theorem 4.3. Let X1, . . . , Xn be independent Bernoulli random variables each with probability
of success p, and let X =

∑
Xi. Then for all λ > 0,

Pr[|X − pn| ≥ λpn] < 2e−λ2pn/2.

Sketch of Proof. Observe that for all λ, t > 0, we have

Pr[X ≥ (1 + λ)pn] = Pr[etX ≥ et(1+λ)pn] ≤ E[etX ]e−t(1+λ)pn,

with this last step using Markov’s inequality. We note that etX =
∑ tmE[Xm]

m!
is the moment

generating function of X, and it is a common trick in probability to rephrase inequalities in
terms of etX . And indeed, because the Xi are all independent, we have

E[etX ] =
∏

E[etXi ] = (etp+ (1 − p))n.

Thus we are left with the problem of choosing t so that etp+(1−p)

e−t(1+λ)p is minimized. One can do

this using calculus, and this will give Pr[X ≥ (1 + λ)pn] < e−λ2pn/2. The same argument gives
Pr[X ≤ (1 − λ)pn] < e−λ2pn/2, and combining these inequalities gives the desired result.

The Chernoff bound can be generalized, for example, by replacing the bernoulli random vari-
ables with any bounded random variable, see [61].
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Many random variables in probabilistic combinatorics end up being binomial random variables,
such as the number of edges in Gn,p, and as such the Chernoff bound is heavily used in practice.
Here we look at a quick application of this result to a problem in discrepency theory.

Given a hypergraph H and partition V (H) = R⊔B, we define the discrepancy of the partition
by

disc(H,R,B) = max
e∈E(H)

||e ∩R| − |e ∩B|| ,

and define the discrepancy of the hypergraph by disc(H) = minR,B disc(H,R,B). In other
words, disc(H) measures how well one can partition the vertex set so that each edge has about
the same number of vertices from each part.

Theorem 4.4. If H is an r-uniform hypergraph with m edges, then disc(H) ≤ 2
√
r log(2m).

If H is a clique on 2r − 1 vertices, then disc(H) = r and m ≈ 4r, so this result is essentially
best possible for general H.

Proof. Assign each vertex of H to R or B independently and with probability 1
2
. For e ∈ E(H),

let Ae be the event that∣∣∣∣|e ∩R| − 1

2
r

∣∣∣∣ ≥√r log(2m) = 2

√
log(2m)

r
· 1

2
r.

Because |e∩R| has a binomial distribution, the Chernoff bound gives Pr[Ae] < 2e− log(2m) = m−1,
and by a union bound we have Pr[

⋃
Ae] < 1. Thus with positive probability, there exists a

partition R,B such that none of the Ae occur. This means disc(H,R,B) ≤ 2
√
r log 2m, proving

the result.

Much more can be said about discrepancy problems, see [11, Chapter 13].

4.3 Martingales

We say that a sequence of real-valued random variablesX0, X1, . . . is a martingale if E[Xi+1|Xi] =
Xi for all i. One important class of Martingales, called Doob martingales, are defined as follows.
Given random variables Y1, . . . , Ym and a real-valued function f , let

Xi = E[f(Y1, . . . , Ym)|Y1, . . . , Yi].

It is not too difficult to show that any sequence of random variables Xi defined in this way is
indeed a martingale.

One of the most common classes of (Doob) martingales in probabilistic combinatorics are the
edge-exposure martingales. In this case, Yi denotes the indicator random variable which is 1
if the ith pair of vertices in Gn,p is an edge (where the pairs are ordered in some arbitrary
way). Intuitively in this situation we think of revealing the edges of Gn,p one at a time, and Xi

denotes the value that we expect f to be after we reveal all of the remaining edges.
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Let us look at the very concrete case of the edge-exposure martingale when n = 3 and f is the
number of triangles in G3,p. With this we have

X0 = E[f ] = p3, X1 = E[f |Y1] = p2Y1,

X2 = E[f |Y1, Y2] = pY1Y2, X3 = E[f |Y1, Y2, Y3] = Y1Y2Y3.

The main concentration result for martingales is Hoeffding’s inequality.

Theorem 4.5 (Hoeffdings’s inequality). Let X0, . . . be a martingale with |Xi −Xi−1| ≤ αi for
all i. Then for all λ > 0, we have

Pr[|Xm −X0| ≥ λ] < 2e
−2λ2∑

α2
i .

Sketch of Proof. Let Yi = Xi −Xi−1. Similar to the proof of the Chernoff bound, we have

Pr[Xm −X0 ≥ λ] = Pr[et(Xm−X0) ≥ etλ] ≤ E[et
∑m

i=1 Yi ]e−tλ.

We claim that this expectation is at most e
1
8
t2

∑m
i=1 α

2
i . Indeed, we can use conditional expecta-

tions to write

E[et
∑m

i=1 Yi ] = E
[
E[et

∑m
i=1 Yi |X0, . . . , Xm−1]

]
= E[et

∑m−1
i=1 Yi · E

[
etYm|X0, . . . , Xm−1]

]
,

where this last step used that Yi with i < m is fixed given X0, . . . , Xm−1. Observe that
conditional on X0, . . . , Xm−1, we have E[Ym] = 0 (due to the martingale property) and |Ym| ≤
αm (due to the hypothesis of the theorem). One can show that for random variables of this
form, the expected value of its moment generating function is at most eα

2
mt2/8. One gets the

claim by repeating this argument inductively on the remaining terms.

In total, we have for any t > 0 that

Pr[Xm −X0 > λ
√
m] ≤ e

1
8
t2

∑
α2
i−tλ.

Taking t = 4λ/
∑
α2
i gives Pr[Xm −X0 ≥ λ] < e

−2λ2∑
α2
i . A symmetric argument shows Pr[Xm −

X0 ≤ λ] < e
−2λ2∑

α2
i (this can also be seen by considering the martingale X ′

i := −Xi and applying
the first inequality), which gives the result.

In the special case where αi = 1 for all i, this result is referred to as Azuma’s inequality1.

Corollary 4.6 (Azuma’s inequality). Let X0, . . . be a martingale which satisfies |Xi−Xi−1| ≤ 1
for all i. Then for all λ > 0, we have

Pr[|Xm −X0| ≥ λ
√
m] < 2e−2λ2

.

1The naming convention for these inequalities are all over the place: some people call these Hoeffding’s
inequalities, others Azuma (which is probably the most popular name in the combinaotrics community), some
Azuma-Hoeffding, and yet others Hoeffding-Azuma.
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There are many generalizations of the Hoeffding’s inequality which weakens the hypothesis that
|Xi+1 −Xi| ≤ αi. For example, it suffices to have that this difference holds in expectation, or
that it holds with high probability. Again, see [61] for details.

One application of Azuma’s inequality is the following.

Proposition 4.7. We have

Pr[|χ(Gn,p) − E[χ(Gn,p)| ≥ λ
√
n] < 2e−λ2/2.

We note that this result tells us that χ(Gn,p) is concentrated around its expectation, but it
gives no indication of what this expectation is. This is a common phenomenon when applying
concentration inequalities.

Proof. We consider a vertex-exposure martingale, i.e. a Doob martingale f(Y1, . . . , Yn) where
Yi is the set of vertices j > i in Gn,p which are adjacent to i. In particular, taking f = χ and
Xi = E[f |Y1, . . . , Yi] gives X0 = E[χ(Gn,p)] and Xn = χ(Gn,p). It is clear that each time we
reveal a set Yi that the expected chromatic number changes by at most 1, i.e. |Xi+1 −Xi| ≤ 1
for all i. Thus Azuma’s inequality applies, giving the result.

We note that one could try and prove this result using an edge-exposure martingale instead
of a vertex-exposure martigale, but this approach gives essentially trivial bounds. In general,
when using martingales you want to reveal information in as few rounds as possible, while
also making it so that the information you reveal can’t dramatically change your function each
round.

While Proposition 4.7 says nothing about E[χ(Gn,p)], it is well known that this value is asymp-
totic to n

2 log1/(1−p) n
for any fixed p. This was first proven by Bollobás using a clever martingale

argument. Much more can be said about χ(Gn,p), see for example the paper by Heckel and
Riordan [105] which, in addition to surveying many of the known results on χ(Gn,p), shows that
the concentration in Proposition 4.7 is in some sense close to best possible.

There are a number of variants of all of the concentration inequalities stated in this chapter.
One particular version of Azuma that we will need at some point is the following.

Lemma 4.8 ([132]). Let X0, . . . be a martingale which satisfies |Xi−Xi−1| ≤ α for all i. Then
for all δ ∈ [0, 1], we have

Pr[|Xm −X0| ≥ δαm] < e−δ2αm/6c.

Note that |Xm − X0| ≤ αm deterministically, so δαm is at least a δ fraction of the mean of
Xm − X0, and as such this is referred to as the “multiplicative Azuma inequality” (since its
error term is multiplicative relative to the expectation as opposed to additive).

4.4 Talagrand’s Inequality

Let Ω = Ω1 × · · · × Ωn be a product of probability spaces. For α = (α1, . . . , αn) a vector of
non-negative real numbers, we define the weighted Hamming distance dα on Ω by dα(x, y) =∑

i:xi ̸=yi
αi. For example, α = (1, . . . , 1) gives the usual Hamming distance on product spaces.
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Given α as above, a set A ⊆ Ω, and a non-negative number t, we define

Aα,t = {x : ∃y ∈ A, dα(x, y) ≤ t}.

That is, Aα,t is the set of points in Ω which are within distance t of A. We also define A = Ω\A.
Our goal is to prove “isoperimetric” inequalities which state that, for any A ⊆ Ω, we have

Pr[A] · Pr[Aα,t] ≤ f(t),

where f is some rapidly shrinking function. Isoperimetric inequalities are intimately related
to concentration inequalities. For example, a corollary of an inequality as above is that if
Pr[A] ≥ 1

2
, then Pr[Aα,t] ≤ 2f(t) (i.e., most of Ω is concentrated around A). On the other

hand, one can prove isoperimetric inequalities by using concentration inequalities.

Proposition 4.9. For Ω a product space, A ⊆ Ω, and α such that
∑
α2
i = 1, we have for all t

that
Pr[A] Pr[Aα,t] ≤ 4e−t2

.

Proof. Define the function f : Ω → R by f(y) = dα(y, A). Let Y = (Y1, . . . , Yn) be chosen
according to the probability distribution on Ω and let Xi = E[f(Y )|Y1, . . . , Yi]. Observe that
Xn = 0 iff Y ∈ A and Xn > t iff Y ∈ Aα,t, and also that |Xi −Xi−1| ≤ αi. Thus Hoeffding’s
inequality implies

Pr[A] Pr[Aα,t] = Pr[Xm = 0] Pr[Xm > t]

≤ Pr[|Xm −X0| ≥ X0] Pr[|Xm −X0| > t−X0]

≤ 4e−2X2
0−2(t−X0)2 ≤ 4e−t2 ,

where this last step used that the exponent is maximized when X0 = 1
2
t.

A remarkable result of Talagrand shows that Proposition 4.9 essentially holds even when com-
paring A with the set of points which are at least distance t from A for some choice of α.

Theorem 4.10 (Talagrand’s inequality). For all A ⊆ Ω and t ≥ 0, we have

Pr[A] Pr

[⋂
α

Aα,t

]
≤ e−t2/4,

where the intersection ranges over all α with
∑
α2
i = 1.

Again we emphasize that
⋂

αAα,t can be much larger than Aα,t for any given α, but still
essentially the same bound as in Proposition 4.9 holds. We omit the proof of Theorem 4.10,
and we refer the reader to [11] for a direct proof, and to [61] for a longer, but perhaps more
enlightening argument.

We note that Talagrand’s inequality is often stated in the following equivalent form: Given
x ∈ Ω and A ⊆ Ω, define d′(x,A) = miny∈A maxα dα(x, y), where the maximum ranges over all

30



α with
∑
α2
i = 1. Note that having d′(x,A) ≤ t is equivalent to saying that for all α there

exist y ∈ A with dα(x, y) ≤ t, which is equivalent to saying x ∈
⋂

αAα,t. Thus Theorem 4.10
can be seen as an isoperemetric inequality with respect to the pseudo-distance d′.

Talagrand’s inequality has a number of applications to concentration of random variables. One
particular application is for certifiable functions. For a function s : R → N, we say that a
real-valued function f defined on a product space Ω is s-certifiable if having f(x) ≥ c implies
that there exists a set I ⊆ [n] of size s(c) such that f(y) ≥ c whenever yi = xi for all i ∈ I
(that is, the values in position I “certify” that f(x) ≥ c).

For example, if f(x) = |{i : xi ̸= 0}|, then f is s-certifiable with s(c) = c, since f(x) ≥ c implies
there exist c coordinates with xi ̸= 0, and any y which agrees with x on these coordinates satisfies
f(y) ≥ c. Lastly, we say that a function f is Lipschitz if |f(x) − f(y)| ≤ 1 whenever x, y differ
in at most one coordinate.

Corollary 4.11. If f is an s-certifiable Lipschitz function on the product space Ω and X is
chosen according to the probability space Ω, then for all m and t > 0 we have

Pr[f(X) < m− t
√
s(m)] Pr[f(X) ≥ m] ≤ e−t2/4.

Proof. Let A = {x : f(x) < m− t
√
s(m)}. We claim that

⋂
αAα,t ⊆ {y : f(y) < m}.

Assume for contradiction that y ∈
⋂

αAα,t and f(y) ≥ m. Because f is s-certifiable, there
exists a set of s(m) indices I which certifies f(y) ≥ m. Let α′

i = 1√
s(m)

if i ∈ I and α′
i = 0

otherwise. Because y ∈
⋂

αAα,t ⊆ Aα′,t, there exists some x ∈ A such that dα′(x, y) ≤ t,

i.e. such that restricted to I, the vectors x, y differ in at most t
√
s(m) coordinates. Let z be

defined by zi = yi if i ∈ I and zi = xi otherwise. Then f(z) ≥ m by definition of I, and f being
Lipschitz implies f(x) ≥ f(z) − t

√
s(m) ≥ m− t

√
s(m), contradicting x ∈ A. This proves the

claim.

The contrapositive of the claim implies {y : f(y) ≥ m} ⊆
⋂

αAα,t, so the first result follows
from Talagrand’s inequality.

We emphasize that Proposition 4.9 is too weak to prove Corollary 4.11: we genuinely have to
make use of the fact that Talagrand’s inequality allows us to choose a different distance function
for each choice of y.

In most applications, one applies Corollary 4.11 where either m is a median, i.e. Pr[f(X) ≥
m] = 1

2
, or where m − t

√
s(m) is a median. While medians are hard to estimate directly, a

concentration result like that of Corollary 4.11 can usually be used to show that the median
and expectation must be close to each other, see for example [61, Problem 11.4].

As an application, let X = (X1, . . . , Xn) be a random vector with each Xi distributed uniformly
on [0, 1]. Let f(X) denote the length of a longest increasing subsequence, i.e. the largest k
such that there exist indices with Xi1 < Xi2 < · · · < Xik . Note that f is Lipschitz and is
s-certifiable with s(c) = c, so if m is a median we conclude Pr[f(X) < m − t

√
m] ≤ 2e−t2/4.

It is well known that E[f(X)] ∼ 2
√
n, so at least heuristically, this argument suggests f(X) is

highly concentrated around 2
√
n + Θ(n1/4) (and it’s not hard to make this more precise). In

contrast, if one attempted to get concentration results for f(X) by utilizing martingales, one
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would conclude that f(X) is highly concentrated around Θ(n1/2), which is significantly weaker.
One can literally dedicate an entire book to the longest increasing subsequence problem, see
Romik [163] for more on this topic.
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Part II

Further Probabilistic Methods
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5 Dependent Random Choice

When using the probabilistic method, it is often the case that the simplest possible way of
generating a given random object is enough to get the job done. However, there are many
instances where a more carefully chosen random variable can be chosen in order to give stronger
bounds. One basic example of this is the following observation, which we leave as an exercise
to the reader.

Lemma 5.1. Given a non-empty graph G, let v1, v2 ∈ V (G) be random vertices where

� v1 is chosen uniformly at random, and

� v2 is chosen by first uniformly at random choosing an edge e of G and then uniformly at
random choosing v2 to be one of the vertices of e. Equivalently, one can uniformly choose
a vertex v′2 and then let v2 be a uniform random neighbor of v′2.

Then,
E[deg(v1)] ≤ E[deg(v2)].

That is, if we want to randomly select a vertex with high expected degree in G, then it is always
better (at least in theory) to work with the more complicated random variable v2 over v1. At
a high-level, the reason v2 gives vertices that tend to be incident to more edges is because we
literally defined v2 to be incident to an edge. Another intuitive reason this works is that our
definition of v2 is more “robust” in the sense that the degree of v2 will be entirely unaffected
by the addition of isolated vertices to G, while in contrast v1 will perform strictly worse with
such extra vertices.

The discussion above captures the central idea behind the dependent random choice method:
if we want a random variable X to have some property P , then it can be helpful to construct
X in such a way that the property P is “built into” the definition of X somehow (e.g. if we
want a vertex to be incident to many edges, then we pick a vertex incident to an edge).

In what follows we look at some more examples of this philosophy due mostly to Fox and
Sudakov [74] all aimed around the theme of X being a set of vertices and P being the property
that X has many common neighbors. To this end, throughout this section we let N(S) denote
the common neighborhood of a set of vertices S, i.e. we let N(S) := {u : u ∈ N(v) ∀v ∈ S}.
Our guiding example for these results will be the following.

Lemma 5.2. Let G be an n-vertex graph with average degree at least d. For any choice of
integers m, r, t, there exists a set U ⊆ V (G) such that every r-subset of U has at least m
common neighbors, and such that

|U | ≥ dt

nt−1
−
(
n

r

)(m
n

)t
.

Proof. The format of the result suggests how we might try to prove it: we’ll randomly construct
a set W which will have expected size at least dt/nt−1, after which we’ll use the method of
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alterations to delete from W a set of a bad vertices that will in expectation have size at most(
n
r

)
(m/n)t, in total giving a final set U with the desired properties and desired size.

The absolute simplest way we could try and make such a random set W is by including each
vertex independently and with some probability p. However, this procedure is doomed to fail
if G is, say, a clique on roughly

√
dn vertices, since in this case almost all of the vertices of W

will be bad with high probability. To get around this, we will follow the same philosophy of
Lemma 5.1: we will choose some auxiliary set T in a (simple) random way and then define W
in terms of this auxiliary set. Moreover, we will do this in such a way that our construction
for W “biases” it towards having many common neighbors in the same way that defining v2 in
Lemma 5.1 to be incident to an edge “biased” it towards being incident to many edges.

With this motivation in mind, let T be the random set obtained by uniformly at random
selecting t vertices with repetition (i.e. each vertex is equally likely to be the ith vertex added
to T , and in total T has size at most t), and define W = N(T ) (note that defining W to be
the common neighborhood of a set “biases” it towards having many common neighbors). All
that remains now is a basic alternatoins argument bounding the size of W and the number of
“bad” events.

Observe that the probability of a given vertex v being included in W is exactly (deg(v)/n)t, so
by linearity of expectation and convexity we find that

E[|W |] =
∑
v

(
deg(v)

n

)t

≥ dt

nt−1
.

Now define a set of vertices S ⊆ V (G) of size r to be bad if |N(S)| < m. Crucially, we note
that the probability W contains a given bad set S is at most (m/n)t since S ⊆ W if and only
if T ⊆ N(S). Thus the expected number of bad sets of W is at most

(
n
r

)
(m/n)t. Taking U to

be the set obtained by deleting a vertex from each bad set of W , we see that U has the desired
properties by construction, and that it has the desired size in expectation, proving that such a
U exists.

We can use Lemma 5.2 to quickly prove some nice bounds on Turán numbers through the
following basic embedding lemma.

Lemma 5.3. Let F be a bipartite graph with bipartition A∪B with |A| = a, |B| = b such that
the vertices in B all have degree at most r. If G is a graph which contains a set U such that
|U | = a and such that every r-subset of U contains at least a + b common neighbors, then G
contains F as a subgraph.

Proof. In order to show that G contains F as a subgraph, we show that there exists an injective
homomorphism ϕ from V (F ) to V (G), which we construct as follows. Choose ϕ|A to be an
arbitrary bijection onto U . Iteratively for each v ∈ B that has yet to be assigned, choose ϕ(v)
to be any common neighbor of ϕ(NF (v)) which has yet to be assigned by ϕ. Note that there
exist at least a+ b common neighbors of ϕ(NF (v)) by hypothesis, so there certainly exists one
such vertex which has yet to be assigned. This mapping gives the result.
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With this we can quickly prove the following, the statement and proof for which comes from
Alon, Krivelevich, Sudakov [9], though this result can also be obtained by using an earlier result
of Füredi’s [83].

Theorem 5.4 ([83, 9]). If F is a bipartite graph with bipartition A∪B with |A| = a and |B| = b
such that the vertices of B all have degree at most r, then

ex(n, F ) ≤ 3(a+ b)n2−1/r.

Observe that this result generalizes the Kővári-Sós-Turán Theorem, at least in terms of order
of magnitude.

Proof. Assume for contradiction that G is an n-vertex F -free graph with average degree at least
d := 6(a + b)n1−1/r. By Lemma 5.3, we would be done if we could find a set U of size at least
a such that every r-subset has at least m := a+ b common neighbors. By Lemma 5.2, for any
choice of t we can find a set U with these properties of size at least

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (6a+ 6b)tn1−t/r − (e/r)r(a+ b)tnr−t.

Taking t = r (which is chosen so that the two terms in the difference above are as close as
possible to each other), we find that there exists such a set of size at least

(6a+ 6b)r − (e(a+ b)/r)r ≥ 1

2
(6a+ 6b)r ≥ a,

with the first inequality noting that 6(a + b) ≥ 2(e(a + b)/r). We have thus found our desired
set U , which together with Lemma 5.3 gives a copy of F in G, a contradiction.

Theorem 5.4 is one of the few general upper bounds that are known for bipartite Turán problems
and is a special case of a stronger conjecture of Erdős. For this, we recall that a graph F is
r-degenerate if every subgraph of F contains a vertex of degree of at most r.

Conjecture 5.5 (Erdős [65]). If F is a bipartite graph which is r-degenerate, then ex(n, F ) =
O(n2−1/r).

This conjecture remains wide open in general, but it is possible to prove a weak version of this
result using dependent random choice. Indeed, mimicing the proof of Lemma 5.3 gives the
following result which suggests that something resembling Lemma 5.2 might be of use to use
here.

Lemma 5.6. Let G be a graph which contains vertex sets U1, U2 such that for each k ∈ {1, 2},
every subset of at most r vertices in Uk contains at least m common neighbors in U3−k. Then
G contains every r-degenerate bipartite graph on m vertices.

Proof. Let F1 be an m-vertex r-degenerate bipartite graph on V1 ∪ V2. By definition this
means that there exists a vertex v1 ∈ F1 such that degF1

(v1) ≤ r, and that there is some
v2 ∈ F2 := F1 − v1 with degF2

(v2) ≤ r and so on. We now define a map ϕ : V1 ∪ V2 → U1 ∪ U2
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with ϕ(Vi) ⊆ Ui as follows. Iteratively assume we have defined ϕ(vm), ϕ(vm−1), . . . , ϕ(vq+1) and
that vq ∈ Vi. Since S := N(vq) ∩ {vm, . . . , vq+1} has at most r vertices by assumption, the set
ϕ(S) ⊆ U3−i has at least m common neighbors, so choose ϕ(vq) to be any of these vertices that
has yet to be assigned. It is not difficult to see that this gives the desired embedding.

Motivated by this lemma, we prove the following variant of Lemma 5.2.

Lemma 5.7. Let r,m ≥ 2 and let G be an n-vertex graph with at least mn1−1/6r edges. Then
G contains two subsets U1, U2 such that, for k = 1, 2, every subset of r vertices in Uk has at
least m common neighbors in U3−k.

Proof. The rough strategy of the proof is as follows. We will first apply Lemma 5.2 directly
to obtain a large set U1 such that every q-subset of U1 (with q > r) has at least m common
neighbors. We then mimic the proof of Lemma 5.2 by choosing a random set T ⊆ U1 of size
t and letting U2 = N(U1). By choosing an appropriate value of t, the set U2 will satisfy the
condition. Moreover, if q − t ≥ r, then for any r-subset S ⊆ U1, the set S ∪ T has at least m
common neighbors, all of which in particular lie in N(T ) = U2, so U1 will also have the desired
property.

We now being the formal argument. Apply Lemma 5.2 using q := 3r for the parameters r, t in
that lemma to get a set U1 such that every subset of size 3r has at least m common neighbors
and such that

|U1| ≥
d3r

n3r−1
−
(
n

3r

)
(m/n)3r ≥ m3rn1/2 −mr/(3r)! ≥ mn1/2.

Now let T be a set obtained by including t = 2r vertices uniformly at random from U1 with
replacement, and let U2 = N(T ). The probability that U2 contains a set of r vertices which
have fewer than m common neighbors in U1 is at most(

n

r

)
(m/|U1|)2r ≤

1

r!
< 1,

and in particular there exists a choice of T such that no r-subset of U2 has fewer than m common
neighbors. Note that for any r-subset S ⊆ U1, the set S ∪ T has size at most 3r vertices, so by
construction S has at least m common neighbors which lie in N(T ) = U2. Thus U1, U2 gives
the desired result.

Combining these two lemmas immediately gives the following.

Theorem 5.8. If F is an m-vertex r-degenerate graph, then

ex(n, F ) ≤ mn2−1/6r.

We note that one can optimize the proof of Lemma 5.7 to improve the exponent of this theorem
slightly (notably by using (3−2

√
2)r instead of 3r throughout). However, the end result is still

weaker than the best known bound of ex(n, F ) ≤ m1/2rn2−1/4r due to Alon, Krivelevich, and
Sudakov [9], with their proof more or less being a slight refinement of the argument we gave.
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Our final application of this method involves subdivisions of graphs. Given a graph H, we
define its 1-subdivision H∗ to be the graph obtained by replacing each edge of H by a path of
length 2 (i.e. by inserting a new vertex in the middle of each edge). Note that subdivisions are
bipartite graphs with all of its e(H) new vertices having degree 2. As such, Theorem 5.4 implies
ex(n,K∗

a) = O(a2n3/2). It turns out that one can significantly improve upon this dependency
of a.

Theorem 5.9 (Alon, Krivelevich, Sudakov [9]). For all a we have

ex(n,K∗
a) = O(an3/2).

Note that this only gives a reasonable bound when a = O(n1/2), which makes sense since K∗
a

has about a2 vertices and thus can always be avoided by an n-vertex graph if a≫ n1/2.

Unfortunately Lemma 5.2 on its own is not enough to prove Theorem 5.4, essentially because
the size of U that we’re guaranteed by the lemma is too small. We can get around this obstacle
by demanding slightly weaker conditions for U to satisfy, such as by only requiring that most
pairs of U have many common neighbors1. More precisely, we use the following.

Lemma 5.10. Let G be an n-vertex graph with an3/2 edges. Then G contains a subset of
vertices U with |U | = a such that for all 1 ≤ i ≤

(
a
2

)
, there are less than i pairs of vertices in

U with fewer than i common neighbors in V (G) \ U .

For example, the i = 1 part of this statement says that every pair of vertices of U has at
least one common neighbor outside of U , and the i =

(
a
2

)
statement says there is at least one

pair which has at least
(
a
2

)
common neighbors outside of U . It is not difficult to see that this

lemma implies Theorem 5.9 (and is in fact designed specifically so that the simplest embedding
argument goes through), so it remains only to prove this result.

Proof. For simplicity we will only prove the result when n is even and when G is bipartite with
bipartition V1 ∪ V2 such that |V1| = |V2| = n/2 (which is a case that one can easily reduce to
by losing at most roughly half of the edges of G). In this bipartite setting, we will find our set
U such that it is entirely contained in one of the parts Vi, which will conveniently imply that
all of the common neighbors of vertices in U will lie in V (G) \ U .

The immediate obstacle for this problem is in figuring out how to capture that our set is not
allowed to contains i pairs with few common neighbors for all i. The trick here will be that
instead of defining a given pair x, y to be “bad” if it has few common neighbors like we did
before, we will instead define some function f(x, y) measuring the “badness” of x, y, and we
will do this in such a way that any set U with

∑
x,y∈U f(x, y) small has the desired properties.

It seems most natural to define our badness function to be inversely proportional to the number
of common neighbors of x, y, and to this end we naively define

f(x, y) :=
1

|N({x, y})|
,

and for a set of vertices U we define f(U) =
∑

x,y∈U, x ̸=y f(x, y).

1This is a common situation that happens in applications of dependent random choice, though the exact
way you weaken the conditions of Lemma 5.2 depends on the particular problem at hand.
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Claim 5.11. If U is contained in either V1 or V2 and has f(U) ≤ 1, then for all i ≥ 1 there
are less than i pairs of vertices in U with fewer than i common neighbors in V (G) \ U .

Proof. Indeed, if there were at least i such pairs for any given i then their contribution to the
sum in f(U) would be at least i · 1

i−1
> 1, a contradiction.

It remains then to find a large set U such that
∑

x,y∈U f(x, y) ≤ 1, for which we begin by
naively proceeding as we did in Lemma 5.2. For this, it turns out that we will want to work
with r = t = 2, which is a somewhat natural choice to consider given that our weaker bound
of ex(n,K∗

a) = O(a2n3/2) came from an application of Lemma 5.2 with r = t = 2. With some
foresight, we will assume without loss of generality that

∑
v∈V1

deg(v)2 ≤
∑

v∈V2

∑
deg(v)2.

Let T be a random set obtained by including two vertices uniformly at random from V1 with
replacement and define W = N(T ). Similar to our computation before, we find

E[|W |] =
∑
v∈V2

(deg(v)/(n/2))2 ≥ 4n−2 · (n/2)(an1/2)2 = 2a2,

which is way larger than what we ultimately need, so this is a good start. On the other hand,
the expected badness of W can be estimated via

E[f(W )] =
∑

x,y∈V2

f(x, y) · Pr[x, y ∈ W ] =
∑

x,y∈V2

1

|NV1(x, y)|
·
(
|NV1(x, y)|

n/2

)2

= 4n−2
∑

x,y∈V2

|NV1(x, y)|

= 4n−2
∑
z∈V1

(
deg(z)

2

)
≤ 2n−2

∑
z∈V1

deg(z)2 ≤ 2n−2
∑
z∈V2

deg(z)2 =
1

2
E[|W |].

This bound we got is substantially larger than our target value of 1, but this perhaps shouldn’t
come as too much as a surprise given that |W | itself is very large (and hence f(W ) is forced
to be somewhat large). To get around this, we will simply replace W with a random subset of
size a (since this is all we need to obtain in the end).

More precisely, by the inequalities established above we find that E[|W | − 1
2
E[W ] − Y ] ≥ 0,

and hence there exists some (deterministic) choice of T such that both |W | ≥ f(W ) and
|W | ≥ 1

2
E[|W |] ≥ a2. Given such a T , we now define U ⊆ W to be a uniformly random subset

of size a. We now find

E[f(U)] =
∑

x,y∈W

f(x, y) · Pr[x, y ∈ U |x, y ∈ W ] ≤ f(W ) · a(a− 1)

|W |(|W | − 1)
≤ |W | · (a/|W |)2 ≤ 1.

We conclude that there exists some U of size a with f(U), proving the result by our claim.

As all of these examples illustrate: if you have a problem that could be magically solved if you
had a large set of vertices U such that every r-set of U had many common neighbors, then a
variant of dependent random choice might be worth trying out!

Need to include more references for eg subdivisions.
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6 Random Algebraic Constructions

One can easily extend our general lower bound for graph Turán numbers Theorem 1.4 to the
setting of hypergraphs as follows.

Theorem 6.1. Let F be an r-graph with v vertices and e ≥ r edges. If e ≥ v, then

ex(n, F ) = Ωv(n
r− v−r

e−1 ).

Sketch of Proof. Consider Gr
n,p, which in expectation has about pnr edges and pe(F )n|V (F )| copies

of F . At p = Cn− v−r
e−1 for some large constant C this first quantity is much larger than the

second, so we can delete an edge from each copy of F to give the result.

One way you could try and improve upon this argument is to delete edges which are in many
copies of F . In Gr

n,p this is too much to ask for, but it is possible to do this in other random
hypergraph models. In particular, if our random model contains some algebraic structure, then
it is often the case that edges will either be in many copies of F or almost none. We look at a
few examples of this phenomenon.

6.1 Random Multilinear Maps

The problem of determining the Turán number of Kr
2,...,2, the complete r-partite r-graph with

each part having size 2, is called the Erdős box problem. Theorem 6.1 gives a lower bound of
nr− r

2r−1 , and for certain values of r this lower bound was improved by Gunderson, Rödl, and
Sidorenko [98]. This result was significantly improved by Conlon, Pohoata, and Zakharov[51]
who gave a polynomial improvement to the bound of Theorem 6.1 for all values of r.

Theorem 6.2 ([51]). For all r ≥ 2, we have

ex(n,Kr
2,...,2) = Ω(nr−⌈ 2r−1

r ⌉−1

).

Note that r never1 divides 2r − 1, so this does always give a polynomial improvemnt to Theo-
rem 1.4.

We prove this result by considering a random hypergraph based off of multilinear maps. Recall
that if V1, . . . , Vr are vector spaces over Fq, then a map T : V1 × · · · × Vr → Fq is said to be
multilinear if the one dimensional function f(x) = T (v1, · · · , vi−1, x, vi+1, · · · , vr) is linear for
all i and any choice of vj. Note that there are only finitely many such maps over Fq if V1, . . . , Vr
are finite dimensional, so in this setting we can talk about choosing such a T uniformly at
random.

Let s =
⌈
2r−1
r

⌉
, and let V1, . . . , Vr be copies of Fs

q with q a large prime power. Given a multilinear
map T , let HT denote the r-partite r-graph on V1 ∪ · · · ∪ Vr with {v1, . . . , vr} ∈ E(HT ) if and
only if T (v1, . . . , vr) = 1, where here and throughout we assume vi ∈ Vi for all i. The proof
relies on the following three results.

1If r is prime then 2r − 1 ≡ 2− 1 mod r by Fermat’s little theorem though I don’t see why this holds
otherwise
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Lemma 6.3. Let T be a uniformly random multilinear map and assume q is sufficiently large
in terms of r. Then the following hold:

(a) We have E[e(HT )] = (qs − 1)rq−1 ≈ qrs−1.

(b) Let F denote the set of tuples (v01, v
1
1, . . . , v

0
r , v

1
r) with vji ∈ Vi and v0i ̸= v1i such that

T (vj11 , . . . , v
jr
r ) = 1 (i.e. such that this forms a Kr

2,...,2 in HT ). Then E[|F|] ∼ q2rs−2r .

(c) Let B denote the set of edges {v1, . . . , vr} such that (v1, v
′
1, . . . , vr, v

′
r) ∈ F for some

{v′1, . . . , v′r}. Then E[|B|] ≤ (1 + o(1))q−rE[|F|].

We note that Gr
n,p with p, n chosen appropriately already roughly satisfy (a) and (b), so the

crucial thing we gain here is (c), which says that there are not many edges that are contained
in some Kr

2,...,2, i.e. the copies of Kr
2,...,2 are all clumped together. This is the key fact that we

acquire from using a random algebraic construction.

Let us briefly observe that this lemma gives the result. Indeed, we can form a Kr
2,...,2-free

hypergraph H ′
T by deleting every edge of B. The expected number of edges for this will be

asymptotically at least qrs−1 − q2rs−2r−r. Because s =
⌈
2r−1
r

⌉
, we have s < 2r−1

r
+ 1, which is

equivalent to saying rs − 1 > 2rs − 2r − r, and hence the number of edges is roughly qrs−1.
Since H ′

T has rqs := n vertices, this gives ex(n,Kr
2,...,2) = Ω(nr−1/s) as desired. Thus it remains

to prove the lemma.

Proof of Lemma 6.3. For (a), note that T (v1, . . . , vr) = 0 if vi = 0 for some i. For any other
tuple, let Ui ⊆ Vi be the one-dimensional subspace containing vi and 0. It is not too hard
to argue that T restricted to U1 × · · · × Ur is still a uniform multilinear map. Further, every
multilinear map on this space is uniquely determined by the value of T (1, . . . , 1), and it is not
hard to see that exactly one of these q maps has T (v1, . . . , vr) = 1. Thus such a tuple is an
edge with probability q−1 and the result follows from linearity of expectation.

For (b), observe that the only tuples that can be in F are those such that v0i ̸= λv1i for any i,
as otherwise

λ = λT (v01, . . . , v
0
i , . . . , v

0
r) = T (v01, . . . , v

1
i , . . . , v

0
r) = 1,

which means λ = 1, contradicting v0i ̸= v1i . The number of such tuples with this property is
asymptotic to q2rs. For such a tuple, let Ui be the span of v0i , v

1
i , which is a 2-dimensional

subspace. Again T restricted to U1 × · · · × Ur is uniform, and it is not too hard to see that
there are q2

r
choices for T with exactly one of these placing the tuple in F . The result follows

from linearity of expectation.

It remains to deal with (c). Given affine lines ℓ1, . . . , ℓr in V1, . . . , Vr, let P (ℓ1, . . . , ℓr) denote
the set of tuples (v1, v

′
1, . . . , vr, v

′
r) such that vi, v

′
i ∈ ℓi. It is not difficult to show the following:

� The sets P (ℓ1, . . . , ℓr) are disjoint for distinct choices of lines.

� We have |P (ℓ1, . . . , ℓr)| = qr(q − 1)r.

� Every element of F is contained in some P (ℓ1, . . . , ℓr).
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� If P (ℓ1, . . . , ℓr) ∩ F ̸= ∅ then P (ℓ1, . . . , ℓr) ⊆ F , i.e. T (u1, . . . , ur) = 1 for any ui ∈ ℓi.

If L denotes the set of tuples (ℓ1, . . . , ℓr) with P (ℓ1, . . . , ℓr) ∩ F ̸= ∅, then the above implies
that

|L|qr(q − 1)r = |F|.

Further, we have

|B| =

∣∣∣∣∣∣
⋃

(ℓ1,...,ℓr)∈L

ℓ1 × · · · × ℓr

∣∣∣∣∣∣ ≤ qr|L| = (q − 1)−r|F|,

so taking expectations gives the result.

We note that one can get a slightly stronger result by not just considering one multilinear map
T , but a family of (random) multilinear maps T1, . . . , Tℓ and then defining HT1,...,Tℓ

by having
a hyperedge if and only if Ti(v1, . . . , vr) = 1 for all i. The analysis here is mostly the same, but
for ease of presentation we only considered a single map.

6.2 Random Polynomial Graphs

Somewhat more complicated constructions can be made by utilizing random polynomials as
opposed to random multilinear maps. This approach was first popularized by Bukh [36], and
since then Bukh and Conlon have developed a lot of theory surrounding it.

To set things up, given a field Fq, we define Pd,b to be the set of polynomials over Fq in t
variables with degree at most d. We will say that f is a random polynomial from Pd,b if it
is chosen uniformly at random from Pd,b, which can be done, for example, by uniformly at
random choosing the coefficient of each possible monomial. With a little bit of linear algebra
one can show the following, which says that a random polynomial has the same distribution as
a random function when evaluated on a few number of points.

Lemma 6.4 ([38] Lemma 2.3). If q >
(
m
2

)
and d ≥ m−1, then if f ∈ Pd,b is uniformly random

and x1, . . . , xm are m distinct points of Fb
q, then

Pr[f(xi) = 0 ∀i] = q−m.

Maybe include proof.

The next lemma requires just a smidge of terminology from algebraic geometry. A variety is
any set of the form X = {x ∈ Fb

q : f1(x) = · · · = fa(x) = 0} where f1, . . . , fa : Ft
q → Fq are

polynomials. The variety X is said to have complexity at most M if a, b and the degrees of
the fi are bounded by M . One can prove the following using standard results from algebraic
geometry.

Lemma 6.5 ([38] Lemma 2.7). Let X,D be varieties over Fq of complexity at most M . If q is
sufficiently large in terms of M , then either |X \D| ≥ q/2 or |X \D| ≤ c for some c depending
only on M .
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The actual lemma statement involves the algebraic closure, which I think is an
artifact of the proof and isn’t necessary in the statement. Please let me know if
you think I’m wrong (or right) about this point.

One can think of this lemma as being analogous to the fact that if f is a degree d polynomial
in one variable which is 0 on at least d + 1 points, then it must in fact be 0 on an entire line.
With these two results we can prove the following.

Theorem 6.6. For all s ≥ 2, there exists some t0 = t0(s) such that for all t ≥ t0, we have

ex(n,Ks,t) = Θ(n2−1/s).

Proof. The upper bound follows from the Kővári-Sós-Túran theorem. For the lower bound, let
q be a sufficiently large prime power, and with some foresight we define

r = s2 + 1, d = rs+ 1, N = qs.

Let f ∈ Pd,2s be a polynomial chosen uniformly at random. Let G be the (random) graph with
vertex set Fs

q×Fs
q where vertices x1 ∈ Fs

q, x
2 ∈ Fs

q form an edge of G if and only if f(x1, x2) = 0.

Fix vertices x1, . . . , xs ∈ Fs
q ∪ Fs

q. Let C be the set of vertices y such that xi ∼ y for all
i (noting that C = ∅ if the xi don’t all belong to the same copy of Fs

q, and otherwise this
means e.g. f(xi, y) = 0 for all i). Observe that the number of Ks,r’s of G which has the xi

as its set of size s is equal to
(|C|

r

)
, and motivated by this we will attempt to bound the rth

moment E[|C|r] = E[|Cr|] (which will be slightly easier to work with compared to the rth falling
moment). To this end, we observe that if a given tuple (y1, . . . , yr) with k distinct elements lies
in Cr, then the corresponding copy of Ks,k lies in G. By Lemma 6.4, the probability that any
given copy of Ks,k appears in G is exactly q−sk (provided q is sufficiently large in terms of s, r).
Moreover, the number of tuples with k distinct elements is Or(N

k). In total we conclude that
The exposition here can probably be cleaned up

E[|Cr|] ≤
r∑

k=1

q−sk ·Or(N
k) = Or(1).

Note that C is an algebraic variety by definition. By Lemma 6.5, there exists some constant c
such that either |C| ≤ c or |C| ≥ q/2. Thus

Pr[|C| > c] = Pr[|C| ≥ q/2] = Pr[|C|r ≥ (q/2)r] ≤ E[|C|r]
(q/2)r

= Or(q
−r),

with the last step using the previous inequality.

Call a sequence (x1, . . . , xs) bad if there are more than c vertices y such that xi ∼ y for all i,
and let B denote the number of bad sequences. Our analysis above gives

E[B] ≤ 2N s ·Or(q
−r) = Or(q

s2−r) = or(1). (8)

Now let G′ ⊆ G be defined by deleting a vertex from each bad sequence. Because each vertex
is in at most N = qs edges in G, by (??) and (8) we find

E[e(G′)] ≥ E[e(G)] − E[B] · qs = Ω(q2s−1),
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where this last step used the previous inequality and Lemma 6.4 to deduce E[e(G)] = q2s · q−1.
By definition G′ contains no copy of Ks,c, so for t ≥ t0 := c, we have shown that there exists
a graph G′ on at most q2s vertices such that it contains at least Ω(q2s−1) edges and no ncopy
of Ks,t. This gives the desired lower bound when n is a sufficiently large prime prime power.
Using Bertrand’s postulate gives the desired bound for all n.

We will admit that on its own Theorem 6.6 is not particularly groundbreaking. Indeed, there
exist explicit constructions showing ex(n,Ks,t) = Θ(n2−1/s) when s > (t− 1)!, and this depen-
dency on t is far better than the implicit constant t0 one gets from the proof. However, the
proof of Theorem 6.6 gives us a new idea for constructing F -free graphs.

And indeed, many developments have been made on this method since Bukh’s original con-
struction of this form. In particular, by using more sophisticated tools from algebraic geometry,
Bukh [37] showed that Theorem 6.6 holds with t0 = Cs for some absolute constant C, which
stands as the best known bounds for this problem. On the other hand, by carefully modifying
the current proof of Theorem 6.6, Conlon [48] was able to construct large graphs avoiding theta
graphs θa,b, which we recall denotes the graph consisting of a internally disjoint paths of length
b between two fixed vertices.

Theorem 6.7 ([48]). For all b ≥ 2, there exists some a0 = a0(b) such that for all a ≥ a0, we
have

ex(n, θa,b) = Θ(n1+1/b).

Proof Sketch. The upper bound is a result of Faudree and Simonovits [73]. For the lower
bound, the key idea is to consider multiple random polynomials f1, . . . , fb−1 ∈ Pd,2b chosen
independently, with us defining our graph G on Fb

q∪Fb
q by having x ∼ y if and only if fi(x, y) = 0

for all i.

Fix two vertices x1, xb+1 ∈ Fb
q∪Fb

q and define C to be the tuples of distinct vertices (x2, . . . , xb−1)
such that x1 · · ·xb+1 is a path in G. As before (but with a somewhat more difficult analysis),
one can show E[|C|r] = O(1). However, in this case C is not quite an algebraic variety because
of us requiring C to use distinct vertices. However, one can write C as X \D for two varieties
X,D, so Lemma 6.5 still applies and the rest of the proof goes through.

One can further interpolate between this theorem and Theorem 6.6 to give effective lower
bounds on ex(n, F ) whenever F is a “large power of a rooted tree” (e.g. Ks,t is just many
copies of a star Ks,1, and θa,b is just many copies of a path Pb). This was done by Bukh and
Conlon [38] in order to show that for every rational number r ∈ [1, 2], there exists a finite set
of graphs F such that ex(n,F) = Θ(nr). The rational exponents conjecture, which says that
one can achieve this with F consisting of a single graph, remains a major open problem.

6.3 Multicolor Ramsey Numbers

Let r(t; ℓ) denote the smallest number N such that every ℓ-coloring of E(KN) contains a
monochromatic clique of size t. Inset history and connection with the earlier Ramsey
results proven in the text. Also sketch the proof of the bound you get with the
naive method for comparison.
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The following observation will be the key towards going further. The initial idea for this lemma
can be seen in Conlon and Ferber [49], though it was first really used by Wigderson [183] and
then generalized by Sawin [166].

Lemma 6.8. Let G be graph with no clique of size t, and let p be the probability that vertices
v1, . . . , vt ∈ V (G) chosen independently and uniformly at random form an independent set.
Then for all ℓ ≥ 2, we have

r(t; ℓ) ≥ p−(ℓ−2)/t2(t−1)/2.

Note that when ℓ = 2 this recovers the usual lower bound for Ramsey numbers from the random
coloring.

Proof. Let N be an integer to be determined later, and let f1, . . . , fℓ−2 : V (KN) → V (G) be
chosen independently and uniformly at random. Define a coloring χ : E(KN) → [ℓ] in the
following way: for distinct x, y ∈ V (Kn), if there exists i such that fi(x)fi(y) ∈ E(G), then
set χ(xy) to be the minimum i with this property. Otherwise, set χ(xy) to be ℓ− 1 or ℓ with
probability 1/2 each. That is (as Wigderson notes in his paper), this coloring comes from
covering KN with ℓ− 2 randomly permuted blowups of G and then randomly using two colors
to deal with any uncovered vertices.

We first observe that there is no monochromatic Kt in any color i ≤ ℓ−2. Indeed, if {x1, . . . , xt}
were such a clique then this would imply {fi(x1), . . . , fi(xt)} forms a clique inG (since χ(xjxk) =
i implies fi(xj)fi(xk) ∈ E(G)). Thus it remains to show that, with positive probability, there
is no monochromatic Kt in color i ∈ {ℓ − 1, ℓ}. Observe that a clique Kt in KN has all of its
edges colored by ℓ − 1 or ℓ if and only if each fi maps Kt to an independent set of G, and
the probability that this happens is exactly pℓ−2 by hypothesis, and from there this Kt will be

monochromatic with probability 21−(t
2). In total then, the expected number of monochromatic

cliques will equal
(
N
t

)
pℓ−221−(t

2), and this will be less than 1 provided N ≤ p−(ℓ−2)/t2(t−1)/2. Thus
there exists a coloring of this size with no monochromatic clique, giving the desired result.

Observe that the p in Lemma 6.8 roughly corresponds to the number of independent sets of size
at most t in G, so we need to find a graph with small clique number and not too many small
independent sets. To this end, let V ⊆ Ft

2 be the set of vectors v with v · v = 0 (i.e. vectors
with even Hamming weight), and let G be the graph on V where two vectors u, v are adjacent
if and only if u · v = 1.

Lemma 6.9. If t is even, then the graph G contains no clique of size t.

Proof. Assume for contradictiont that there exist distinct vectors v1, . . . , vt ∈ V with vi · vj = 1
for all i ̸= j (and = 0 for i = j by definition of V ). We claim that these vectors are linearly
independent. Indeed, if there exists αi ∈ {0, 1} with

∑
αivi = 0, then by taking the dot product

of vj on both sides we find
∑

i ̸=j αi ≡ 0 for all i, and it is not difficult to show that this implies
αi = 0 for all i (here we need that t is even, else αi = 1 for all i would work). However, V is a
t− 1 dimensional subspace, so it contains no set of t linearly independent vectors, proving the
result.

Lemma 6.10. The probability p that a uniformly random tuple (v1, . . . , vt) ∈ V t is such that
{v1, . . . , vt} is independent in G is at most 2−3t2/8+o(t2).
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Proof. Let X be the set of tuples (v1, . . . , vt) ∈ V t such that vi · · · vj = 0 for all i, j, so our goal
is to upper bound |X|/|V |t = |X|2−t2 . Define the rank of a tuple in X to be the rank of the
smallest subspaces containing every vertex of the tuple. We claim that the number of tuples in
X of rank r is at most

t!

(
r−1∏
i=0

2t−i

)
· 2(t−r)r = 2tr−(r

2)+tr−r2 . (9)

Indeed, possibly by reordering the tuple (giving us the factor of t!) we can assume the first r
vectors are linearly independent, and given v1, . . . , vi with 0 ≤ i < r, the number of choices for
a vi+1 which is linearly independent of v1, . . . , vi is exactly qt−i. After this every vector must
lie in the span of v1, . . . , vr, giving exactly qr choices for the remaining t− r vectors.

We next claim that there exists no tuple in X of dimension larger than t/2. Indeed, if S is the
span of the vectors in a tuple of X, then note that S ⊆ S⊥ since vi · vj = 0 for all i, j. From
linear algebra we have t = dimS + dimS⊥ ≥ 2 dimS, proving the claim.

It is not hard to prove that (9) is increasing for r ≤ t/2, so plugging in r = t/2 gives an upper
bound for |X|/(t/2) of the form 25t2/8+o(t2), giving the desired bound on |X|/|V |t.

Putting all these lemmas together gives the following.

Corollary 6.11. For ℓ ≥ 3 we have

r(t; ℓ) ≥
(

2
3ℓ
8
− 1

4

)t−o(t)

.

This bound stood as the best for about a year until Sawin [166] realized one could do somewhat
better by replacing the algebraic graph G described above with a purely random graph, namely
Gn,p with p ≈ .455. Thus, although the initial breakthrough for multicolor Ramsey numbers
came from a random algebraic approach, the method was later subsumed by a simpler random
model. This sort of thing happens somewhat often with proofs using the random algebraic
method. Because of this, some mathematicians are of the opinion that any time the random
algebraic method is used, there exists a simpler random model which gives better results. I
don’t personally believe that this is true, and even if it were, the fact that random algebraic
methods consistently give initial breakthroughs to longstanding open problems makes them
worth considering in my eyes.

Maybe comment on other ways random homomorphisms are useful.
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7 Coupling

It is often the case that one can understand a random variable X by comparing it to a “similar”
random variable Y which is easier to do calculations for. One way to do this to form a coupling,
i.e. a pair of random variables (X ′, Y ′) such that X ′, Y ′ have the same distribution as X, Y ,
respectively, and such that X ′, Y ′ have some (nice) relation between them. In particular, we will
consider two beautiful couplings around random graphs, one relating Gn,p to random digraphs,
and the other to random hypergraphs.

7.1 Graphs and Digraphs

Define the random digraph Dn,p as the digraph on n vertices obtained by including each ordered
pair (u, v) as an arc independently and with probability p. Note that Dn,p may have directed
2-cycles, i.e. it will contain both arcs (u, v) and (v, u) with probability p2.

Our goal for this subsection is to use coupling arguments to show that Dn,p and Gn,p exhibit
similar “behaviors”, which will allow one to lift results from one setting to the other. Our
approach can be generalized to a very large class of properties of graphs/digraphs, but for ease
of presentation, we focus only on the property of Hamiltonicity. To this end, we say a digraph
D is Hamiltonian if one can order the vertices as v1, . . . , vn such that vivi+1 ∈ E(D) for all
1 ≤ i ≤ n (with indices being written cyclicly), and we will call such an ordering of its vertices
a Hamiltonian cycle.

As a warmup, we prove the following basic coupling result.

Proposition 7.1. For all p ∈ [0, 1], we have

Pr[Dn,p is Hamiltonian] ≤ Pr[Gn,q is Hamiltonian],

where q := 2p− p2.

Proof. Our main goal is to construct (correlated) random variables D,G such that (1) D and G
have the same distributions as Dn,p and Gn,q, respectively, and such that (2) G is Hamiltonian
whenever D is. From this the result will quickly follow. And in this case the path forward is
relatively easy: start with a random digraph D ∼ Dn,p, then take G to be the graph obtained
from D by “forgetting” the orientations of each arc. One can easily check that conditions (1)
and (2) are satisfied here. For completeness, we consider a more formal argument below.

Let {Xu,v : u, v ∈ [n]} be a collection of iid Bernoulli random variables with success probability
p. Define the random digraph D on [n] by including the arc (u, v) iff Xu,v = 1 and define the
random graph G on [n] by including the edge uv if and only if max{Xu,v, Xv,u} = 1. It is not
difficult to see that D being Hamiltonian implies that G is Hamiltonian (since in particular,
v1, . . . , vn being a Hamiltonian cycle in D implies it is also a Hamiltonian cycle in G), so in
particular we find

Pr[D is Hamiltonian] ≤ Pr[G is Hamiltonian].

The result follows since (as is easy to check), D,G are random variables distributed according
to Dn,p, Gn,q respectively.
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We now wish to reverse Proposition 7.1 by lowering bounding the probability that Dn,p is
Hamiltonian in terms of that for Gn,p by using a very nice coupling by McDiarmid [142].

Theorem 7.2 ([142]). For all p ∈ [0, 1], we have

Pr[Gn,p is Hamiltonian] ≤ Pr[Dn,p is Hamiltonian].

Proof. Naively, one might try to perform the same approach as in Proposition 7.1 by starting
with G ∼ Gn,p and then replacing each edge of G with some number of arcs. However, one can
quickly work out that such a scheme will not recover a digraph distributed according to Dn,p,
since in particular one expects the number of (unordered) pairs of vertices in Dn,p connected
by some arc to be about twice as many as the number of edges in Gn,p.

To remedy the situation, we use a clever idea of McDiarmid. Roughly speaking, instead of
considering just the two models Gn,p and Dn,p, we will instead consider a sequence of models
D0, D1, . . . , DN which “interpolate” between Gn,p and Dn,p in the sense that D0 = Gn,p and
DN = Dn,p and are such that Di−1 and Di differ only on how they include edges/arcs on a
single pair of vertices ei. Because there is such a small difference between the models Di−1

and Di, we will easily be able to compare the probabilities of each being Hamiltonian, and by
iterating this we will obtain our desired comparison for D0 = Gn,p and DN = Dn,p.

As a small technical aside, it will be slightly more convenient in this argument to work ex-
clusively with digraphs. To this end, we define a new random digraph model D∗

n,p which
independently for each unordered pair {u, v} includes both arcs (u, v), (v, u) with probability
p and excludes both arcs with probability 1 − p. That is, D∗

n,p is equivalent to the digraph
obtained from Gn,p by replacing each edge uv with the 2-cycle (u, v), (v, u), and in particular
the probability that Gn,p is Hamiltonian is equal to the probability that D∗

n,p is Hamiltonian.
As such, it suffices to work with this latter model instead.

We now turn to the formal details. Let e1, . . . , e(n
2)

be an arbitrary ordering of the unordered

pairs of [n], say with ej = {uj, vj}. For all 0 ≤ i ≤
(
n
2

)
, define the random digraph Di on [n] as

follows: for all j > i, independently and with probability p include both of the arcs (uj, vj) and
(vj, uj) in Di; and for all j ≤ i, independently and with probability p include the arc (uj, vj),
and independently and with probability p include the arc (vj, uj). Observe that D0 ∼ D∗

n,p and
that D(n

2)
∼ Dn,p (with more generally Di having exactly i pairs behaving like those in Dn,p

and the rest like D∗
n,p), so we will be done if we can show for all i ≥ 1 that

Pr[Di−1 is Hamiltonian] ≤ Pr[Di is Hamiltonian].

It is not difficult to couple Di−1 and Di in such a way that they agree outside of the pair ei,
and we let D denote this common digraph. Let A denote the event that D is not Hamiltonian
but adding at least one arc of ei makes D Hamiltonian. Observe that

Pr[Di−1 is Hamiltonian|Ac] = Pr[Di is Hamiltonian|Ac],

since either D is Hamiltonian (in which case Di−1, Di will both be Hamiltonian with probability
1), or D plus both arcs of ei is not Hamlitonian (in which case Di−1, Di will both be Hamiltonian
with probability 0). Conditional on A, we have that Pr[Di−1 is Hamiltonian|Ac] = p, as we will
be Hamiltonian iff we include both arcs on ei. Crucially, we also have Pr[Di is Hamiltonian|Ac] ≥
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p, as p is the probability of including some given arc on ei which will make Di Hamiltonian
(with it being possible for two such arcs to exist, in which case the probability becomes higher).
Thus regardless of the event A we see that Di is at least as likely to be Hamiltonian as Di−1,
proving the claim and hence the proof.

This coupling approach is very flexible and has found applications in many other settings

Discuss variants of this method, e.g. to rainbow setting as well as perturbed random
setting. See e.g. “Rainbow subgraphs of uniformly coloured randomly perturbed
graphs”, “Rainbow Hamilton cycles in random graphs and hypergraphs”, and “
Spanning cycles in random directed graphs,”

7.2 Graphs and Hypergraphs

Here we discuss a beautiful coupling due to Riordan and Heckel allowing us to translate facts
about random hypergraphs to random graphs. As a partial warmup to the argument, we
consider a coupling result in a completely unrelated setting (namely that of random walks),
whose proof is spiritually similar to theirs while having the advantage of being substantially
simpler.

Let Sn denote a simple random walk of length n, i.e. Sn is a random vector (Sn
0 , S

n
1 , . . . , S

n
n)

where Sn
0 = 0, and Pr[Sn

i = Sn
i−1 + 1] = Pr[Sn

i = Sn
i−1 − 1] = 1

2
. For n even, let T n denote a

random walk after conditioning on having T n
n = 0 (i.e. we uniformly at random pick a walk

which returns to to 0 at the end of the walk). It is easy to show via Chernoff boudns that Sn
t

is likely to be within roughly
√
t of 0 for any given value t. While Chernoff bounds don’t apply

to the random variables T n
t , intuitively the same conclusion should also hold for T n

t , since the
condition of T n

n = 0 should force T n
t to be closer to the origin than Sn

t in general. It is possible
to make this intuition rigorous, allowing one to bootstrap bounds of Sn

t to T n
t .

Proposition 7.3. For n even and all s, t, we have Pr[|T n
t | ≥ s] ≤ Pr[|Sn

t | ≥ s].

Proof. Our goal is to define a new random vector Rn such that (1) Rn has the same distribution
as T n, and (2) |Rn

t | ≤ |Sn
t | for all t. From this the result will quickly follow. Intuitively, we

will define Rn
t in rounds by flipping biased coins. If the tth coin lands heads, then Rn

t+1

moves towards 0, and if it lands tails, it moves towards/away from 0 if and only if Sn
t+1 moves

towards/away from 0. Such a process will always satisfy (2), and it will satisfy (1) by choosing
the probability of our biased coins appropriately.

To this end, set Rn
0 = 0. Given Rn

t , we define a random variable Yt (which will be our biased

coin flips) that equals 1 with probability
|Rn

t |
n−t

and is 0 otherwise. If Yt = 1, we set Rn
t+1 = Rn

t ±1
such that |Rn

t | > |Rn
t+1| (i.e. such that Rn moves towards 0; note that this is well defined since

Yt = 1 implies Rn
t ̸= 0). If Yt = 0 and Rn

t ̸= 0, then we set Rn
t+1 = Rn

t ±1 such that |Rn
t | > |Rn

t+1|
if and only if |Sn

t | > |Sn
t+1| (i.e. Rn move away/towards 0 if Sn moves away/towards 0). If

Rn
t = 0 then we set Rn

t = ±1 with equal probability.

It is straightforward to see that (2) is achieved from this process1. It is not difficult to prove that

1Any time Sn moves towards 0, Rn does as well, except when Rn
t = 0. In this case Sn

t must be an even
distance away from 0, so after one step Rn

t is still at least as close to 0.
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for T n, we have that |T n
t | > |T n

t+1| happens with probability1
1
2
(n−t+|Tn

t |)
n−t

. One can check that

Rn has |Rn
t | > |Rn

t+1| with probability
1
2
(n−t+|Rn

t |)
n−t

, so we conclude (1) and hence the result.

Recall that an F -factor in a graph G is a collection of vertex disjoint copies of F such that every
vertex is in one of these copies of F . By a similar argument as in Theorem 8.2, one can show that

Gn,p contains a Kr-factor provided r|n and p ≫ n−1/(r
2) log n. Intuitively, it seems reasonable

that the set of Kr’s in Gn,p should be distributed like the hyperedges of Gr
n,π where π = p(

r
2)

(at the very least, the expected number of Kr’s in Gn,p is equal to the expected number of
hyperedges in Gr

n,π). If this were true, then Gn,p would contain a Kr-factor when Gr
n,π contains

a perfect matching, and Theorem 8.2 says this should happen when p(
r
2) ≈ π ≫ n−1 log n,

which implies that taking p ≫ n−1/(r
2) log1/(r

2) n should suffice. And indeed, Johansson, Kahn,
and Vu [114] proved that this is the threshold for Kr-factors in Gn,p using a somewhat involved
argument. A nice coupling result of Riordan [159] will allow us to conclude the result in a much
easier way.

Let (V1, E1), . . . , (V(n
r)
, E(n

r)
) be an arbitrary ordering of all the Kr’s in Kn. To prove our desired

coupling, we would like to construct a pair of random variables (G,H) such that (1) G ∼ Gn,p

and H ∼ Gr
n,π with π ≈ p(

r
2), and such that (2) every hyperedge in H is a Kr in G. Note that

(2) means that H containing a perfect matching implies that G has a Kr-factor. Let us first
consider the following (very, very) naive attempt at this coupling.

Algorithm 1. Generate a random graph G ∼ Gn,p. Let H be an initially empty r-graph on
[n]. For each i with Ei ⊆ G, add Vi as a hyperedge to H. Output (G,H).

This algorithm definitely satisfies (2), but it completely fails at (1). Indeed, let Ai denote the
event that Ei ⊆ G (i.e. the event that Vi is a hyperedge in H), and assume V1, V2 have at least

two vertices in common. Then Pr[A2|A1] ≥ p(
r
2)−1 and Pr[A2|A1] < p(

r
2). But to have H ∼ Gr

n,π

we would, in particular, need these two probabilities to equal each other. Thus we’ll need to
consider a somewhat more complicated algorithm. As before, let (Vi, Ei) be the Kr’s in Kn,

and let π be a parameter which will be approximately p(
r
2).

Algorithm 2. Generate a random graph G ∼ Gn,p and an initially empty hypergraph H on
[n]. We proceed in

(
n
r

)
rounds as follows. For the ith round, let πi be the conditional probability

of having Ei ⊆ G given all the information from the previous rounds.

� If πi < π, then with probability π we add Vi to H.

� If πi ≥ π, then with probability π
πi

we test whether Ei ⊆ G, and if so, we add Vi to H.

Otherwise2 we declare this hyperedge to be absent in H.

1Given Tn
t , we still need to make 1

2 (n − t + |Tn
t |) steps in the direction of 0 and 1

2 (n − t − |Tn
t |) in the

direction away from 0.
2Note that with probability 1 − π

πi
we do not reveal any additional information about Ei. When working

with random objects, it is usually best to reveal as little information as possible in order to “preserve” the
randomness of your object.

50



We note that the πi ≥ π case of Algorithm 2 is similar in spirit to the proof of Proposition 7.3:
each round we flip a coin which is biased based off of the current information we have. If the
coin lands heads we do something to H independent of G, and otherwise we have H behave “in
the same way” as G.

For Algorithm 2, it is not difficult to see that H ∼ Gr
n,π. Unfortunately, if πi < π, then it is

possible that H contains edges which are not Kr’s in G, i.e. the coupling could fail to satisfy (2).
The key insight is that for applications, it suffices to have (2) be satisfied with high probability,
which will turn out to be the case.

To try and convince ourselves that this algorithm has a chance of winning even when πi < π,
let’s consider the most dangerous situation, namely that πi = 0. It is not too hard to see that
πi = 0 if and only if there exists some j < i such that (a) we revealed that Ej ̸⊆ E(G) and
(b) every edge of Ej \ Ei has been revealed to be in G. If this situation happens and if the
algorithm adds Vi to H, then the coupling fails to satisfy (2). However, when this happens,
every graph edge of Ej is contained in a hyperedge of H (by (b) and Vi ∈ E(H)) and Vj is
not a hyperedge of H (by (a)). Thus the probability of this situation happening is at most the
probability of H ∼ Gr

n,π containing such a configuration. These configurations can essentially
be described as follows.

Lemma 7.4. If H is an r-graph with r ≥ 4 which contains a set of r vertices V /∈ E(H) such
that every pair of V is contained in a hyperedge of H, then H contains a subgraph F which has
e(F ) ≤

(
r
2

)
and |V (F )| ≤ (r − 1)e(F ) − 1.

This statement is false for r = 3. Indeed, one could take H to be the loose triangle with edges
{1, 2, 4}, {2, 3, 5}, {1, 3, 6} which satisfies the hypothesis of Lemma 7.4 with V = {1, 2, 3} but
which fails to satisfy the conclusion.

Proof. Let V1, . . . , Vt be hyperedges such that every pair of V is contained in some Vi. By
throwing away redundant hyperedges, we can assume that |Vi ∩ V | ≥ 2 for all i and that
t ≤

(
r
2

)
. Let F ⊆ H be the hypergraph with hyperedges V1, . . . , Vt

First assume |V1 ∩ V2| ≥ 2. Then V1 ∪ V2 consists of at most 2r − 2 vertices, and it is not
difficult to see that it is possible to order the remaining sets so that |Vi \

⋃
j<i Vj| ≤ r − 1 and

that |Vt \
⋃

j<t Vj| ≤ r − 2. In total this implies that F has the desired properties.

Thus we can assume that |Vi ∩ Vj| ≤ 1 for all i, j. This means every pair of V is covered by
some unique Vi, so t = e(F ) =

(
r
2

)
and the number of vertices of F is at most r+ (r− 2)e(F ) =

(r − 1)e(F ) − (e(F ) − r) ≤ (r − 1)e(F ) − 1 since
(
r
2

)
− r ≥ 1 for r ≥ 4.

Lemma 7.5. For r ≥ 4, if H ∼ Gr
n,π and π ≤ n−(r−1)+o(1), then a.a.s. H does not contain a

set V as in Lemma 7.4.

Proof. If H did contain such a set V , then it must contain a subgraph F as in Lemma 7.4. Up
to isomorphism, there are only finitely many subgraphs that F could be, and for each of these
the expected number of copies of F in H is at most

O(πe(F )n|V (F )|) = O(πe(F )n(r−1)e(F )−1) = o(1).

We conclude the result by Markov’s inequality.
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We note that for π ≈ p(
r
2) this lemma applies when p ≈ n−2/r. Thus when p is about this value,

none of the “bad” configurations of Lemma 7.4 are likely to appear, and in this regime we have
the following.

Theorem 7.6 ([159]). For r ≥ 4 and p ≤ n−2/r+o(1), there exists some π ∼ p(
r
2) such that

Algorithm 2 produces a pair (G,H) with G ∼ Gn,p, H ∼ Gr
n,π, and such that a.a.s. every

hyperedge of H is the vertex set of a Kr in G.

We emphasize that the theorem as stated does not cover the case r = 3. However, Heckel [104]
showed that the same conclusion does hold for r = 3 by using a slightly different coupling.

For the proof of Theorem 7.6, we will need a standard result known as Harris’ inequality (also
referred to as Kleitman’s inequality).

Lemma 7.7 (Harris’ Inequality). Let f, g, h : Rn → R be functions such that f, g are non-
decreasing and h is non-increasing. Let X = (X1, . . . , Xn) be a random vector such that the
Xi’s are mutually independent. Then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)],

E[f(X)h(X)] ≤ E[f(X)]E[h(X)].

Proof. For n = 1, we deterministically have

(f(y) − f(z))(g(y) − g(z)) ≥ 0 ≥ (f(y) − f(z))(h(y) − h(z)).

Thus if Y, Z are independent random variables with the same distribution as X = X1, the first
inequality implies

0 ≤ E[f(Y )g(Y ) + f(Z)g(Z) − f(Y )g(Z) − f(Z)g(Y )] = 2E[f(X)g(X)] − 2E[f(X)]E[g(X)].

This gives the first bound, and the second bound follows from an identical argument.

Assume the result has been proven up to some n > 1. By the inductive hypothesis and the
n = 1 case applied to f ′(X1) := E[f(X)|X1] and g′(X1) = E[g(X)|X1], we find

E[f(X)g(X)] = E[E[f(X)g(X)|X1]] ≥ E[E[f(X)|X1] · E[g(X)|X1]]

= E[f ′(X1)g
′(X1)] ≥ E[f ′(X1)]E[g′(X1)] = E[f(X)]E[g(X)].

This proves the first inequality, and the second follows from an identical argument.

The main application of Harris’ inequality is when f is an indicator function. More precisely,
we say that a set system A ⊆ 2[n] is an upset if A ∈ A implies B ∈ A for all B ⊇ A, and we
similarly define what it means for A to be a downset.

Corollary 7.8. Let A,B be upsets and C a downset of [n], and let S ⊆ [n] be obtained by
including each element i independently and with probability pi. Then

Pr[S ∈ A ∩ B] ≥ Pr[S ∈ A] Pr[S ∈ B],

Pr[S ∈ A ∩ C] ≤ Pr[S ∈ A] Pr[S ∈ C].
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Proof. Define f : Rn → R by having f(x) = 1 if {i : xi > 0} ∈ A and f(x) = 0 otherwise.
Similarly define g, h with respect to B, C. The result follows from Harris’ inequality by letting
X = (X1, . . . , Xn) with the Xi being independent Bernoulli random with probability pi.

Proof of Theorem 7.6. Again, the only cases where the algorithm can fail is when πi is small,
so let us try and lower bound this quantity in terms of the (random) information we have at
the ith step. Let Y be the set of “yes” indices j such that we have revealed that Ej ⊆ E(G)
and let N be the set of “no” indices such that we have revealed Ej ̸⊆ E(G) . Let R =

⋃
j∈Y Ej

be the set of revealed edges, and let G′ be the random graph which contains all of the edges of
R, and which contains any e /∈ R independently and with probability p. Let E ′

j = Ej \R, and
let A′

j be the event that E ′
j ⊆ G′. It is not too hard to see that in total we have

πi = Pr[A′
i|
⋂
j∈N

A′
j].

Define
D0 =

⋂
j∈N, Ej∩Ei=∅

A′
j, D1 =

⋂
j∈N, Ej∩Ei ̸=∅

A′
j.

Intuitively D0 shouldn’t really influence πi, and we can prove this using Harris’ inequality. First
note that

πi = Pr[A′
i|D0 ∩D1] ≥ Pr[A′

i ∩D1|D0] = Pr[A′
i|D0] − Pr[A′

i ∩D1|D0] = Pr[A′
i] − Pr[A′

i ∩D1|D0],

where this last step used that A′
i and D0 are independent. Observe that A′

j is an upset for all
j (i.e. A′

j is achieved precisely when the random set E(G′) is an element of an appropriately
defined upset), D0 is a downset (since complements of upsets are downsets, and downsets/upsets
are preserved under intersection), and A′

i∩D1 is an upset. Thus by Harris’ inequality, we have1

Pr[A′
i] − Pr[A′

i ∩D1|D0] = Pr[A′
i] −

Pr[A′
i ∩D1 ∩D0]

Pr[D0]
≥ Pr[A′

i] − Pr[A′
i ∩D1].

Now let N1 = {j ∈ N : Ej ∩ Ei ̸= ∅}. Note that D1 =
⋃

j∈N1
A′

j, so by a union bound we have

πi ≥ Pr[A′
i] −

∑
j∈N1

Pr[A′
j ∩ A′

i] = p|E
′
i| −

∑
j∈N1

p|E
′
i∪E′

j | = p|E
′
i|(1 −Qi) ≥ p(

r
2)(1 −Qi),

where
Qi :=

∑
j∈N1

p|Ej\(Ei∪R)|.

Let ∆ denote the maximum degree of G. We next prove a (somewhat imprecise) claim.

Claim 7.9. Either ∆ > no(1), or for all i, either Qi = o(1) or Vi ∈ E(H) implies H contains
a configuration as in Lemma 7.4.

1This same sort of argument is essentially what you need to do prove Janson’s inequality Theorem 3.7.
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Proof. Assume ∆ ≤ no(1) and consider some index i. Given j, let Kj denote the graph on Vj
with edge set Ei ∪R, and let C1, . . . , Ck+1 with k ≥ 0 denote the connected components of Kj,
say with |V (Cℓ)| = rℓ for all ℓ. Observe that |Ej \ (Ei ∪ R)| is at least the number of edges
which aren’t contained in any Kj component, i.e.

|Ej \ (Ei ∪R)| ≥
(
r

2

)
−
∑(

rℓ
2

)
≥
(
r

2

)
−
(
r − k

2

)
,

where this last inequality holds since if there are two terms with rℓ ≥ 2, then one can adjust these
two terms to get a stronger bound. Because Kj is a graph using edges of R ∪Ei ⊆ G, we have
that the number of j ∈ N1 such that Kj has k+ 1 components is at most rnk∆r−k−1 = nk+o(1),
where the factor of r comes from the fact that j ∈ N1 implies that Kj contains at least one
vertex of Vi since Ei, Ej intersect in at least one edge.

In total then, the contribution to Qi coming from j such that Kj has k + 1 ≥ 2 components is
at most

r−2∑
k=1

nk+o(1)p(
r
2)−(r−k

2 ) = o(1),

where the equality follows from a simple calculation. Thus it remains to show that the con-
tribution from terms with Kj connected is small. Because there are only r∆r−1 = no(1) such
terms, a similar argument shows that the contribution is negligible for terms with e(Kj) <

(
r
2

)
.

The only non-trivial case then is when e(Kj) =
(
r
2

)
, i.e. when every edge of Vj is contained in

R∪Ei. In this case, Vi ∈ E(H) implies that H contains a configuration as in Lemma 7.4. Thus
for all i, either this happens or Qi = o(1), proving the result.

Since H ∼ Gr
n,π, we have that the expected degree of every vertex is roughly πnr−1 = no(1).

Thus if B1 is the “bad” event that ∆ > no(1), then by the Chernoff bound we have Pr[B1] = o(1).
Similarly if B2 is the event that H contains one of the configurations as in Lemma 7.4, then
Pr[B2] = o(1) by Lemma 7.5.

We are now ready to complete the proof. Recall that the theorem claims the result holds for

some π ∼ p(
r
2), so it suffices to prove it for π = p(

r
2)(1 − o(1)) where the o(1) term is the upper

bound for Qi from the claim. Now all we have to do is verify that with this choice, a.a.s. every
hyperedge of H is a Kr in G. The only way this can fail is if there exists an i with πi < π such
that Vi is added as a hyperedge to H. By the previous claim and our choice of π, this is only
possible if B1 ∪ B2 occurs. As these occur with probability o(1), we conclude the result.

As noted previously, the proof of Theorem 7.6 does not go through for r = 3 due to the existence
of loose triangles, but Heckel [104] managed to get around this issue. Essentially the idea of
her proof is to first do a coupling on edges of H and G which are in loose triangles and then to
run Riordan’s argument.

It is also proven in [159] that one can to some extent generalize this approach to finding F -
factors for sufficiently nice F . In this setting, H is not exactly a uniform hypergraph, but
instead a collection of copies of F in Kn chosen with some probability π.
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8 The Spreadness Theorem

Throughout this section we consider hypergraphs H which may have repeated edges, and we
will typically denote the edges of H by S. We recall that d(A) denotes the degree of a set of
vertices A in H, i.e. the number of edges of H containing A.

We say that a hypergraph H is r-bounded if all of its edges have size at most r. We say that a
hypergraph H is q-spread1 for some 0 < q < 1 if H is non-empty and if d(A) ≤ q|A||H| for all
sets of vertices A. The main result for q-spread hypergraphs is the following.

Theorem 8.1 ([12, 79]). Let H be an r-bounded q-spread hypergraph on V . There exists an
absolute constant K0 such that if W is a set of size Cq log r · |V | chosen uniformly at random
from V with C ≥ K0, then

Pr[W contains an edge of H] ≥ 1 − 8C−1.

We note that better quantitative versions of Theorem 8.1 exist, see e.g. Tao’s reformula-
tion below?, but as stated this theorem already does a lot. Let’s start by looking at some
applications before turning it’s short (though very dense!) proof.

8.1 Applications

Our first application is the following.

Theorem 8.2. Let Gr
n,m be the r-graph chosen uniformly at random amongst all r-graphs with

n vertices and m edges. Then there exists a constant C such that if m ≥ Cn log n and n is a
multiple of r, then Gr

n,m contains a perfect matching a.a.s. 2

It is not too difficult to show that this bound on m is essentially best possible. We note that
morally speaking, G2

n,m acts the same as Gn,p where p = m/
(
n
2

)
. In particular, one can use

Theorem 8.2 to prove that Gn,p contains a perfect matching a.a.s. if p = Ω(log n/n). Proving
Theorem 8.2 for r = 2 is not hard, but the result for general r was thought to be very difficult,
with its first proof due to Johansson, Kahn, and Vu [114] using a rather involved argument.
We will prove Theorem 8.2 in just a few lines with Theorem 8.1.

Proof. Let H be the hypergraph on E(Kr
n) where each hyperedge S is a perfect matching of

Kr
n. Observe that for any set A ⊆ E(Kr

n), we have

d(A) · |H|−1 =
(n− r|A|)!

(r!)n/r−|A|(n/r − |A|)!
· (r!)n/r(n/r)!

n!

= (r!)|A|
(
n/r

|A|

)(
n

r|A|

)−1 |A|!
(r|A|)!

≤ (r!)|A|(en/r|A|)|A| · (n/r|A|)−r|A| · (|A|)|A| · (r|A|/e)−r|A|

= (r!)|A|e(r+1)|A|n−(r−1)|A| ≤ (n/re3)−(r−1)|A|.

1Some texts would say that such an H is q−1-spread.
2This means “asymptotically almost surely”, i.e. the probability of this event happening tends to 1 as n

tends to infinity.
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Thus H is (n/re3)−r+1-spread. It is also (n/r)-uniform and has a ground set V = E(Kr
n) of size(

n
r

)
. By Theorem 8.1, we see that if m is at least as large as in our hypothesis, then with high

probability a random m-subset of H will contain a hyperedge, i.e. Hr
n,m will contain a perfect

matching with high probability.

Another basic example is the following.

Proposition 8.3. Let F be an r-graph and define t(F ) = max{|E(F ′)|/|V (F ′)| : F ′ ⊆ F}. Let
Gr

n,m be as in Theorem 8.2. There exists a constant C(F ) such that if m ≥ C(F )nr−1/t(F ), then
Gr

n,m contains a copy of F a.a.s.

A simple first moment argument shows that this bound is tight. One can prove Proposition 8.3
using a standard but somewhat tedious second moment argument, but using Theorem 8.1 gives
a shorter proof.

Proof. Let H be the hypergraph on E(Kr
n) whose hyperedges correspond to copies of F . Observe

that H being q-spread is equivalent to having (d(A)/|H|)1/|A| ≤ q for all A ⊆ V = E(Kr
n). Any

set A ⊆ E(Kr
n) of positive degree in H forms a subgraph F ′ ⊆ F with |E(F ′)| = |A|, and in

this case (
d(A)

|H|

)1/|A|

≤

(
n|V (F )|−|V (F ′)|(

n
|V (F )|

) )1/|A|

≤ |V (F )||V (F )| · n−|V (F ′)|/|E(F ′)|.

Thus we see that H is q-spread with

q = max{|V (F )||V (F )| · n−|V (F ′)|/|E(F ′)| : F ′ ⊆ F} = |V (F )||V (F )| · n−1/t(F ).

Plugging this into Theorem 8.1 gives the result.

The study of q-spread hypergraphs was initiated by Alweiss, Lovett, Wu, and Zhang [12] where
they proved a slightly weaker version of Theorem 8.1. Their motivation came from the Erdős
sunflower conjecture. A k-sunflower is a hypergraph with edges S1, . . . , Sk such that there
exists a set K called the kernel which has Si ∩ Sj = K for all i ̸= j.

Theorem 8.4. There exists an absolute constant C > 0 such that if H is an r-graph with at
least (Ck log r)r edges, then H contains a k-sunflower.

We note that [12] was the first to prove bounds of the form (log r)r+o(1) for fixed k, with [154, 22]
later giving better bounds in terms of k. Prior to [12], the best known bounds were of the form

rr−o(1). It is a famous conjecture of Erdős that one can prove a bound of the form c
r+o(1)
k .

Proof. We prove the result by induction on r, the r = 1 case being trivial. Let H be an r-
graph with at least (Ck log r)r edges. If H is not q-spread with q = (Ck log r)−1, then there
exists some A ⊆ V (H) such that d(A) ≥ (Ck log r)r−|A|. This means that the link hypergraph
HA = {S \A : S ∈ H, A ⊆ S} has size at least (Ck log r)r−|A|. Since HA is an (r−|A|)-uniform
hypergraph, by induction HA contains a k-sunflower, say with edges S1 \ A, . . . , Sk \ A ∈ HA.
It is not difficult to check that S1, . . . , Sk ∈ H forms a k-sunflower in H. We conclude that any
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H with at least (Ck log r)r edges which is not q-spread contains a k-sunflower, so from now on
we may assume H is q-spread.

Possibly by adding isolated vertices to H, we can assume that the size of the vertex set V of
H is a multiple of 2k. Let V1, . . . , V2k be a random partition of V such that each Vi ⊆ V has
size (2k)−1|V |. This means that each Vi is a uniformly chosen set of V of size (2k)−1|V | =
1
2
C(log r)q|V |. Let 1i be the indicator variable for the event that Vi contains an edge of H. By

Theorem 8.1, we have Pr[1i = 1] ≥ 1
2

provided C is sufficiently large. In this case, E[
∑

1i] ≥ k,
and hence there exists some partition V1, . . . , V2k such that

∑
1i ≥ k, which in particular means

there exist k disjoint edges of H. This is a k-sunflower in H, proving the result.

8.2 Proof of the Spreadness Theorem

A maybe simpler proof of this/Park-Pham can be found in Rao’s talk on “The Sunflower Lemma
and Monotone Thresholds”, see also the link commented out below

There are by now a number of proofs of Theorem 8.1, though most of them maintain the same
core set of ideas. The proof we present here is based off of a proof due to Rao [155] which gives
weaker quantitative bounds. We emphasize that while the proof itself is very short, it is also
very dense in content, so we’ll spend some time trying to build up some intuition for it.

Recall that H is an r-bounded q-spread hypergraph on V , and that we want to show that a
uniformly random set W of size Cq log r · |V | contains an edge of H with high probability.
In order to use an iterative approach, we consider a uniform random vector of disjoint sets
(W1, . . . ,Wlog r) each of size Cq|V |. Let W≤i =

⋃
j≤iWj, and note that W has the same

distribution as Wlog r, so it suffices to work with these random sets.

A super ideal situation for our iterative approach would be if for all S ∈ H, we have |S−W≤i| <
2−ir. Indeed, with this at i = log r, we would get that every edge is contained in W≤log r. Of
course, this is far too much to hope for. However, since we only need W≤log r to contain a
single edge, it would suffice to have this work out for some S. As such it perhaps make sense
to say that an edge S “succeeds” at step i if |S −W≤i| < 2−ir, and then to argue that with
high probability some edge succeeds at each step. Unfortunately this notion of success is too
restrictive to work. The key insight is that we can loosen our condition by saying that an edge
S “succeeds” if there exists some edge S ′ ⊆ S ∪W≤i (or equivalently S ′ −W≤i ⊆ S −W≤i)
such that |S ′ −W≤i| < 2−ir. The point is that (1) this condition is easier to achieve (and in
particular will be achieved by “most” S at each step), and (2) if some S succeeds at each step,
then the S ′ it points to for step log r will be contained in W≤log r. Need to fact check that this
is really what’s going on, and in particular we maybe need S ′ also to have not failed at this
point.

With this in mind, given W1, . . . ,Wi, we iteratively define “failure” hypergraph Fi to be those
S /∈ F≤i−1 :=

⋃
j≤i−1Fj (i.e. which haven’t failed at any previous step) such that for all

S ′ ∈ H − F≤i−1 satisfying S ′ ⊆ S ∪W≤i, we have |S ′ −W≤i| ≥ 2−ir. The key claim is the
following.

Lemma 8.5. Given W≤i−1, we have E[|Fi|] ≤ 2(C/4)−2−ir|H|.

To upper bound |Fi|, it will help to instead upper bound the size of an auxiliary hypergraph
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defined as follows. Given W1, . . . ,Wi, we define the fragment T (S,W≤i) of an edge S ∈ H−Fi−1

to be a set of minimum size in {S ′−W≤i : S ′ ∈ H−F≤i−1, S
′ ⊆ S ∪W≤i} (say the lexicograph-

ically smallest set if there are multiple of minimum size). We let Gi be the hypergraph where T
is an edge if T = T (S,W≤i) for some S ∈ Fi. Note that by definition this means |T | ≥ 2−ir, and
that for every S ∈ Fi, there exists some T ∈ Gi with T ⊆ S. This last condition says Gi is an
undercover of Fi, which will also be a key condition in our upcoming proof of the Park-Pham
Theorem.

Proof. Let w := Cq|V |, which we recall is the size of Wi, and let ni = |V − W≤i−1|. Let
P consist of all pairs (S,W ) with S ∈ H and W ∈

(
V−W≤i−1

w

)
such that S ∈ Fi whenever

Wi = W . Similarly given an integer a ≥ 2−ir, let Pa consist of all pairs (T,W ) with |T | = a
and W ∈

(
V−W≤i−1

w

)
such that T ∈ Gi whenever Wi = W . We claim that. Probably use t

instead of a

E[|Fi|] = |P|
(
ni

w

)−1

≤
∑

a≥2−ir

qa|H||Pa|
(
ni

w

)−1

. (10)

Indeed, the equality is straightforward. Because Gi is an undercover of Fi, for every pair
(S,W ) ∈ P there exists a pair (T,W ) ∈

⋃
aPa such that T ⊆ S. Moreover, for each set T of

size a, the number of S ∈ H with T ⊆ A is at most qa|H| by the definition of H being q-spread.
This gives the stated inequality

It remains to count the number of elements (T,W ) ∈ Pa. We will identify such a pair by first
specifying the set T ∪W , and then specifying T (which uniquely determines W ). We first note
that T ∪W is a set of size a+ w, so the number of choices for this step is at most(

ni

a+ w

)
≤ (ni/w)a ·

(
ni

w

)
= (Cq)−a

(
ni

w

)
.

Given T ∪ W , choose any S ′ ∈ H − F≤i−1 with S ′ − W≤i−1 ⊆ T ∪ W . Crucially, we must
have T ⊆ S ′ − W≤i−1, as otherwise if T = T (S,W≤i−1 ∪ W ) for some S, then taking T ′ =
S ′ − (W≤i−1 ∪ W ) ⊊ T (with the inclusion holding because S ′ − W≤i−1 ⊆ T ∪ W , and the
strictness holding if T ̸⊆ S ′ − W≤i−1), we find that T cannot be the fragment of S (since
T ′ is a smaller set than T satisfying the same properties). Note that S ′ /∈ F≤i−1 implies
|S ′ −W≤i−1| ≤ 2−i+1r, so the number of choices for T is at most 22−i+1r = 42−ir.

In total we conclude that |Pa| ≤ (Cq)−a42−ir
(
ni

w

)
. Plugging this into (10), we find

E[|Fi|] ≤
∑

a≥2−ir

qa|H| · (Cq)−a42−ir = 42−ir|H|
∑

a≥2−ir

C−a ≤ 2(C/4)−2−ir|H|,

with this last step holding for C sufficiently small.

With this lemma, we have

E[|F≤log r|] ≤
r∑

i=1

2(C/4)−2−ir|H| ≤ 16C|H|.

By Markov, the probability that |F≤log r| = |H| is at most 1
16C

, so F≤log r ̸= H is at least 1− 1
16C

.
As noted above, if there exists S ∈ H − F≤log r then S points to an edge which is contained in
W≤log r, so we conclude that this random set W≤log r of size Cq log(r)|V | contains an edge with
probability at least 1 − 1

16C
.
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8.3 Losing Logarithms

As we noted earlier, the bound of Theorem 8.2 is best possible. In particular, the log r term
of Theorem 8.1 is necessary in general. However, under certain conditions one can remove this
logarithmic term. This was first observed by Kahn, Narayanan, and Park [116] where they
found tight bounds on the threshold of a square of a Hamiltonian cycle in Gn,p. Here we briefly
outline how, under special circumstances, one can modify the previous proof to get rid of the
log r factor.

The main idea is that instead of setting our cutoff points for our fragments to be r/2, r/4, . . .,
we instead set them to be k1, k2, . . . for some suitable sequence ki with significantly fewer than
log r terms. In this setup, one could try to naively go through Lemma 8.5 and replace 2−i+1r
with ki−1 and 2−ir with ki, which will roughly give us

E[|Fi|] ≤ 2ki−1C−ki |H|,

but this will be terrible unless ki−1 differs from ki by a multiplicative constant depending on C.

One way we can get around this is if we impose that for all sets A and integers j with ki−1 ≥
|A| ≥ j ≥ ki, we have that the number of edges S ′ with |A ∩ S ′| = j is at most qj|H|. Note
that this is stronger than spreadness since, when taking j = |A|, the condition |A∩S ′| = j just
says S ′ is an edge containing A, so this bound exactly says degH(A) ≤ q|A||H|, which is the
spreadness condition. Assuming this condition holds, we will count the pairs (S,W ) ∈ P in a
more subtle way.

Let T = T (S,W≤i−1 ∪W ), which we note has |T | ≥ ki and T ⊆ S. We first specify T ∪W ,
which as before can be done in roughly (Cq)−a

(
ni

w

)
ways. We then pick some edge S ′ /∈ F≤i−1

such that A := S ′−W≤i−1 ⊆ T ∪W , where as before we have T ⊆ A. Since T ⊆ A∩S, we have
j := |A ∩ S| ≥ a. Given j, the number of S with |A ∩ S| = j is at most qj|H| by our condition
(and we have |A| ≤ ki−1 as otherwise we would have S ′ ∈ F≤i−1). Since we now know S and
T ∪W , we also know S ∪W (since T ⊆ S), and hence T (since T is purely a function of the set
S ∪W and W≤i−1 Need to double check this; in any case there are trivially at most 2j choices
for T ⊆ A ∩ S), and hence W = (T ∪W ) \ T (since T is disjoint from W by definition). With
this, we see that the total number of choices is at most∑

a≥ki

C−a

(
ni

w

)∑
j≥a

qj|H| ≈ C−ki

(
ni

w

)
|H|,

giving the desired result. A more formal theorem/proof can be found in [173], though the
approach used there is an older and more complicated version of the one presented here. See
also [82] for a proof in the specific case of getting rid of the logarithm for the square of a
Hamiltonian cycle.

Need to talk about Park-Pham somewhere.
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Part III

Entropy

9 Introduction

Throughout this part we let log denote logarithms base 2 unless stated otherwise, and we define
x log x = 0 whenever x = 0.

Let X be a discrete random variable and px = Pr[X = x]. The binary entropy of this random
variable is defined as

H[X] = −
∑

x∈supp(X)

px log(px),

where the sum ranges over all x in the support of X (i.e. those x with px > 0).

The definition for H[X] is quite strange if one has never seen it before. Roughly speaking, H[X]
can be thought of as measuring how much “information” the random variable X carries. For
example, one can easily check that H[X] = 0 if and only if X is deterministic, corresponding
to the fact that knowing the outcome of a deterministic process gives no new information.

9.1 The Main Properties

Before getting into applications, let us start by recording the most common properties of entropy
that will be used throughout this part, and for this it will be useful to establish some notation.

Given a random variable X and an event E, we define X|E to be the random variable X
conditioned on the event E. Given a pair of random variables X, Y we define

H[X|Y ] := Ey∼YH[X|Y = y] = −
∑
y

Pr[Y = y]
∑
x

Pr[X = x|Y = y] log(Pr[X = x|Y = y]).

The expression H[X|Y ] is commonly referred to as conditional entropy. For convenience, we
will often denote vectors of random variables (X1, . . . , Xn) as simply X1, . . . , Xn, e.g. by writing
H[X1, . . . , Xn] instead of H[(X1, . . . , Xn)]. For an integer i we let X<i := (X1, . . . , Xi−1).
Slightly more generally, if X is a random vector indexed by a set S with a total ordering <,
then we let X<s denote the elements of X indexed by t < s.

We now state our list of properties about the entropy function. The reader is not expected to
memorize this right away, though it might be a good idea to what extent these properties agree
with the intuition1 that H[X] measures the information of X.

Claim 9.1. The following properties hold for any random variable X.

1For example, Subadditivity says that the total information in the vector (X,Y ) is at most the sum of the
information of X and Y , Dropping Conditioning says that knowing less at the start can only lead to more
information gained, and Data Processing says that one can’t do anything to a random variable Y in order to
give it more information than it already has.
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� (Non-negativity) We have H[X] ≥ 0 with equality if and only if X is deterministic.

� (Maximality Principle) We have

H[X] ≤ log |supp(X)|,

with equality if and only if X is uniformly distributed on supp(X).

� (Chain Rule) For two random variables X, Y we have

H[X, Y ] = H[X] +H[Y |X].

More generally, given random variables X1, . . . , Xn we have

H[X1, . . . , Xn] =
∑
i

H[Xi|X1, . . . , Xi−1].

� (Subadditivity) For random variables X1, . . . , Xn we have

H[X1, . . . , Xn] ≤
∑
i

H[Xi].

� (Dropping Conditioning) For random variables X, Y, Z we have

H[X|Y ] ≤ H[X],

with equality if and only if X is independent of Y . Similarly

H[X|Y, Z] ≤ H[X|Y ],

with equality if and only if X conditioned on Y has the same distribution as X conditioned
on both Y and Z.

� (Data Processing Inequality) If X, Y, Z are random variables such that Z is a function of
Y , then

H[X|Z] ≤ H[X|Y ].

Not only does the function H[X] = −
∑

x px log(px) satisfy these properties, it is in fact essen-
tially the unique function satisfying (somewhat weaker versions of) these properties. Because
of this, H will be the “right” function for us to use to encode how much “information” X has.
For more on this see e.g. [96, Chapter 7].

We will not prove the claim since it’s a slight detour from our main goal of applying entropy to
combinatorics problems. Most proofs can be found in standard texts on entropy, e.g. the survey
by Galvin [85] (which contains even more properties, especially around conditional entropy).
The only exceptions might be proofs for the “only if” portion of Dropping Conditioning (which
we will never use); as well as the Data Processing Inequality (whose name is not entirely
standard), but this follows from observing that H[X|Y, Z] = H[X|Y ] by definition and that
H[X|Y, Z] ≥ H[X|Z] by Dropping Conditioning.
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There is plenty of redundancy in the list of properties above. For example Subadditivity follows
from the Chain Rule and Dropping Conditioning, but this property is used so frequently that
it will be useful to list it as a separate property. For our purposes, the most useful property
from this list will be the if and only if portion of the Maximality Principle. More precisely, we
have the following consequence of it (our name for which is non-standard).

Corollary 9.2 (Fundamental Property of Entropy). If X is a set and X ∈ X is chosen
uniformly at random, then

|X | = 2H[X].

This corollary shows that bounding the size of a set is equivalent to bounding the entropy of
a corresponding random variable, and sometimes this latter perspective can be easier to work
with, especially when it comes to proving upper bounds.

9.2 Application 1: Binomial Coefficients

We begin with a typical usage for entropy by upper bounding (sums of) binomial coefficients.
For this we define for p ∈ [0, 1] the binary entropy function

H(p) := −p log2(p) − (1 − p) log2(1 − p),

which is simply the entropy of a Bernoulli variable with probability of success p.

Proposition 9.3. For all k ≤ n/2, we have

k∑
i=0

(
n

i

)
≤ 2H(k/n)·n.

Proof. Let X denote the set of binary strings of length n with at most k 1’s. Note that

|X | =
k∑

i=0

(
n

i

)
,

so by the Fundamental Property of Entropy, proving our desired bound log |X | ≤ H(k/n) · n
is equivalent to showing H[X] ≤ H(k/n) · n where X ∈ X is chosen uniformly at random. For
this we use the following.

Claim 9.4. Each of the random variables Xi is a Bernoulli random variable with probability
of success p ≤ k/n ≤ 1/2.

Proof. By the symmetry of the problem, we see that each Xi is Bernoulli with the same prob-
ability of success p. By construction we deterministically have

∑
Xi ≤ k for all X ∈ X , so it

must be that p ≤ k/n, and this is at most 1/2 by hypothesis on k.

The claim above implies that for all i,

H[Xi] = H(p) ≤ H(k/n),
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with this last step using the (easy to prove) fact that H(p) is increasing for p ≤ 1/2. This
together with Subadditivity gives

H[X] ≤
∑

H[Xi] = H(k/n) · n,

proving the result.

We note that this bound is essentially tight, in the sense that if k is linear in n, then
(
n
k

)
=

2(1+o(1))H(k/n)·n.

The framework in our proof above is typical for the entropy method: we (1) started with a
uniform random object X and then (2) used entropy to upper bound the size of supp(X).
Although this is the most common framework for using entropy, it is also possible to (1’) start
with a non-uniform random object X and then (2’) use entropy to lower bound the size of
supp(X). We study one such examples in the following subsection.

9.3 Application 2: Walks in Graphs

One of the most famous open problems in extremal combinatorics is Sidorenko’s conjecture
stated below, where we recall that hom(F,G) denote the number of homomorphisms from a
graph F to a graph G.

Conjecture 9.5 (Sidorenko’s Conjecture). If F is a bipartite graph, then every n-vertex graph
G satisfies

hom(F,G)

n|V (F )| ≥
(

2e(G)

n2

)e(F )

.

This bound is asymptotically best possible for G = Gn,p, so the conjecture morally says that
every graph G contains as many (homomorphic) copies of each bipartite graph as one would
expect in the random graph of the same density. Note that the bound does not hold for F
non-bipartite (via taking G = K2).

There are very few examples of graphs F for which Sidorenko’s Conjecture is known. Here we
outline a nice entropy proof which shows that Sidorenko’s Conjecture holds for all F which
are paths. In this setting, we observe that homomorphisms from paths of length k to G are
equivalent to walks of length k in G, i.e. sequences of vertices (x1, . . . , xk+1) such that xi ∼ xi+1

for all 1 ≤ i ≤ k. As such, the following result (commonly known as the Blakey-Roy Theorem
(though they weren’t quite the first to prove it)) is equivalent to Sidorenko’s Conjecture for
paths.

Theorem 9.6 (Blakey-Roy [28]). If G is an n-vertex graph with m ≥ 1 edges, then the number
of walks of length k in G is at least

2m(2m/n)k−2.

Note that this bound is tight whenever G is regular.

63



Proof. Let X = (X1, . . . , Xk+1) be a random walk of length k in G chosen in the following
non-uniform way: choose the pair (X1, X2) uniformly at random amongst all pairs such that
X1 ∼ X2, and given Xi−1 for i ≥ 3, we choose Xi uniformly at random amongst the neighbors
of Xi−1. Observe that X is indeed always a walk of length k (with us implicitly using that
(X1, X2) exists due to m ≥ 1). We can express its entropy as

H[X] =
k+1∑
i=1

H[Xi|X<i]

= H[X1] +H[X1|X2] +
k+1∑
i=3

H[Xi|Xi−1]

= H[X1, X2] +
k+1∑
i=3

H[Xi, Xi−1] −H[Xi−1], (11)

where here the first and last equality used the Chain Rule, and the second used the equality
case of Dropping Conditioning (since Xi depends only on Xi−1).

We claim (crucially) that (Xi−1, Xi) is uniformly random amongst all pairs such that Xi−1 ∼ Xi.
This is true for i = 2 by construction, so assume we have proven it true up to some value i ≥ 3.
In this case, for any (y, z) ∈ V (G)2 such that y ∼ z, we have (by conditioning on every possible
value that Xi−2 ∼ Xi−1 can take on)

Pr[(Xi−1, Xi) = (y, z)] =
∑

x∈N(y)

Pr[(Xi−2, Xi−1) = (x, y)] · Pr[Xi = z|(Xi−2, Xi−1) = (x, y)]

=
∑

x∈N(y)

1

2m
· 1

deg(y)
=

1

2m
,

with this last equality using the hypothesis that (Xi−2, Xi−1) is distributed uniformly at random
and that Xi is a uniform random neighbor of Xi−1. This establishes the claim.

With this claim, we have by the Maximization Principle that H[Xi, Xi−1] = log(2m) for all i,
and also that H[Xi−1] ≤ log(n) for all i. Using this with (11) gives

H[X] ≥ (k − 1) log(2m) − (k − 2) log(n).

Let Wk denote the set of walks of length k in G. Since X is a random element from Wk, we
have H[X] ≤ log |Wk|, which combined with the lower bound for H[X] above gives the desired
result.

To emphasize, proof above would theoretically have worked if we considered a uniform ran-
dom element X̃ ∈ Wk instead of the non-uniform X described above, in the sense that the
Maximization Principle gives

H[X̃] ≥ H[X] ≥ (k − 1) log(2m) − (k − 2) log(n).

However, it is not clear how one would prove the lower bound of (k−1) log(2m)− (k−2) log(n)
for H[X̃] directly without going through X first. More generally, it can be useful when working
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with lower bounds from entropy to work with a distribution for X which is “natural” to the
problem rather than one which is uniform. We also emphasize that to obtain tight examples, it
is crucial that our choice of X is actually distributed uniformly whenever we are working with
an extremal example (as otherwise the Maximization Principle shows that we can not hope to
obtain a tight bound).

The exact same proof as above can easily be extended to prove Sidorenko’s Conjecture for
all trees at the cost of more complicated notation. A different and somewhat more involved
entropy argument can be used to show Sidorenko’s conjecture holds whenever F has a vertex
which is adjacent to every vertex in the other partition set. This result was originally proven
by Conlon, Fox, and Sudakov [50] using Dependent Random Choice And I’m not sure who
gave the entropy proof for this, though it can be found in notes of Yufei Zhao.

9.4 Further Applications

While one can prove a number of results using only the entropy properties listed above (see
for example Theorem 13.2), we can greatly increase the power of this method by adding in
a few extra tools which we explore in the forthcoming two sections. Much more can be said
regarding the entropy method than we do in this text, and we refer the reader to the survey by
Galvin [85] for additional examples on this topic.
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10 Shearer’s Entropic Lemma

In this section we consider a strengthening of the Subadditivity property of entropy known as
Shearer’s lemma, which plays a central role in many applications of the entropy method (so
much so that it is often listed as one of the basic properties of entropy). For this, given a vector
X = (X1, . . . , Xn) and a set F = {i1, . . . , ik} ⊆ [n], we define XF = (Xi1 , . . . , Xik).

Lemma 10.1 (Shearer’s Lemma). Let X = (X1, . . . , Xn) and let F ⊆ 2[n] be a set system such
that every i ∈ [n] is contained in at least d sets of F , i.e. such that F has minimum degree at
least d. Then

H[X] ≤ d−1
∑
F∈F

H[XF ].

Note that if F consists of the singletons {i}, then Shearer’s lemma with d = 1 exactly recovers
subadditivity.

The statement of Lemma 10.1 is a little strange at first glance. Roughly speaking, the intuition
is that because each i appears at least d times in F , the sum on the righthand side in principle
has as much information as d independent copies of X, and hence dividing by d should in
principle be an upper bound for the amount of information of X. This intuition can easily be
made precise if the Xi are mutually independent, as in this case we have

d ·H[X] =
∑
i

d ·H[Xi] ≤
∑
i

degF(i) ·H[Xi] =
∑
F∈F

H[XF ].

A similar line of reasoning gives the result in general.

Proof. Our proof will go through the same logic as in the independent case, except that we will
replace both of our equalities with an application of the Chain Rule. To this end, given i, F
with i ∈ F ∈ F , we define (i, F ) = {j ∈ F : j < i}. With this we have

d ·H[X] =
∑
i

d ·H[Xi|X<i]

≤
∑
i

degF(i) ·H[Xi|X<i] =
∑
i

∑
F

H[Xi|X<i]

≤
∑
i

∑
F

H[Xi|X(i,F )] =
∑
F

H[XF ],

where this last inequality used Dropping Conditioning.

We begin with a basic application of Shearer’s lemma to a problem from geometry. Given a
vector x ∈ Zn and i ∈ [n], we define the projection πi(x) = (x1, . . . , xi−1, xi+1, . . . , xn), and
given S ⊆ Zn we define πi(S) = {πi(x) : x ∈ S}. A natural extremal question is: given the
sizes of πi(S) for all i, how large can S itself be?

A natural candidate for a construction here is to take S to be a cube whose ith side length is
|πi(S)|−(n−2)/(n−1)

∏
j |πj(S)|1/(n−1). Indeed, it is easy to check that each πi(S) has the prescribed

size, and with this we have |S| =
∏

|πi(S)|1/(n−1). It turns out this is best possible.
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Theorem 10.2 (Discrete Loomis-Whitney Theorem). If S ⊆ Zn, then

|S| ≤
∏

|πi(S)|1/(n−1).

This result is essentially equivalent to the Loomis-Whitney Theorem [134], which says that if
K is a measurable body in Rn, then voln(K) ≤

∏
voln−1(πi(K))1/(n−1), where here πi is the

corresponding projection map and voln is the n-dimensional volume measure. Indeed, one can
shows that it suffices to prove Loomis-Whitney when K is the union of axis-aligned unit cubes
via an approximation argument, and in this case one can replace the center of each unit cube
of K by its center, which exactly translates to the present problem.

Proof. As per usual, we start by picking X to be a uniformly random element of S. Observe
that, in the notation of Shearer’s lemma, πi(X) = X[n]\{i}. Motivated by this, we define F
to consist of all sets of the form [n] \ {i}. Since this set system has minimum degree n − 1,
Shearer’s lemma gives

log2 |S| = H[X] ≤ 1

n− 1

∑
H[X[n]\{i}] =

1

n− 1

∑
H[πi(X)] ≤ 1

n− 1

∑
log2 |πi(S)|,

with this last step using πi(X) ∈ πi(S) (since X ∈ S) together with the Maximization Principle.
Exponentiating both sides gives the result.

We next look at a more involved application of Shearer’s Lemma involving homomorphisms
between graphs. To this end, we let hom(G,H) denote the number of homomorphisms ϕ from
G to H. For example, hom(G,Kr) is the number of proper r-colorings of G. We will also want
to allow our target graph H to contain loops. For example, if H is a K2 with a loop on one
vertex, then one can check that hom(G,H) counts the number of independent sets of G.

The fundamental question we want to ask is: given a target graph H and some family of graphs
G, which G ∈ G maximizes hom(G,H)? One natural family to consider is the set of n vertex
d-regular graphs. While this problem is still open for general H, there is a very clean solution
when we restrict to bipartite G.

Theorem 10.3 ([115, 185]). If G is a bipartite n-vertex d-regular graph, then for any graph H
(possibly with loops), we have

hom(G,H) ≤ hom(Kd,d, H)n/2d.

This bound is sharp by considering G to be the disjoint union of n/2d copies of Kd,d. This result
was first proven in the case when H is a K2 with a loop (i.e. when counting independent sets in
G) by Kahn [115], with his argument later generalized considerably by Galvin and Tetali [87]
to the present theorem.

Proof. It will be convenient to express our homomorphisms as vectors. To this end, given a
homomorphism ϕ : V (G) → V (H), we define the vector Xϕ ∈ V (G)V (H) by having Xϕ

u = ϕ(u)
for each u ∈ V (G). Let ϕ be a uniform random homomorphism from G to H, and let X = Xϕ.
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Let U ∪ V denote a bipartition of G, noting that |U | = |V | = n/2 since G is regular. By the
Maximization Principle and the chain rule, we have

log(hom(G,H)) = H[X] = H[XU ] +H[XV |XU ].

Because G is d-regular, every u ∈ U is contained in exactly d of the sets F := {N(v) : u ∈ U},
so by Shearer’s lemma we have

H[XU ] ≤ d−1
∑
v∈V

H[XN(v)].

By Subadditivity and dropping Conditioning we have

H[XV |XU ] ≤
∑
v∈V

H[Xv|XU ] ≤
∑
v∈V

H[Xv|XN(v)],

so in total we find

log(hom(G,H)) = H[X] ≤ d−1
∑
v∈V

H[XN(v)] + d ·H[Xv|XN(v)], (12)

and it now suffices to upper bound each term in the sum.

Fix some v ∈ V . For each vector x of length d indexed by V (H), let A(x) denote the set
of vertices of V (H) which are adjacent to every vertex of x1, . . . , xd. Equivalently, A(x) is
the set of “available” values that Xv can take given that XN(v) = x (here we use that X
corresponds to a homomorphism, i.e. Xv must be adjacent to every vertex of XN(v)). We
have H[Xv|XN(v) = x] ≤ log |A(x)| by the Maximization Principle, which together with the
definition of (conditional) entropy gives

H[XN(v)] + d ·H[Xv|XN(v)] =
∑
x

Pr[XN(v) = x]
(
− log(Pr[XN(v) = x]) + d ·H[Xv|XN(v) = x]

)
≤
∑
x

Pr[XN(v) = x]

(
log

(
|A(x)|d

Pr[XN(v) = x]

))

≤
∑
x

log(|A(x)|d) = log

(∏
x

|A(x)|d
)
,

where the second inequality used Jensen’s inequality together with the convexity of log.

Crucially, we observe that
∏

x |A(x)|d where x ranges all d-length vectors indexed of H is exactly
equal to hom(Kd,d, H). Indeed, each homomorphism from Kd,d can be uniquely identified by
first choosing a vector x based on how the vertices on the bottom half of Kd,d map to H,
and after this each of the d remaining vertices ofKd,d can map to any vertex in A(x) while
maintaining the homomorphism property. Combining this with the inequality above gives

H[XN(v)] + d ·H[Xv|XN(v)] ≤ log(hom(Kd,d, H)),

and plugging this into (12) and using |V | = n/2 gives

log(hom(G,H)) ≤ d−1
∑
v∈V

log(hom(Kd,d, H)) = log(hom(Kd,d, H))n/2d.
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The result above gives optimal bounds for hom(G,H) when G is bipartite, and an elegant idea
of Zhao’s allows one to immediately lift this result to all G for certain H. In particular, we get
the following.

Theorem 10.4 (Zhao [185]). Let i(H) denote the number of independent sets of a graph H.
If G is an n-vertex d-regular graph, then i(G) ≤ i(Kd,d)

n/2d.

Proof Sketch. Consider the “bipartite double cover” G × K2, i.e. the graph with vertex set
V (G) × {1, 2} where (u, s) ∼ (v, t) if and only if u ∼G v and s ̸= t. A simple but clever
injectivity argument shows i(G × K2) ≥ i(G)2. Because G × K2 is a d-regular (2n)-vertex
bipartite graph, we have by Theorem 10.3 (applied when H is K2 with a loop) that

i(G)2 ≤ i(G×K2) ≤ i(Kd,d)
n/d,

giving the result.

This same bipartite double cover trick can be used to extend Theorem 10.3 to all d-regular
graphs for a few other choices of H [186], though there exist H for which such an extension is
impossible (e.g. H being two isolated vertices with loops fails for G = K3). Finally, we note
a substantial extension of Theorem 10.3 due to Sah, Sawhney, Stoner, and Zhao [164], who
showed that any graph G (not necessarily regular) which is triangle-free and has no isolated
vertices satisfies for all graphs H that

hom(G,H) ≤
∏

uv∈E(G)

hom(Kdu,dv , H)
1

dudv .

There proof does not use entropy at all, but instead a very elaborate set of analytic inequalities.
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11 Random Chain Rules

This section concerns a strengthening of the chain rule. Historically, this strengthening was
first used to give an entropy proof of the following result.

Theorem 11.1 (Brégman’s Theorem [34]). If G is a bipartite graph with bipartition U ∪ V
such that |U | = |V | = n, then the number of perfect matchings of G is at most∏

u∈U

(deg(u)!)1/ deg(u).

Observe that this bound is tight by considering disjoint unions of complete bipartite graphs.
This was originally proven by Brégman [34], and later Radhakrishnan [153] gave an elegant
entropy-based proof that we present below.

Before stating the key lemma needed to prove Theorem 11.1, let’s first try and prove this result
naively from first principles and see where things go wrong.

As usual, we start with a uniform random perfect matching M of G. We then translate M into
a vector X indexed by U by having Xu ∈ V be the unique neighbor of u in M . We fix some
arbitrary ordering < of the vertices of U , and then apply the chain rule to obtain

H[X] =
∑
u

H[Xu|X<u].

At this point, the naive entropy argument calls for upper bounding H[Xu|X<u] by log of the
number of possible values Xu can take given the values of X<u. To this end, we define A<u ⊆
N(u) to be the set of neighbors of u which do not appear in X<u (i.e. this is the set of available
neighbors of u for M given the information in X<u). The Maximality Principle then gives∑

u

H[Xu|X<u] ≤
∑
u

log(|A<u|).

Unfortunately, for any given u and ordering <, we can’t say anything about |A<u| other than
|A<u| ≤ deg(u). Applying this worst-case bound for all u gives a trivial upper bound of∏

u deg(u) in the end.

While it is true that worst case we can have |A<u| = deg(u) for any given u, intuitively we
should “typically” have |A<u| ≈ 1

2
deg(u), since for a “random” M we would expect around

half of u’s neighbors to be matched in M to vertices appearing before u in < and half to be
matched to vertices after u. Again, this intuition may not hold for a given M and <, but this
intuition can be made precise if we consider a random ordering < instead of a fixed one. To
this end, one can consider the following random variant of the chain rule.

Lemma 11.2 (Random Chain Rule). Let X be a vector indexed by a set S and let < be a
random ordering of S. Then

H[X] =
∑
s∈S

E<[H[Xs|X<s]].

Indeed, the proof of this follows from the fact that equality holds for any fixed < (by the usual
chain rule), and hence equality also holds when one takes expectations. With this we can
quickly adapt our previous failed attempt to give Theorem 11.1.
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Proof of Theorem 11.1. Let < denote a uniform random ordering of U . Keeping all of the
notation from the argument above, we have by the random chain rule that

H[X] =
∑
u

E<[H[Xu|X<u]] ≤
∑
u

E<[log(|A<u|)]. (13)

We claim that |A<u| is distributed uniformly at random amongst [deg(u)]. Indeed, fix any
perfect matching M (so now all the randomness lies in the much simpler random object <)
and let v denote the neighbor of u in M . We then observe that |A<u|| = i if and only if i − 1
vertices of N(u) \ {v} have their neighbors in M appear after u under <. Since < gives a
uniform random ordering on N(u) regardless of our choice of M , we conclude that |A<u| is
indeed equally likely to be any value in [deg(u)]. Again, we emphasize that this result holds
regardless of the fixed value of M , and hence |A<u| continues to be uniformly distributed even
if we do not condition on M .

With this claim, we can write (13) above as

H[X] ≤
∑
u

1

deg(u)

deg(u)∑
i=1

log(i) =
∑
u

log(deg(u)!)

deg(u)
.

Exponentiating both sides gives the result.

Unpublished work of Kahn and Lovász generalizes Brégman’s theorem to non-bipartite graphs
by proving that every graph has at most

∏
u∈V (G) d(u)!1/2d(u) perfect matchings. An entropy

proof of this result was given by Cutler and Radcliffe [54], with this proof being complicated
by the fact that |A<u| is no longer uniformly distributed if u has edges inside N(u). A short
proof of Alon and Friedland [6] deduces this result of Kahn and Lovász directly from Brégman’s
theorem.

Our proof above used the random chain rule to count the number of 1-factors (i.e. perfect
matchings) in a graph. We next use a somewhat more complex version of this argument to count
1-factorizations in Kn, which we recall are ordered partitions of E(G) into perfect matchings.
For example, K4 has 6 different 1-factorizations, namely ({12, 34}, {13, 24}, {14, 23}) and all of
its permutations.

I don’t know if there’s a relevant citation here.

Theorem 11.3. The number of 1-factorizations of Kn when n is even is at most ((1 +

o(1))n/e2)(
n
2).

Observe that this improves upon the trivial upper bound (n− 1)(
n
2) (which is just the number

of ways to partition the edge set of Kn into n− 1 edge-disjoint graphs).

Proof. For this proof, it will be slightly more convenient to work with a base e notion of entropy
rather than the usual base 2 notion. To this end, if X is a random variable with px = Pr[X = x],
then we define

He[X] = −
∑
x

px loge(PX).
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Note that He[X] = loge(2)H[X], and in particular, essentially all of the properties for H[X]
continue to hold for He[X].

Let M denote a uniformly random 1-factorization of Kn. We will think of M as assigning to
each edge uv of Kn a color in [n − 1] such that the edges in color i form a perfect matching
(equivalenlty, M is a proper edge coloring of Kn with n−1 colors). Let X be the vector indexed
by E(Kn) where Xuv equals the color assigned to uv by M .

As before, we will consider a uniformly random ordering < on E(Kn), but for technical reasons
we will want to form this ordering in a slightly more complex way. To this end, assign to each
edge uv a random weight wuv chosen independently and uniformly from [0, 1], then let < be
the ordering of E(Kn) which has uv < xy iff wuv < wxy. Again we emphasize that < has the
same distribution as if we just chose it to be uniformly at random, but it will be convenient for
us to have these extra wuv parameters to work with. An application of the random chain rule
then gives

He[X] =
∑
uv

E<[He[Xuv|X<uv]] ≤
∑
uv

E<[loge(|A<uv|)], (14)

where here Auv denotes the set of colors that are “available” for uv given X<uv; i.e. Auv consists
of the colors i that do not lie on any edge xy which intersects uv and which has xy < uv under
the coloring M .

It remains to estimate E<[loge(|A<uv|)], and for this, it will suffice to condition on the 1-
factorization M and prove an upper bound that is independent of M . From now on we fix M ,
noting that A<uv will always contain the color c which M assigns to uv. Observe that a color
i ∈ [n− 1] \ {c} will be in A<uv if and only if uv appears in the ordering before the two edges
incident to uv which are colored i by M (note that exactly two such edges exist since M is a
1-factorization). Conditional on the value wuv, the probability that this happens for any given
i is (1 − wuv)

2. Thus in total, we have

E<[loge(|A<uv|)|wuv,M ] = loge(1 + (n− 2)(1 − wuv)
2).

As wuv was distributed uniformly at random in [0, 1], we find

E<[loge(|A<uv|)|M ] =

∫ 1

0

loge(1 + (n− 2)(1 − x)2)dx.

Summing this over all edges uv together with (14) gives

He[X] ≤
(
n

2

)∫ 1

0

loge(1 + (n− 2)(1 − x)2)dx = loge(n) − 2 + o(1),

where this last equality follows from some fiddly integral analysis1 (with the intuition being
that the integrand is close to loge(n(1 − x)2) = loge(n) + 2 loge(1 − x), and this ends up
integrating to the desired value). Exponentiating both sides by e gives that the total number

of 1-factorizations is at most ((1 + o(1))n/e2)(
n
2) as desired.

1Slightly more precisely, one can argue that the integral evaluated from 1 − n−.1 to 1 is at most
O(n−.1 log n) = o(1), and outside of this range the difference between the integrand loge(1 + (n − 2)(1 − x)2)
and loge(n(1− x)2) is o(1).
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As an aside, if in (14) we used the Chain Rule instead of the Random Chain Rule, then we
would pessimistically use |A<uv| ≤ n− 1 for all uv, and this would give the trivial upper bound

(n− 1)(
n
2).
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12 Entropic Double Counting and The Mixture Bound

Shearer’s Lemma and random chain rules have by now become standard tools for upper bound-
ing the entropy of random variables. Here we introduce a more recent tool developed by Chao
and Yu which, while more complicated to apply, has the potential to either upper or lower
bound the entropy of a given variable. This tool is in essence a entropic version of double
counting, in the sense that it generalizes the following basic fact.

Lemma 12.1. If S1, . . . , Sn are sets such that each x ∈
⋃
Si belongs to at most d of the Si

sets, then
∑

|Si| ≤ d|
⋃
Si|.

Indeed, a formal way to prove this fact is by considering the set of pairs (x, i) with x ∈
⋃
Sj and

i such that x ∈ Si. The number of such pairs is exactly equal to
∑

|Si|, while the hypothesis
of the lemma implies the number of pairs is at most d|

⋃
Si|. For our purposes we’ll want an

analog of this bound for “unions” of random variables in the following sense.

Definition 1. We say that random variables X1, . . . , Xn have d-wise disjoint supports if for
each x ∈

⋃
supp(Xi) there exist at most d indices i with x ∈ supp(Xi). We say that a random

variable M is a mixture of the random variables X1, . . . , Xn if M = XI for some random index
I ∈ [n] which is independent of the Xi random variables.

For example, one mixture M of some random variables X1, X2, X3 would be the random variable
M which equals X1 with probability 1/2 and which equals either of the other two variables with
probability 1/4.

Lemma 12.2 (Mixture Bound [43]). If X1, . . . , Xn are random variables with d-wise disjoint
supports, then there exists a mixture M of these random variables satisfying∑

2H[Xi] ≤ d2H[M ].

We emphasize that it is not immediately clear whether this bound is actually useful or how one
might apply it in practice. To partially justify this bound, we will consider a quick application,
namely to the case when each Xi is a uniform random element from the Si sets defined in
Lemma 12.1. In this case, the Xi have d-wise disjoint support by hypothesis and satisfy H[Xi] =
log(|Si|) for all i, so we conclude from the Mixture Bound that there exists some M such that∑

|Si| =
∑

2H[Xi] ≤ d2H[M ].

Note that this bound is always at least as strong as Lemma 12.1 since M is a random variable
with support in

⋃
Si, and hence its entropy is at most log(|

⋃
Si|). Thus the Mixture Bound

can be viewed as a strengthened version of the double counting bound from Lemma 12.1, and in
particular has the potential to improve arguments which use a naive double counting argument.
We now prove the Mixture Bound.

Proof. Let M be an arbitrary mixture that we will specify later on, say with M = XI for some
I with Pr[I = i] = pi for all i. Playing around with chain rules, we find that

H[M, I] = H[I] +H[M |I] = H[M ] +H[I|M ].
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Moving things around, we get

H[M ] = H[I] +H[M |I] −H[I|M ]

=
∑
i

(−pi log(pi) + piH[Xi]) −H[I|M ]

≥
∑
i

(−pi log(pi) + piH[Xi]) − log(d), (15)

where the second equality used the definition of (conditional) entropy and the inequality used
that conditional on M , the variable I can take on at most d values by hypothesis of the Xi

having d-wise disjoint supports.

It remains then to choose values of pi so that the sum in (15) is as large as possible. By doing
some basic Langrange multiplier calculations, one can deduce that this sum is maximized when
each pi is proportional to 2H[Xi], meaning that the optimal choice is

pi :=
2H[Xi]∑
j 2H[Xj ]

.

In this case log(pi) = H[Xi] − log(
∑

2H[Xj ]), which together with (15) implies

H[M ] ≥
∑
i

pi log(
∑
j

2H[Xj ]) − log(d) = log(
∑
j

2H[Xj ]) − log(d) = log(d−1
∑
j

2H[Xj ]),

and rearranging gives the desired inequality.

We note that while one can in principle extract the “explicit” probabilities pi from this proof
to precisely define which mixture M gives the bound of Lemma 12.2, these probabilities are
(complicated) functions of entropies which we typically do not understand, so specifying the
values of these pi will not be useful. As such, the Mixture Bound will only be helpful in settings
where we can effectively upper bound the entropy of arbitrary mixtures M . We’ll look at two
such examples to see how the technique works, with these examples later playing important
roles in the main results we prove later on in the chapter.

We begin by using the Mixture Bound to upper bound the entropy of an appropriately chosen
set of tuples of random vectors.

Lemma 12.3. Let X(1), X(2), . . . be random sequences of length n with X(i) = (X
(i)
1 , X

(i)
2 . . . , X

(i)
n ).

If there exists a random variable X such that each X
(i)
j has the same distribution as X, and if

the X(i) sequences have d-wise disjoint supports, then∑
i

2H[X(i)] ≤ d2nH[X].

Proof. By the Mixture Bound it suffices to prove that any mixture M of the X(i) sequences
has entropy at most nH[X]. To this end, let M be an arbitrary mixture, say with I a random
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variable such that M = XI . Note that M can be written as M = (M1, . . . ,Mn) where each Mj

is itself a mixture of the X
(i)
j variables, namely with us having Mj := X

(I)
j . By Subadditivity,

H[M ] ≤
∑
j

H[Mj].

We claim that each Mj has the same distribution as X, from which the bound H[M ] ≤ nH[X]
will follow from the inequality above. Indeed, for any x ∈ supp(X) we observe that

Pr[Mj = x] = Pr[X
(I)
j = x] =

∑
i

Pr[I = i] Pr[X
(i)
j = x] =

∑
i

Pr[I = i] Pr[X = x] = Pr[X = x],

where the middle equality used that each X
(i)
j has the same distribution as X. We conclude

the result.

We emphasize that the proof above is a (slight) generalization of the usual Subadditivity proof
showing H[X(i)] ≤ nH[X] for each i and that it concludes with a bound stronger than the
naive bound of maxiH[X(i)] ≤ nH[X] obtained by taking the maximum over the bounds
H[X(i)] ≤ nH[X]. It turns out that this sort of generalization will always happen when we
upper bound the entropy of an arbitrary mixture M of random variables Xi. Indeed, showing
H[M ] ≤ C for some real number C and an arbitrary mixture M in particular implies H[Xi] ≤ C
for all i since M could be the mixture which is identically Xi. As such, our proof showing
H[M ] ≤ C must simultaneously generalize proofs showing that H[Xi] ≤ C for all i.

Rephrasing the above, we find that the Mixture Bound essentially says that if we have a
set of random variables X1, . . . , Xn for which we can prove an upper bound of the form
maxiH[Xi] ≤ C in a “robust way” (in the sense that this bound holds for arbitrary mixtures
of these variables as well), then we can improve this upper bound on maxiH[Xi] to an upper
bound for a “weighted sum” of the entropies H[Xi], notably the sum of the form

∑
2H[Xi]. This

is spiritually similar to the idea behind random chain rules where we can bound the average of
a set of random variables more effectively than we can bound an individual term.

Our next application requires a slight alteration to the Mixture Bound.

Lemma 12.4 (Conditional Mixture Bound). We say that a set of random variables X1, . . . , Xn

has (d, Z)-wise disjoint support for some random variable Z if for every z in the support of Z, the
conditioned random variables X1|{Z = z}, . . . , Xn|{Z = z} have d-wise disjoint support. For
such random random variables, there exists a mixture M of the variables X1, . . . , Xn satisfying∑

2H[Xi|Z] ≤ d2H[M |Z].

Sketch of Proof. One can go through the exact same argument as in the Mixture Bound except
now each entropy term is additionally conditioned by the random variable Z and the exact
same conclusion, and with this the exact same proof goes through. In particular, one now uses
the bound H[I|M,Z] ≤ log(d) due to the fact that conditional on Z and M , the number of
possible values of I is at most d by hypothesis.

We can use this to lower bound the entropy of certain random variables.
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Lemma 12.5. Let X1, . . . , Xr be random variables such that Xi ̸= Xi+1 always holds for all i,
and such that the conditioned random variables Xi|{X<i = z} and Xi+1|{X<i = z} have the
same distribution for all i and all z in the support of X<i. Then for all i,

2H[Xi|X<i] ≥ 2H[Xi+1|X≤i] + 1.

One scenario where this will prove to be used is when we take X1, X2 to be a uniformly random
pair of adjacent vertices in a graph G. As a concrete example, if G is r-regular, then X1 will
simply be a uniform random vertex in this case, and conditional on X1, the random variable
X2 will be a uniform random neighbor of X1. As such, Lemma 12.5 with i = 1 will imply the
(trivial) bound |V (G)| ≥ r + 1 which is tight when r = |V (G)| − 1, i.e. when G is a clique.

Proof. After making the observation that 1 = 20, we are naturally led to try applying the (Con-
ditional) Mixture Bound to some random variables Y1, Y2, Z satisfying H[Y1|Z] = H[Xi+1|X≤i]
and H[Y2|Z] = 0, i.e. such that Y2 is a deterministic random variable conditional on Z. More-
over, we will need any mixture M of Y1, Y2 to satisfy H[M |Z] ≤ H[Xi|X<i].

With the setup above, we are naturally led to consider Y1 = Xi+1 and Z = X≤i. For Y2, we
want our choice of random variable to be deterministic with respect to Z, and this suggests we
should take Y2 = Xj for some j ≤ i. Since we ultimately want to show H[M |Z] ≤ H[Xi|X<i]
which involves the variable Xi, it perhaps makes the most sense to pick Y2 = Xi. Observe
crucially then that Y1, Y2 have (d, Z)-wise disjoint supports, as conditioning on Z = X≤i in
particular conditions on the value x that Xi takes on, and the Y1|{Xi = x} = Xi+1|{Xi = x}
can never have x in its support since we assumed Xi ̸= Xi+1 always holds.

With the above in mind, let M be an arbitrary mixture of Y1 = Xi+1 and Y2 = Xi, meaning
M equals XI for some random variable I with support in {i, i + 1}, say for concreteness that
Pr[I = i] = p. In this case, we observe that

H[M |X≤i] = H[XI |X≤i] ≤ H[XI |X<i] = pH[Xi|X<i] + (1 − p)H[Xi+1|X<i] = H[Xi|X<i],

with the inequality using Dropping Conditioning and the last equality using the hypothesis of
the lemma. The result now follows from the Conditional Mixture Bound.

We next look at how we can use arguments like these to give entropic proofs of some important
results in extremal combinatorics, with the entropic nature of these proofs lending themselves
to prove new extensions of these classical results. For all of these results, it will be convenient
to define the set of ordered edges of an r-graph H by

−→
E (H) = {(v1, . . . , vr) : {v1, . . . , vr} ∈ E(H)}

12.1 Kruskal-Katona

In retrospect the notation of H for entropy conflicts heavily with the notation of H for hy-
pergraph. Probably shift entropy to H or bold H. Let me just be lazy and live with this bad
notation for now.
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Given an r-graph H we define its sth-shadow ∂sH to be the s-graph with vertex set V (H) where
an s-set S is an edge of ∂sH if and only if it is a subset of some edge of H. The fundamental
question we want to ask is: given the number of edges of H, how many edges can ∂sH have?
For example, we trivially have |∂sH| ≤

(
r
s

)
|H| since each edge of H can contain at most

(
r
s

)
edges of ∂sH, with this bound being best possible whenever no two edges of H intersect in at
least s vertices.

The remaining (and far less trivial) question is how to lower bound |∂sH| in terms of |H|. A
complete solution to this is given by the famed Kruskal-Katona Theorem [119, 130], but it is
somewhat complicated to state in full. We will thus settle for the following weakened version of
the Kruskal-Katona Theorem given by Lovász [135] which often suffices for most applications.

Theorem 12.6 ([135]). If H is an r-graph and if |H| ≥
(
α
r

)
for some real number α ≥ r, then

|∂sH| ≥
(
α
s

)
for all 1 ≤ s ≤ r.

Observe that this result is best possible whenever H is a clique on α vertices. Theorem 12.6
was originally proven by induction on |H|. We present a recent alternative proof due to Chao
and Yu [42] using entropy.

Proof. Since we are aiming to lower bound the size of a set ∂sH using entropy, we will (as in the
proof of Theorem 9.6) define a random variable X on ∂sH which is “natural” but non-uniform.
Moreover, this distribution on X should somehow take |H| into account to have any hope of
|H| appearing as part of the bound. With this in mind, a reasonable approach would be to first
uniformly pick an edge of H and then uniformly pick an s-subset of this edge.

To this end, let (X1, . . . , Xr) be a uniform random ordered edge from
−→
E (H) (which is a non-

empty set since |H| ≥
(
r
r

)
≥ 1 by hypothesis). Observe that (X1, . . . , Xs) is an ordered edge of

∂sH, and hence
H[X1, . . . , Xs] ≤ log(s!|∂sH|).

To prove the result then it suffices for us to prove

H[X1, . . . , Xs] ≥ log(α(α− 1) · · · (α− s+ 1)) =
s∑

i=1

log(α− i+ 1).

We observe that the chain rule implies H[X1, . . . , Xs] =
∑s

i=1H[Xi|X<i], so the inequality
above will follow if we can show

H[Xi|X<i] ≥ log(α− i+ 1) ∀i. (16)

Note that this bound is tight for the extremal example of H being a clique, which is a promising
sign. From here the direction we should take our proof is a bit less clear, but after some time
one might think about trying to prove some sort of inductive bound on H[Xi|X<i] in terms of
the other entropies H[Xj|X<j]. In particular, the extremal example suggests that something
like the following might hold.

Claim 12.7. For all i, we have

2H[Xi|X<i] ≥ 2H[Xi+1|X≤i] + 1.
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And indeed, this claim directly follows from Lemma 12.5 since Xi, Xi+1 are never equal to each
other and since they have the same distribution conditional on X<i. It remains then to use this
claim to prove our result.

For ease of notation let xi := 2H[Xi|X<i]. The claim then is equivalent to saying that xi ≥ xi+1+1
for all i. Using this, we find

2H[X1,...,Xs] = 2
∑s

i=1 H[Xi|X<i] = x1x2 · · ·xs ≥ (xs + s− 1)(xs + s− 2) · · ·xs.

Recall that we ultimately wish to show 2H[X1,...,Xs] ≥ α(α− 1) · · · (α− s+ 1), so we are done if
xs ≥ α− s+ 1, and hence we may assume from now on that xs < α− s+ 1.

Crucially, we observe at this point of the argument that we have yet to actually use the pa-
rameter α in any way, so we will need to do something in order to make this quantity appear.

Notably, since (X1, . . . , Xr) is a uniform random ordered edge from
−→
E (H) which has cardinality

at least α(α− 1) · · · (α− r + 1) by hypothesis, we find that

α(α− 1) · · · (α− r + 1) ≤ 2log(|
−→
E (H)|) = 2H[X1,...,Xr] = x1x2 · · ·xs · xs+1 · · ·xr

≤ x1 · · · xs−1xs · (xs − 1) · · · (xs − r + s)

≤ x1x2 · · ·xs · (α− s) · · · (α− r + 1),

where the second inequality used Claim 12.7, and the last inequality used the assumption
xs < α−s+1. Rearranging gives 2H[X1,...,Xs] = x1 · · ·xs ≥ α(α−1) · · · (α−s+1) as desired.

We now take a moment to discuss some extensions of the Kruskal-Katona Theorem that can
be proven with this entropic approach. First of all, the exact same argument as above can be
used to prove the following.

Theorem 12.8 (Entropic Kruskal-Katona). Let X1, . . . , Xr be random variables such that Xi ̸=
Xi+1 always holds for all i, and such that the conditioned random variables Xi|{X<i = z} and
Xi+1|{X<i = z} have the same distribution for all i and all z in the support of X<i. If α ≥ r
is a real number such that H[X1, . . . , Xr] ≥ α(α − 1) · · · (α − r + 1), then for all 1 ≤ s ≤ r we
have

H[X1, . . . , Xs] ≥ α(α− 1) · · · (α− s+ 1).

We admittedly do not know any applications of this Entropic Kruskal-Katona Theorem, though
as we explore in the next subsection, similar entropic analogs of other extremal results can be
quite useful in practice.

Another direction we can take things is to change how we measure the “size” of a hypergraph.
To this end, given a hypergraph H and real number q > 0 we define its q-norm

∥H∥q :=

 ∑
v∈V (H)

deg(v)q

1/q

.

Note that for q = 1 we have ∥H∥1 = r|H|, so studying the 1-norm is essentially equivalent
to studying the usual size of H. We can thus ask the following variant of the Kruskal-Katona
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problem: given an r-graph H with a given number of edges, how large can ∂sH be in terms of
its q-norm? This problem was essentially solved by Chao, Doug, Shen, and Yang [41], who in
particular proved the following.

Theorem 12.9 ([41]). If H is an r-graph with |H| ≥
(
α
r

)
for some real number α ≥ r, then for

all 0 < q ≤ r−1
s−1

we have

∥∂sH∥q ≥ α1/q(α− 1)(α− 2) · · · (α− s+ 1).

The q ≤ r−1
s−1

turns out to be best possible for this bound to hold, see [41] for more.

Sketch of Proof. Again we start by taking X1, . . . , Xr to be a uniform ordered edge of H.
However, if we just look at H[X1, . . . , Xs] like before then we end up getting an estimate on the
usual size of the shadow |∂sH| rather than on its q-norm. The key observation is that we can
get an estimate of the q-norm by looking at a slightly different entropic expression. Notably, if
we let pv := Pr[X1 = v] then

H[X1] + q ·H[X2, . . . , Xs|X1] ≤
∑
v

−pv log(pv) + q · pv log(deg∂sH(v))

=
∑
v

pv log

(
deg∂sH(v)q

pv

)

≤ log

(∑
v

deg∂sH(v)q

)
= q log(∥∂sH∥q),

where the first inequality used that the support of (X2, . . . , Xs) given X1 = v has size at most
deg∂sH(v) and the last inequality used concavity. From this, we see that it suffices for us to
lower bound H[X1] + q · H[X2, . . . , Xs|X1]. More precisely, letting xi := 2H[Xi|X<i] as before,
one can check that it suffices to show

x1[x2 · · ·xs]q ≥ α[(α− 1) · · · (α− s+ 1)]q.

As before we have xi ≥ xi+1 +1, and using this together with the assumption q ≤ r−1
s−1

and some
clever inequalities of real numbers gives the desired result.

Other generalizations of both these techniques are possible, see [41, 42] for more on this.

12.2 Entropic Turán Theorems

In this subsection we give a proof of an entropic version of (the density version of) Turán’s
Theorem due to Chao and Yu. As a warm-up, we begin with a non-entropic proof of the usual
density version of Turán’s Theorem due to Chao and Yu which will serve as inspiration for
our later statements. We will need the following result, where here we recall that the notation
t(H,G) is the probability that a random map from V (H) to V (G) is a homomorphism.

Lemma 12.10. For all integers i ≥ 1 and graphs G, we have t(K1,i, G) ≥ t(K2, G)i. That is,
stars K1,i are Sidorenko.
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Lemma 12.10 can either be proven directly using that t(K1,i, G) = v(G)−i−1
∑

v deg(v)i and
convexity, or by adapting the entropic proof of Theorem 9.6 showing that paths are Sidorenko.
We now prove our warm-up result.

Proposition 12.11 (Density Turán Theorem). For every integer r ≥ 1 and Kr-free graph G,
we have

e(G) ≤
(

1 − 1

r − 1

)
v(G)2

2
.

In particular,

lim
n→∞

ex(n,Kr)(
n
2

) ≤ 1

r − 1
.

Proof. Let’s start with some very high-level motivation for the proof in order to partially
demystify some of the slick steps we make later on in the argument. Let G be a complete
(r− 1)-multipartite graph, which is a reasonable graph to have in mind if we’re thinking about
Kr-free graphs. Consider now an arbitrary tuple T = (v0, v1, . . .) of vertices of G. Here we
observe a curious property: if vi is the first vertex of its part to appear in T , then vi will be
adjacent to all the previous vertices (that is, the first i+ 1 vertices form a star centered at vi).
In particular, since G is (r−1)-partite this will happen for at most r−1 values of i (and exactly
r− 1 values if T intersects every part at least once). On the other hand, if T were a uniformly
random sequence of vertices, then the probability that any given vi is adjacent to all previous
vertices is some function of the edge density of G. We thus conclude that some function of the
number of edges of G is at most r − 1, and playing around with the exact numbers gives the
desired Turán bound. In fact, this same set of logic turns out to work for any Kr-free graph,
giving the desired bound. We now move onto the formal details.

Let G be an arbitrary Kr-free graph, and let N be a large integer that we will take tending to
infinity. Let TN be the set of all tuples (v0, v1, . . . , vN) with vi ∈ V (G), and let Si ⊆ TN denote
the set of all such tuples T such that vi is adjacent to all of the vertices v0, v1, . . . , vi−1. That
is, Si is the set of tuples whose first i + 1 vertices induce a star centered at vi. In particular,
we note that every tuple T trivially lies in S0.

Crucially, we observe that each tuple T ∈ TN can belong to at most r−1 of the Si sets. Indeed,
if T ∈ Si1 ∩ · · · ∩ Sir , then by definition the vertices vi1 , . . . , vir would form a clique in G, a
contradiction to G being Kr-free.

We will now bound the size of the set PN := {(T, i) : T ∈ TN ∩ Si} by a double counting
argument. Notably, the crucial observation above implies

N∑
i=0

|Si| = |PN | ≤ (r − 1)|TN |,

and hence

r − 1 ≥
N∑
i=0

|Si| · |TN |−1.

Observe now that |Si| · |TN |−1 is exactly the probability that a uniform random sequence of
vertices (v0, . . . , vi) induces a star with center vi, which is exactly the probability that a random

81



map from K1,i to G is a homomorphism. In total then, we conclude that for any integer N , we
have

r − 1 ≥
N∑
i=0

t(K1,i, G) ≥
N∑
i=0

t(K2, G)i =
1 − t(K2, G)N+1

1 − t(K2, G)
,

with this second inequality using Lemma 12.10. Observe that we always have t(K2, G) < 1, and
hence for any ϵ > 0 we can choose N sufficiently large so that t(K2, G)N+1 ≤ ϵ. Also observe
that t(K2, G) = 2e(G)/v(G)2, and putting this together implies that for any ϵ > 0, we have

e(G) ≤
(

1 − 1

(1 − ϵ)(r − 1)

)
v(G)2/2.

Because ϵ > 0 is arbitrary and independent of G, we can conclude that this bound in fact holds
with ϵ = 0, proving the result.

Let us make a few comments about this proof. First, the argument can be streamlined slightly
by considering a random infinite tuple (v0, v1, . . .) rather than the set of all N -length tuples
with N tending towards infinity. We chose to work with finite tuples both to better parallel
our forthcoming argument (which genuinely requires taking large finite sequences), and also
to make it more explicit that our proof utilized a double counting argument in the spirit of
Lemma 12.1. In view of this, it is natural to try and generalize the proof by using the Mixture
Bound in place of this double counting argument. We will begin by informally discussing the
most general sort of strategy one might use to try to extend the proof above before concluding
with the ultimate statement that comes from this generalization.

To replace the double counting argument used on the sets Si, we will need to consider random
variables Ti whose support lies in Si. That is, each Ti will be a random sequence (v

(i)
0 , . . . , v

(i)
N )

with the property that v
(i)
i is always adjacent to each v

(i)
j with j < i. Again, the condition

that our graph is Kr-free will imply that these random variables have (r − 1)-wise disjoint
supports. To upper bound the entropy of a given mixture M of these variables (which itself
will be a random tuple of length N) we might, for simplicity, just try using Subadditivity on
each coordinate of M . As in the proof of Lemma 12.3, this leaves us with the problem of
bounding the entropy of the mixture of these v

(i)
j variables. Thus as in Lemma 12.3, it will be

convenient to assume these v
(i)
j all have the same distribution X.

At this point we have put two constraints on our random sequences Ti = (v
(i)
0 , . . . , v

(i)
N ): that

each coordinate has the same distribution X, and that v
(i)
i is adjacent to all of the previous v

(i)
j

vertices. This motivates a natural way of defining the sequence Ti. Namely, we independently
pick each v

(i)
j with j ≥ i according to the distribution of X, after which we pick each v

(i)
j

for j < i independently according to the distribution of X conditional us being a neighbor of
v
(i)
i . This last condition implicitly puts some constraints on the distribution of X, e.g. X can

not have its support contained in an independent set of G if we want any hope of v
(i)
i ∼ X

being adjacent to some x
(i)
j ∼ X. One way to get around issues like this is, in a way similar

to our proof of Theorem 9.6, to define X by first picking a random edge e according to some
distribution and then picking X to be one of its endpoints. Taking all this intuition together
puts us in position to prove the following result due to Chao and Yu [43].
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Theorem 12.12 (Entropic Turán [43]). Let G be a graph and let (X, Y ) be a random pair of
adjacent vertices of G such that X, Y have the same distribution. If G is Kr-free, then

H[Y |X] ≤ H[X] − log

(
r − 1

r − 2

)
.

That is, if G is Kr-free and if {X, Y } is some random edge, then conditioning on one of the
two endpoints of the edge decreases the entropy of the other endpoint by a constant amount.

Proof. Motivated by our discussion above, let N be a large integer that we will take tending
towards infinity. For 0 ≤ i ≤ N , define Ti = (v

(i)
0 , . . . , v

(i)
N ) to be the random sequence of vertices

defined by taking v
(i)
j with j ≥ i to be independent random variables with distribution X and

by taking v
(i)
j with j < i to be independent random variables with distribution Y |(X = v

(i)
i ).

It is not difficult to check that v
(i)
j for all i has the same distribution as X and that

H[Ti] = (N − i+ 1)H[X] + iH[Y |X] = (N + 1)H[X] + i(H[Y |X] −H[X]). (17)

Moreover, each v
(i)
j with j < i is adjacent to v

(i)
i since (X, Y ) is always an (ordered) edge of

G. Thus similar to our argument in Proposition 12.11, we conclude that the Ti tuples have
(r − 1)-pairwise disjoint supports, so by Lemma 12.3 and (17) we find that

(r − 1)2(N+1)H[X] ≥
N∑
i=0

2H[Ti] = 2(N+1)H[X]

N∑
i=0

2i(H[Y |X]−H[X]),

and hence

r − 1 ≥
N∑
i=0

2i(H[Y |X]−H[X]).

Since this bound holds for all N it must also hold for the corresponding infinite sum, giving

r − 1 ≥ 1

1 − 2H[Y |X]−H[X]
,

and now a bit of rearranging gives the desired bound on H[Y |X] −H[X].

While not immediate from its formulation, the Entropic Turán theorem quickly implies the
density Turán theorem. Indeed, this can be seen by taking (X, Y ) to be a uniform random pair
of adjacent vertices of a Kr-free graph G, which means

log(2e(G)) = H[X, Y ] = H[X]+H[Y |X] ≤ 2H[X]−log

(
r − 1

r − 2

)
≤ 2 log(v(G))−log

(
r − 1

r − 2

)
,

and rearranging gives the desired result. More importantly, the Entropic Turán theorem can
be generalized to the setting of hypergraphs as well as to other related Turán type problems.
For this we need the following.
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Definition 2. Given an r-graph H and a vector x indexed by the vertices of H, we define

b(H;x) =
∑

(v1,...,vr)∈
−→
E (H)

xv1 · · ·xvr .

Given a real number q, we define the q-blowup density of H by.

bq(H) = max
x:
∑

xq
v=1

b(H;x).

Roughly speaking, b(H;x) is (up to a factor of r!) the number of edges in the x-blowup of H,
i.e. the hypergraph formed by replacing each vertex v of H with a set of xv vertices. Such
blowups are commonly used for Turán type problems, and in particular, we claim that for any
r-graph F , it’s Turán density π(F ) := ex(n, F )/

(
n
r

)
satisfies

π(F ) = sup b1(H), (18)

where here the supremum ranges over all r-graphs H such that there does not exist a homo-
morphism from F to H. Indeed, the fact that sup b1(H) is a lower bound for π(F ) follows from
the fact that the non-existence of a homomorphism from F to H implies that every blowup of
H continues to be F -free, and the upper bound requires just a little more work; see e.g. [120]
for a proof. Remarkably, it turns out that bq(H) can be defined entropically as follows.

Theorem 12.13 ([43]). For any r-graph H, we have that

bq(H) = max 2H[X1,...,Xr]− r
q
H[X1],

where the maximum ranges over all random vectors (X1, . . . , Xr) such that {X1, . . . , Xr} is an
edge of H and such that the vector is “symmetric”, in that the distribution of (Xσ(1), . . . , Xσ(r))
is the same for any permutation σ.

Sketch of Proof. To show that this entropic expression is always an upper bound for bq(H)
(which is the only direction of the theorem we will ever need in practice), we let x be a vector
indexed by the vertices of H which achieves the maximum in the definition of bq(H). Consider
then the random vector (X1, . . . , Xr) defined by having

Pr[(X1, . . . , Xr) = (v1, . . . , vr)] =

∏
i xvi

bq(H)
=

∏
i xvi∑

(u1,...,ur)

∏
i xui

,

i.e. by having the probability of the random edge equaling a given ordered edge (v1, . . . , vr) being
proportional to

∏
i xvi . From here some straightforward calculations together with Jensen’s

inequality gives the desired result. For the other direction one similarly starts by taking some
random vector which achieves the maximum and then constructs some vector x based on this,
though the details here are a bit more complicated than the other direction.

With this formulation of bq(H) and (18) it now becomes possible to determine the Turán density
of certain hypergraphs using entropic arguments, just as we did in the proof of the Entropic
Turán theorem. In particular, this approach was used in [43] to determine the Turán density
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of a broad class of hypergraphs called λ-tents. While the details are a bit too much to go into
detail here, we will highlight the broad approach they use.

Starting with some arbitrary random edge (X1, . . . , Xr) in an appropriate hypergraph H, we de-
fine (analogous to our entropic proof of the Kruskal-Katona theorem) xi := 2H[Xi|Xi+1,...,Xr]−H[Xi].
By using the mixture bound on a pair of carefully constructed random “partial forests” built
according to the distribution of (X1, . . . , Xr) (with this being spiritually similar to our proof
of Theorem 9.6 where we used random edges to construct random trees), one can show that
xi + xj ≤ xi+j for all i, j. Using only this information together with some clever inequalities of
real numbers it is possible to effectively upper bound x1 · · ·xr = 2H[X1,...,Xr]−rH[X1], giving the
desired result.

The discussion up to this point primarily focused on bq(H) when q = 1, but interesting directions
come about from considering other values of q as well. Notably, the q = 2 case corresponds to
spectral analogs of classical Turán problems, such as the following result of Nikiforov’s [150].

Theorem 12.14 ([150]). If G is an n-vertex Kr-free graph, then the largest eigenvalue of its
adjacency matrix A satisfies

λ1(A) ≤
(

1 − 1

r − 1

)
n.

Proof. For a graph G, we observe that

b(G;x) =
∑
u∼v

xuxv = xTAx.

In particular, b2(G) is the maximum of xTAx over all unit vectors x, which is well known (see
e.g. Lemma 15.1) to be the maximum eigenvalue λ1(A). As such, Theorem 12.13 implies that

λ1(A) = b2(G) = max 2H[X1,X2]−H[X1] = max 2H[X2|X1],

where the maximum ranges over all random symmetric edges (X1, X2) of G. By the Entropic
Turán Theorem we have

H[X2|X1] ≤ H[X1] − log

(
r − 1

r − 2

)
≤ log(n) + log

(
1 − 1

r − 1

)
,

giving the desired result.

Many other extremal spectral results can be proven through this connection, see [43] for more.

85



13 The Union-Closed Sets Conjecture

Up to this point we’ve used entropy to bound the size of some set, and this is certainly the
most common way to utilize entropy for combinatorial problems. However, there are more
exotic ways that entropy can be used to solve problems. We illustrate one such example here
involving a major breakthrough by Gilmer for the Union-Closed Sets Conjecture. For this, we
say that a set system F is union-closed if for all A,B ∈ F , we also have A ∪ B ∈ F . The
following (frustratingly) simple extremal question related to union-closed families is typically
attributed to Frankl from 1979 [75].

Conjecture 13.1 (Union-Closed Sets Conjecture). If F ≠ {∅} is union-closed, then there
exists some x in at least half of the elements of F , i.e. such that deg(x) ≥ 1

2
|F|.

We omit discussing the history of this conjecture prior to 2022 (most of which can be found
in the survey by Bruhn and Schaudt [35]). The only thing we note is that after many years

of work, the best bound known was that there exists an x with deg(x) = Ω( |F|
log2(|F|)) due to

Knill [129]. This bound stood for nearly 30 years until the following breakthrough result.

Theorem 13.2 (Gilmer [90]). There exists a constant c > 0 such that if F ̸= {∅} is a union
closed set system, then there exists an element x such that deg(x) ≥ c|F|.

Gilmer originally proved this with c = .01, though his methods were quickly optimized to give
c = 3−

√
5

2
≈ .381 by a variety of authors, and our particular approach for achieving this constant

will be closest to that of Chase and Lovett [44].

The key insight of Gilmer’s approach is to look at the contrapositive of the Union-Closed Sets
Conjecture, i.e. by showing that if a set system has deg(x) < c|F| for all x, then F can not
be union-closed. In particular, we will reach this union-closed conclusion through the following
entropy result.

Theorem 13.3. There exists a constant c > 0 such that the following holds. If F is a set
system with |F| > 1 and the property that deg(x) < c|F| for all x, and if A,B ∈ F are chosen
independently and uniformly at random, then

H[A ∪B] > H[A].

Let us assume this result for the moment and show how it implies Gilmer’s theorem.

Proof of Theorem 13.2. Let F ≠ {∅} be union-closed. The result is trivial if F has only 1
element, so assume this is not the case.

Let A,B ∈ F be chosen independently and uniformly at random. Because F is union-closed,
the random variable A ∪B always lies in F . As such, the Maximality Principle implies.

H[A ∪B] ≤ log |F| = H[A],

with this last step using that A is chosen uniformly at random. This contradicts the conclusion
of Theorem 13.3, so it must be the case that deg(x) ≥ c|F| for some element x.
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The proof above illustrates that the Union-Closed Sets Conjecture would follow if Theorem 13.3
held with c = .5. However, it turns out that c = 3−

√
5

2
is the best constant one can prove here.

We now move onto our proof of Theorem 13.3. To start, we will attempt to build some intuition
by working out how one might go about trying to solve this problem, though the eager reader
is welcome to jump ahead to Lemma 13.4 for the formal details.

One way you might think of proving Theorem 13.3 is through induction on the ground set of
F . To this end, we can think of A,B as characteristic vectors in {0, 1}n. In this case, the chain
rule implies that the conclusion of Theorem 13.3 is equivalent to having∑

i≤n

H[(A ∪B)i|(A ∪B)<i] >
∑
i≤n

H[Ai|A<i].

Given this formulation, one might hope to prove this inequality term by term, and indeed this
is what we will do.

In particular, when i = 1 we have that A1, B1 are just Bernoulli random variables with some
common probability of failure1 p. In this case, (A ∪ B)1 is a Bernoulli random variable with
probability of failure p2. As such, we need to show that if p is large (i.e. if the element 1 fails
to be in a large proportion of edges of F), then

H(p2) > H(p),

where here H(x) := −x log2(x) − (1 − x) log2(1 − x) is the entropy function for a Bernoulli
random variable with probability x. Intuitively, this inequality will hold if and only if p2 is
closer to 1/2 than p is to 1/2, so the cutoff point should be when these two distances from 1/2
are the same. That is, we need to solve for .5 − p2 = p − .5, or equivalently to compute the
roots of p2 + p− 1 = 0. One can quickly check that the positive root of this is p = ϕ :=

√
5−1
2

.

In conclusion, this first step of our induction (heuristically) seems to hold provided p > ϕ and
fails otherwise. For our full proof, we will in fact need the following generalization of the claim
that H(p2) > H(p) when p > ϕ.

Lemma 13.4. For all p, q ∈ [0, 1], we have

H(pq) ≥ 1

2ϕ
(pH(q) + qH(p)),

where again H(x) := −x log2(x) − (1 − x) log2(1 − x) and ϕ :=
√
5−1
2

.

The proof of this purely analytical lemma is somewhat annoying to prove, so we’ll omit it from
the text here; see [31, 44] for the details. With this lemma and our approach outlined above,
we’ll quickly be able to derive the following.

Lemma 13.5 ([44]). If A,B ∈ {0, 1}n are independent random variables with Pr[Ai = 0],Pr[Bi =
0] ≥ p for all i, then

H[A ∪B] ≥ p

2ϕ
(H[A] +H[B]).

1We let p denote the probability of failure here (rather than the convention of having p denote the probability
of success) in order to make some of the later algebra cleaner.
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Proof. By the Chain Rule and Data Processing Inequality, we have

H[A ∪B] =
∑
i≤n

H[(A ∪B)i|(A ∪B)<i] ≥
∑
i≤n

H[(A ∪B)i|A<i, B<i]. (19)

Fix some 1 ≤ i ≤ n. For each x ∈ {0, 1}i, define p(x) = Pr[Ai = 0|A<i = x] and q(x) = Pr[Bi =
0|B<i = x]. By Lemma 13.4 and the independence of A,B, we have for all x, y that

H[(A ∪B)i|A<i = x,B<i = y] = H(p(x)q(y)) ≥ 1

2ϕ
(p(x)H(q(y)) + q(y)H(p(x))) .

Multiplying this inequality by Pr[A<i = x, B<i = y] = Pr[A<i = x] ·Pr[B<i = y] and summing
over all x, y gives

H[(A ∪B)i|A<i, B<i] ≥
1

2ϕ

(
EA<i,B<i

[p(x)H(q(y))] + EA<i,B<i
[q(y)H(p(x))]

)
=

1

2ϕ
(EA<i

[p(x)] · EB<i
[H(q(y))] + EB<i

[q(y)] · EA<i
[H(p(x))])

=
1

2ϕ
(Pr[Ai = 0] ·H[Bi|B<i] + Pr[Bi = 0] ·H[Ai|A<i])

≥ p

2ϕ
(H[Bi|B<i] +H[Ai|A<i]),

where the second equality used the definition of conditional entropy and the definition of q(y),
and the last inequality used the hypothesis Pr[Ai = 0],Pr[Bi = 0] ≥ p. Combining this with
(19) gives

H[A ∪B] ≥ p

2ϕ

∑
i≤n

H[Ai|A<i] +H[Bi|B<i] =
p

2ϕ
(H[A] +H[B]),

with this last equality using the Chain Rule.

We can now complete the proof of Theorem 13.3 with c = 1 − ϕ = 3−
√
5

2
≈ .381.

Proof of Theorem 13.3. Let c = 1−ϕ and identify A,B,A∪B by their characteristic vectors in
{0, 1}n. Note that our hypothesis |F| > 1 implies H(A), H(B) > 0. Because deg(x) < c|F| for
all x, we have Pr[Ai = 0],Pr[Bi = 0] > 1− c = ϕ for all i. Hence the previous lemma (together
with H(A), H(B) > 0) implies

H[A ∪B] >
1

2
(H[A] +H[B]) = H[A],

proving the result.

Before moving on, let us take a few moments to comment on some strengthenings of Theo-
rem 13.2. As noted earlier, it turns out that c = 3−

√
5

2
is the best c one can take so that

Theorem 13.3 remains true. Moreover, this value of c (rather than c = 1/2) turns out to be
the optimal value for an analogous “approximate” version of the union closed conjecture, i.e. a
variant where we only require that most of the unions A∪B lie in F ; see [44] for more on this.

88



Given the above, some sort of genuinely new approach is needed to get beyond this c = 3−
√
5

2

barrier for the original Union-Closed Sets Conjecture, and such an approach was found by
Sawin [166]. In essence, his idea is to look at three random sets A,B,C ∈ F such that B is
independent of A and C but (crucially) A,C are correlated in some way. Again, F being union
closed implies that we must have H[A ∪B], H[A ∪ C] ≤ H[A], and hence that

αH[A ∪B] + (1 − α)H[A ∪ C] ≤ H[A]

for all α. Sawin then argues that this inequality fails to hold for some α if every element is in at
most a 3−

√
5

2
+ ϵ proportion of the elements of F , giving the desired improvement. Cambie [39]

obtained the best bounds one can get via this approach of Sawin, showing that one can take
c ≈ .38235 (cf the previous value of c = 3−

√
5

2
≈ .38197).
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Part IV

Linear Algebra Methods

We now shift our attention from probabilistic methods in extremal combinatorics to linear
algebraic ones. Roughly speaking, the linear algebra method in combinatorics works as follows:

1 Associate a “linear algebraic object” M to your problem (e.g. a matrix or a list of vectors).

2. Determine algebraic information about M (e.g. its rank, eigenvalues, eigenvectors),

3. Use this algebraic information to conclude something about your original problem.

The linear algebra method applies to a broad range of problems. We only scratch the surface
here, and we refer the reader to books by Babai and Frankl [13] and by Matoušek [139] for a
more thorough treatment of this versatile method.
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14 Modular Intersections

14.1 The Basic Method

We begin with a classical application of the linear algebra method: Oddtown.

Consider the following (somewhat whimsical) setup. The city of Oddtown has a number of
clubs, each of which follows the following odd set of rules: each club must have an odd number
of people, and every two distinct clubs must have an even number of people in common.

The main question now becomes: if Oddtown has n people, what’s the maximum number of
clubs it can have? Equivalently, if F = {F1, F2, . . . , Fm} ⊆ 2[n] is a set system such that |Fi| is
odd for all i and such that |Fi ∩ Fj| is even for all i ̸= j, then what is the maximum size of F?

A very simple construction is to take Fi = {i} for all i, which trivially satisfies the stated
conditions. However, it’s far from the only construction. For example, if n is even one can
also take each Fi to be either {i} or [n] \ {i}, and there are many, many more constructions
achieving a bound of n (in fact, there’s close to 2n2

non-isomorphic constructions due to Szegedy
[13, Exercise 1.1.14]).

Given all of these constructions, it seems plausible that (1) the true answer is indeed n, and
(2) proving this might be difficult (since we have to come up with an argument that somehow
deals with all of these constructions in a unified way). Fortunately, the linear algebra method
manages to give a unified approach for all of these constructions in an extremely elegant way.
More generally, we note that it’s a good rule of thumb is that if there are many distinct looking
constructions, then the linear algebra method might come in handy.

Theorem 14.1 (Oddtown). Let F ⊆ 2[n] be a set system such that |F | is odd for all F ∈ F
and such that |F ∩ F ′| is even for all F ̸= F ′ ∈ F . Then |F| ≤ n.

Proof. Given a set F ⊆ [n], define its characteristic vector χF ∈ Fn
2 by having (χF )i = 1 if

i ∈ F and (χF )i = 0 otherwise. Note crucially that for any F, F ′, the dot product satisfies

⟨χF , χF ′⟩ = |F ∩ F ′| mod 2.

We claim that {χF : F ∈ F} is a set of linearly independent vectors. Indeed, say we had∑
F∈F

λFχF = 0.

Take any F ′ ∈ F and apply the dot product on both sides to get∑
F∈F

λF ⟨χF , χF ′⟩ = 0.

By the observation above and the hypothesis of the theorem, we see ⟨χF , χF ′⟩ = 0 if F ̸= F ′ and
that ⟨χF ′ , χF ′⟩ = 1. Thus the above says λF ′ = 0, and as F ′ ∈ F was arbitrary, we conclude
that these vectors are indeed linearly independent.

Since we have |F| linearly independent vectors in Fn
2 , we must have |F| ≤ n, giving the result.
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Since that was so clean, let’s give another (essentially equivalent) proof of this result using
slightly different language, which in some situations might be simpler to think about.

Proof. Write F = {F1, . . . , Fm} and let M be the m× n matrix over F2 which has Mi,j = 1 if
j ∈ Fi and Mi,j = 0 otherwise. Let L = MMT . We claim that L is the m×m identity matrix.
Indeed, one can verify that Li,j ≡ |Fi ∩ Fj| mod 2, so the hypothesis of the theorem gives this
claim.

Using the general fact
rank(AB) ≤ rank(A) ≤ #columns of A,

which is valid for any two matrices A,B for which AB makes sense; we see that we can apply
this with A = BT = M to conclude that

m = rank(Im) ≤ rank(M) ≤ n,

proving the result.

While the proof of Oddtown is extremely nice, one might complain that the problem itself is
rather ad hoc. Here we give a far reaching generalization of the Oddtown problem which, in
addition to being nice on its own, has a number of important applications.

To this end, we adopt the following (non-standard) notation. For an integer p and a set
L ⊆ {0, 1, . . . , p − 1}, we say that a family F is (p, L)-modular intersecting if |F | mod p /∈ L
for all F ∈ F and if |F ∩ F ′| mod p ∈ L for all F ̸= F ′ ∈ F .

For example, a family is (2, {0})-modular intersecting if and only if it follows the rules of
Oddtown. By following a somewhat similar strategy as in Oddtown, we can prove the following.

Proposition 14.2. For any prime p and L ⊆ {0, 1, . . . , p − 1}, if F ⊆ 2[n] is (p, L)-modular
intersecting then

|F| ≤
|L|∑
i=0

(
n+ i− 1

i

)
.

Proof. Similar to before, we define the characteristic vector χF ∈ Fn
p by having (χF )i = 1

if i ∈ F and (χF )i = 0 otherwise, and we again observe that ⟨χF , χF ′⟩ = |F ∩ F ′| mod p.
Unfortunately we can’t conclude that these vectors are linearly independent like we could in
the Oddtown case, but we can do this if we generalize our vectors somewhat.

To this end, for each F ∈ F , define the polynomial pF : Fn
p → Fp by

pF (x⃗) =
∏
ℓ∈L

(⟨χF , x⃗⟩ − ℓ) .

Note that by hypothesis, we have pF (χF ′) = 0 if F ̸= F ′ ∈ F (since ⟨χF , χF ′⟩ ≡ |F ∩ F ′| ≡ ℓ
mod p for some ℓ ∈ L) and that pF (χF ) ̸= 0 (since |F | ̸≡ ℓ mod p for any ℓ ∈ L).

We claim that the polynomials {pF : F ∈ F} are linearly independent. Indeed, say we had∑
F∈F

λFpF = 0.
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By plugging in χF ′ for some F ′ ∈ F into both sides of this equality, the observation above
implies cF ′λF ′ = 0 for some cF ′ ̸= 0, and hence λF ′ = 0, proving the claim.

Observe that each polynomial pF has degree at most |L|. It is a basic exercise to show that
the dimension of the space of polynomials in n variables with degree at most |L| is equal to∑|L|

i=0

(
n+i−1

i

)
. Since we constructed a set of |F| linearly independent polynomials that lie in a

space of dimension
∑|L|

i=0

(
n+i−1

i

)
, we must have |F| ≤

∑|L|
i=0

(
n+i−1

i

)
, proving the result. Maybe

add notation like Vn,≤d for this vector space.

The bound of Proposition 14.2 is relatively close to tight. Indeed, if L = {0, 1, . . . , s− 1}, then
F =

(
[n]
s

)
is (p, L)-modular intersecting and has size

(
n
s

)
≈
∑s

i=0

(
n+i−1

i

)
. However, one can

do better by refining our argument (though we emphasize that the present weaker bound of
Proposition 14.2 is typically all one needs for applications). For this there are two somewhat
standard approaches.

14.2 Refinement #1: Multilinearization

Towards refining this proof/bound, one might first turn to the simplest case of p = 2, L = {0}.
Since this is just Oddtown, we know the answer here should be n, but the bound we get is n+1.
By carefully analyzing the proof, one realizes that the one place our argument isn’t sharp is
when we argue about the dimension of the space spanned by the pF polynomials. Indeed, we
naively said that they lived in the space of degree at most 1 polynomials, but in fact they are
all in the span of the monomials {xi}, which gives the optimal bound.

We are thus left with the problem of trying to find a smaller subspace for us to work in while
achieving the same conclusion, and there are a couple of semi-standard ways of doing this. One
way is to try and find polynomials which are more “efficient”, i.e. of lower degree, for which
our conclusion still holds. And indeed, if we look back through the proof of Proposition 14.2,
we see that although our polynomials were defined to have codomain Fn

p , we only fed them 0-1
vectors to show linear independence. As such, it would suffice to look at polynomials p̄F which
agree with the pF polynomials on 0-1 vectors, and this can be done simply by replacing each
xαi in the expansion of pF by xi (i.e. by replacing pF by a multilinear function). For example,
if pF (x⃗) = 3x1x

2
2 + 2x31x

2
3 then we would want to look at p̄F (x⃗) = 3x1x2 + 2x1x3. By using this

we can prove the following.

Theorem 14.3. For any prime p and L ⊆ {0, 1, . . . , p − 1}, if F ⊆ 2[n] is (p, L)-modular
intersecting then

|F| ≤
|L|∑
i=0

(
n

i

)
.

We note that this theorem was originally proven by Deza, Frankl, and Singhi [59], with the
following simpler proof due to Alon, Babai, and Suzuki [4].

Proof. Define pF as before, and define the multilinear polynomial p̄F by replacing each xαi in the
expansion of pF by xi. Note that pF (χF ′) = p̄F (χF ′) for all F ′, so by following the same proof as
before we conclude that the p̄F polynomials are linearly independent. Moreover, these linearly
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independent polynomials all lie in the space of multilinear polynomials in n variables with degree
at most |L|, which is a space of dimension

∑|L|
i=0

(
n
i

)
. We thus must have |F| ≤

∑|L|
i=0

(
n+i−1

i

)
,

proving the result.

14.3 Refinement #2: More Polynomials

The reader might still complain that, although we have improved our bound, it still fails to
be tight for Oddtown. As far as we are aware, it is still an open problem as to whether the
bound of Theorem 14.3 can be replaced by |F| ≤

(
n
|L|

)
for all L, which would be tight whenever

L = {0, 1, . . . , s− 1}. However, such a general result is known to hold when F is uniform.

Theorem 14.4 (Frankl-Wilson [78]). For any prime p and L ⊆ {0, 1, . . . , p− 1}, if F ⊆
(
[n]
k

)
is (p, L)-modular intersecting, then

|F| ≤
(
n

|L|

)
.

We omit the proof of this result, which utilizes the powerful tool of incidence matrices, and
instead refer the reader to [13, Chapter 7] for a more thorough treatment. Instead, we will
prove a weaker version of this result which holds in the non-modular setting.

For this, given a set of integers L, we say that a set system F is L-intersecting if |F ∩ F ′| ∈ L
for all distinct F, F ′ ∈ F .

Theorem 14.5 (Ray-Chaudhuri-Wilson [156]). If L is a set of integers and F ⊆
(
[n]
k

)
is L-

intersecting, then

|F| ≤
(
n

|L|

)
.

Proof. Note that we may assume L ⊆ {0, 1, . . . , k − 1} since these are the only intersections
that can actually occur, and in particular we may assume |L| ≤ k.

Similar to before, we define polynomials pF : Rn → R by pF (x⃗) =
∏

ℓ∈L(⟨χF , x⃗⟩ − ℓ) and we
define p̄F to be their multilinearizations. As before, we find that these p̄F polynomials are
linearly independent, giving a bound of

∑|L|
i=0

(
n
i

)
since these polynomials lie in the vector space

V of multilinear polynomials of degree at most |L|.

Observe that the bound above fails to be sharp if and only if these p̄F do not span all of V . In
particular, to prove the result, it suffices to find a set of

∑|L|−1
i=0

(
n
i

)
polynomials of V which are

linearly independent with the p̄F vectors.

Let’s say we were to write these supposed polynomials as qI for I ⊆ [n] with |I| ≤ |L|−1; what
would be a good choice for these polynomials be? Well, to mimic the previous proof, we would
like to have qI(χF ) = 0 for all F ∈ F . Since all we know about the individual elements of F is
that they each of size k, perhaps a reasonable condition to demand is

qI(x⃗) = q′I(x⃗)

(
n∑

j=1

xj − k

)
,
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where q′I is some appropriate polynomial of degree at most |L| − 1. Indeed, if we do this and if
we have ∑

F

λF p̄F +
∑
I

λIqI = 0,

then by plugging in χF ′ into both sides of this equality we see that λF = 0 for all F ∈ F . As
such, all we have to do is choose the q′I polynomials such that the qI vectors themselves are
linearly independent. One possibility is to set

qI(x⃗) =
∏
i∈I

xi ·

(
n∑

j=1

xj − k

)
.

Note that with this, for any set J ⊆ [n] with |J | ≤ |L| − 1 < k, we have qI(χJ) = 0 if I ̸⊆ J ,
and we have qI(χJ) ̸= 0 if I ⊆ J (here we implicitly use |J | < k to ensure

∑n
j=1(χJ)j − k ̸= 0).

With this in mind, say we had ∑
I

λIqI = 0,

and let J be a smallest set such that λJ ̸= 0. By plugging χJ into both sides of this expression,
the observation above implies that we get cJλJ = 0 for some cJ ̸= 0, and hence λJ = 0,
a contradiction. We conclude that the qI polynomials are linearly independent, and hence
all of the polynomials {p̄F}F ∪ {qI}I are linearly independent vectors. Unfortunately the qI
polynomials aren’t in V , i.e. aren’t multilinear, but this can be easily remedied by considering
{p̄F}F ∪{q̄I}I , and again we conclude that these vectors (in V ) are linearly independent, giving
the desired bound on |F|.

We note that the exact proof as written almost goes through if instead of demanding |F | = k for
F ∈ F , we only demand |F | ≡ k mod p. In particular, the current proof will go through for this
variant of the problem if we further assume k /∈ [|L| − 1] mod p (which holds if e.g. |L| ≤ k),
but without this assumption we can’t assume qI(χJ) ̸= 0 whenever I ⊆ J . Nevertheless, it does
turn out that this bound does continue to hold under the weaker hypothesis |F | ≡ k mod p,
but the proof of this ends up being somewhat more involved and we refer the interested reader
to [13, Theorem 5.37].

14.4 Refinement #2.5: Even More Polynomials and Stability

It has recently been observed that even more polynomials can be added to the proof of the Ray-
Chaudhuri-Wilson theorem above, giving both stronger bound as well as effective “stability”
results.

To motivate this refinement, let us look back at the current argument. There we introduced
multilinear polynomials p̄F of degree |L| corresponding to each F ∈ F along with polynomials
qI of degree at most |L| corresponding to each I ⊆ [n] of size at most |L| − 1. To refine
this argument further, we would need to introduce some additional multilinear polynomials of
degree at most |L|, and naively it perhaps makes the most sense to have these polynomials be
associated to subsets of [n] like our current set of polynomials. Since these polynomials must
have size at most |L| and since every set of size at most |L| − 1 has already been accounted
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for by the qI , the most natural choice would be for our new polynomials to correspond to sets
J ∈

(
[n]
|L|

)
of size exactly |L|, and given this, seemingly the only reasonable polynomial for us to

use would be
rJ(x̂) :=

∏
j∈J

xj,

since it was essentially this same polynomial that we used to encode each set I ⊆ [n] of size
less than |L|. However, we now have an issue: the polynomials qI had an additional factor of∑
xj − k to guarantee that qI(χF ) = 0, but we can no longer add this term to the rJ since we

need these polynomials to have degree at most |L|. As such, we will not have rJ(χF ) = 0 for
every J ∈

(
[n]
J

)
and F ∈ F . The crucial observation, however, is that this will hold for some

choices of J , and as such these polynomials can be added in to improve the bound of Ray-
Chaudhuri-Wilson theorem. In particular, we will have rJ(χF ) = 0 for every F ∈ F precisely
if J is not a subset of any F ∈ F .

Motivated by the above, given a set system F and an integer s, we define the s-th shadow ∂sF
to be the s-uniform hypergraph where a set S of size s is in ∂sF if and only if there exists some
F ∈ F which contains S as a subset. Formalizing our logic above gives the following refinement
of Ray-Chaudhuri-Wilson, which is essentially due to Gao, Liu, and Xu [88].

Theorem 14.6 ([88]). If L is a set of integers and F ⊆
(
[n]
k

)
is L-intersecting, then

|F| ≤
(
n

|L|

)
−
∣∣∣∣([n]

|L|

)
\ ∂|L|F

∣∣∣∣ .
Sketch of Proof. Define the polynomials p̄F for F ∈ F and qI for I ∈

(
[n]
<|L|

)
exactly as we do in

the proof of Ray-Chaudhuri-Wilson. Further, for each non-shadow J ∈
(
[n]
|L|

)
\ ∂|L|F we define

rJ(x̂) :=
∏

j∈J xj. One can check exactly as before that these polynomials will be linearly

independent of each other, giving the stated bound since we added an additional |
(
[n]
|L|

)
\ ∂|L|F|

polynomials compared to our previous argument.

From this we immediately get the following result, which can be seen as an L-intersecting
generalization of a special case of Katona’s intersecting shadow theorem [118].

Corollary 14.7. If L is a set of integers and F ⊆ 2[n] is L-intersecting and k-uniform, then

|∂|L|F| ≥ F .

In addition to Corollary 14.7, Theorem 14.6 has the advantage of reducing the problem of
bounding the size of a largest k-uniform L-intersecting family to the combinatorial problem
of bounding how large the non-shadow of such a family can be, and in some cases this new
problem can be solved more effectively than the original. In particular, this can be done in
the simplest case when L = {t, t + 1, . . . , k − 1}, i.e. when F is t-intersecting. Moreover, this
sort of proof naturally yields the following stability result, implying that every “near-extremal”
t-intersecting family must behave quite similarly to the unique extremal construction.
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Theorem 14.8 ([88]). If F ⊆
(
[n]
k

)
is t-intersecting, then either

|F| ≤
(

n

k − t

)
−
(
n− 3k

k − t

)
= O(nk−t−1),

or there exists a set of t vertices T ⊆ [n] such that every edge of F contains T . In particular,
for n sufficiently large we have |F| ≤

(
n−t
k−t

)
.

Proof. Let J :=
(
[n]
k−t

)
\ ∂k−tF be the non-shadows of F . If |J | ≥

(
n−3k
k−t

)
then by Theorem 14.6

we have |F| ≤
(

n
k−t

)
−
(
n−3k
k−t

)
, and as such we may assume from now on that |J | <

(
n−3k
k−t

)
.

Let F1 be an arbitrary element of F . Observe that |
(
[n]\F1

k−t

)
| ≥

(
n−3k
k−t

)
> |J |, and hence there

exists some (k − t)-set S2 ⊆ [n] \ F1 which is not in J , i.e. which is contained in ∂k−tF . By
definition this means there exists some F2 ∈ F which consists of S2 together with some set of
t vertices T . Because F is t-intersecting and S2 is disjoint from F1, we must have F1 ∩F2 = T .
It remains now to show that every edge of F contains this set T .

To this end, let F3 ∈ F be an arbitrary edge. Again we have that |
(
[n]\(F1∪F2∪F3)

k−t

)
| ≥

(
n−3k
k−t

)
>

|J |, so there exists some (k− t)-set S4 ⊆ [n] \ (F1∪F2∪F3) in the shadow of F , meaning there
is some edge F4 ∈ F consisting of S4 together with some set T4 of size exactly t. Because F is
t-intersecting and S4 is disjoint from F1, F2, F3, we must have Fi ∩ F4 = T4 for all i = 1, 2, 3.
In particular this implies T4 ⊆ F1 ∩ F2 = T , and since both T4, T are sets of size t we conclude
that T4 = T , proving that every edge F3 contains T as desired.

With a slightly more careful analysis one can easily prove the same result with
(
n−3k
k−t

)
replaced

by
(
n−3k+2t

k−t

)
. More generally, it is natural to ask just how large |F| can be if it does not have

every edge containing a common t-set. In particular, the t = 1 case is covered by the following
famous result of Hilton and Milner [106].

Theorem 14.9 (Hilton-Milner). If F ⊆
(
[n]
k

)
is intersecting and n > 2k, then either there

exists an element v ∈ [n] contained in every edge of F , or

|F| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

This upper bound is best possible, as can be seen by considering the set system F consisting of
the edge F = {2, 3, . . . , k + 1} together with every k-set that contains both 1 and an element
from F . There by now a wide array of proofs of the Hilton-Milner theorem. Here we will briefly
outline an argument in the same spirit as that of Theorem 14.8 due to Ge, Xu, and Zhao [89]
who in fact proved far more than just the Hilton-Milner theorem using this approach. As the
exact details are a little complex, we will only give a very hih-level sketch of the underlying
details. At some point I might write things out in full, but for now let’s settle for
just a sketch.

Sketch of Proof. Let F be a k-uniform intersecting family on [n], say without loss of generality
that 1 ∈ [n] has the maximum degree in F . The key idea is to partition F into two sets F0,F1

with F1 consisting of all the elements containing 1 and F0 containing the rest of the elements.
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Letting J1 consist of the (k−1)-sets which are not shadows of F1, we have from the exact same
argument as above that

|F1| ≤
(

n

k − 1

)
− |J1|.

In fact, we can do slightly better than this by using the fact that F1 is essentially a set system
on an n − 1 element subset (since every element of F1 is guaranteed to contain 1). Thus by
using a slightly more involved argument and letting J ′

1 ⊆ J1 be the set of non-shadows not
containing 1, one can show that

|F1| ≤
(
n− 1

k − 1

)
− |J ′

1|,

which in total implies that

|F| ≤
(
n− 1

k − 1

)
− |J ′

1| + |F0|.

Similar to before, we automatically get an effective bound on |F| now if |J ′
1|− |F0| is large, and

otherwise we can perform a structural analysis implying that F is contained in a star. For this
structural analysis, it is important that we are working with the modified quantity |J ′

1| − |F0|
rather than just the set of non-shadows of F directly, as the functional |J ′

1| − |F0| allows us to
play the two quantities |J ′

1| and |F0| off of each other.
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15 Pseudo-Adjacency Matrices

Given a graph G, we define its adjacency matrix A to be the matrix whose rows and columns
are indexed by V (G) and where Ai,j = 1 if i ∼ j and Ai,j = 0 otherwise. While A is a natural
way to encode a graph G, it is not at all obvious that its spectral properties should tell you
anything about G, but this remarkably does turn out to be the case! For example, we’ll see
below that σ(A) can give effective bounds on its maximum degree, as well as its independence
number.

Many of these results which hold for A (and which perhaps are most naturally proven by
thinking about A) can be tweaked to hold for a wider class of “pseudo-adjacency matrices”,
which exhibit behavior similar to A but which are cooked up to deal with the specific problem
at hand. We exhibit this phenomenon in the next two subsection. In each subsection, we begin
by highlighting important lemmas relating the spectrum of A to G, after which we generalize
these lemmas apply to a slightly broader class of pseduo-adjacency matrices M , and we then
carefully choose such an M to solve a cool problem.

Before moving on, we note that much more broadly, the area of spectral graph theory concerns
studying matrices M associated to graphs G and how the spectral properties of M relate to
combinatorial properties of G. We will not have time to dive very deeply into this fascinating
area, and we refer the interested reader to the appendix for more on this.

15.1 Huang’s Theorem

In this subsection we give a simple proof of Huang’s, which solved what used to be a 30 year
old problem known as the sensitivity conjecture. Our proof relies on two basic results from
linear algebra, both of which are used heavily throughout spectral graph theory. First we have
the Rayleigh quotient, which gives an analytic way to compute the eigenvalues of a symmetric
matrix. Here λ1(M) denotes the largest eigenvalue of M .

Lemma 15.1. Let M be a real symmetric matrix. Then

λ1(M) = max
x̸=0

x∗Mx

x∗x
,

and any x achieving equality is an eigenvector corresponding to λ1(M).

As a small application Actually do we even use the Raleigh quotient here?, we use the
Rayleigh quotient to establish a connection between eigenvalues and combinatorial information
of graphs.

Lemma 15.2. Let G be a graph and A its adjacency matrix. Then

λ1(A) ≤ ∆,

where ∆ is the maximum degree of G.
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Proof. let x be an eigenvector of A corresponding to λ1(A) and let v ∈ V (G) be such that |xv|
is maximized. Then by our definitions, we have

|λ1(A)xv| = |(Ax)v| = |
∑
u

Av,uxu| ≤
∑
u∼v

|xu| ≤ deg(v)|xv| ≤ ∆|xv|.

This shows |λ1(A)| ≤ ∆, proving the result.

Examining this proof, we see that we hardly used any of the properties of A in our argument.
In particular, word for word the same argument gives the following.

Lemma 15.3. Let G be a graph and M a symmetric matrix such that Mi,j = ±1 if ij ∈ E(G)
and Mi,j = 0 otherwise. Then

λ1(M) ≤ ∆,

where λ1(M) is the largest eigenvalue of M and ∆ is the maximum degree of G.

Next we have the Cauchy interlacing theorem, which allows us to bound the eigenvalues of
sumbatrices of B in terms of the eigenvalues of B.

Theorem 15.4 (Cauchy interlacing theorem). Let B be a real symmetric n× n matrix and C
an m ×m principal sumbmatrix of B with m ≤ n. If B has eigenvalues λ1 ≥ · · · ≥ λn and C
has eigenvalues µ1 ≥ · · · ≥ µm, then for all i

λi ≥ µi ≥ λi+n−m.

Remark 15.5. Personally, I always forget the exact statement of Cauchy’s interlacing theorem,
so here’s a bit of “mnemonic” to help remember it. By the Raleigh quotient we always have

µ1 = max
x̸=0

x∗Cx

x∗x
≤ max

x ̸=0

x∗Bx

x∗x
= λ1,

so that gives the first inequality. We also have µ1 ≥ λ1 if m = n, and each time we decreases
m this bound has to get weaker, so we end up getting µ1 ≥ λ1+n−m in general. We then get
the rest of the inequalities by translating λ1 ≥ µ1 ≥ λ1+n−m by i− 1.

With these standard spectral graph theory lemmas established, we can now state the main
theorem of this subsection.

Theorem 15.6 (Huang [108]). Let Qn be the hypercube graph on 2n vertices. If V ⊆ V (Qn) is
a subset of size 2n−1 + 1, then the induced subgraph Qn[V ] has maximum degree at least

√
n.

This result is sharp in several ways. First, it is easy to find subsets of size 2n−1 such that Qn[V ]
is the empty graph, so in order to get any non-trivial lower bound on the maximum degree one
needs V to have size at least 2n−1 +1. Second, Chung et. al. [46] proved that there exist choices
of V such that Qn[V ] has maximum degree ⌈

√
n⌉, so this bound is essentially best possible.

It was shown by Gotsman and Linial [95] that proving a result of this form is equivalent to
showing that two notions of “sensitivity” for Boolean functions are equivalent, which led to a
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great deal of interest in resolving it. Nevertheless, it remained unanswered for 30 years until
Huang came up with the following remarkable proof.

The key idea is to define the 2n × 2n matrix Bn recursively by

B0 = [0], Bn =

[
Bn−1 I
I −Bn−1

]
,

where here I denotes the identity matrix of dimension 2n−1. Observe that if the negative sign
in the definition of Bn wasn’t there, then this would just define the adjacency matrix of Qn.
Thus this is a sort of “twisted adjacency matrix” which has −1’s in some of the positions where
there are usually 1’s. This choice of signings turns out to spread out the spectrum of Bn in a
nice way.

Lemma 15.7. The spectrum σ(Bn) consists of ±
√
n each occurring with multiplicity 2n−1.

Proof. It is straightforward to prove by induction that B2
n = nI, which implies that every

eigenvalue λ of Bn satisfies λ2 = n. Thus σ(Bn) consists of ±
√
n, and each must appear with

equal multiplicity because Tr(Bn) = 0.

Shockingly, we have everything we need for our proof.

Proof of Theorem 15.6. Let B = Bn be as described above. Let V ⊆ V (Qn) be any subset of
size 2n−1 + 1 and let C be the submatrix of B indexed by the rows and columns corresponding
to B. Let G = Qn[V ]. Observe that C satisfies the conditions for M of Lemma 15.3 since
B is a (symmetrically) signed version of the adjacency matrix. By Lemma 15.3, the Cauchy
interlacing theorem, and the previous lemma, we conclude that

∆(G) ≥ λ1(C) ≥ λ2n−1(B) =
√
n,

proving the result.

15.2 Hoffman’s Bound and Erdős-Ko-Rado

One of the most important results in spectral graph theory is Hoffman’s bound, which gives an
upper bound on the independence number of a regular graph in terms of its eigenvalues.

Lemma 15.8 (Hoffman). Let G be a non-empty n vertex d-regular graph and A its adjacency
matrix. Then

α(G)

n
≤ −λmin

d− λmin

,

where λminis the smallest eigenvalue of A.

Proof. Let I be an independent set of size α = α(G), and let x be the characteristic vector with
xi = 1 if i ∈ I and xi = 0 otherwise. Observe that because I is an independent set, we have

xTAx = 0.
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Let v1, . . . , vn be an orthonormal eigenbasis for A with eigenvalues λ1, . . . , λn. Since G is regular,
the all 1’s vector 1 is an eigenvector with eigenvalue equal to d, so we can assume v1 = 1/

√
n

and λ1 = d. Writing x =
∑
civi for some real numbers ci, we see that

α = xTx =
∑

c2i ,

and
α/

√
n = ⟨x, v1⟩ = c1.

Putting all of this together, we find

0 = xTAx = xT
∑

ciλivi =
∑

c2iλi = (α2/n)d+
∑
i ̸=1

c2iλi

≥ (α2/n)d+
∑
i ̸=1

c2iλmin = (α2/n)d+ (α− α2/n)λmin.

Dividing both sides by α and rearranging gives

α(λmin − d)/n ≥ λmin.

Dividing both sides by λmin−d (which is negative because λmin < 0 since G is non-empty) gives
the result.

This result gives yet another proof of Erdős-Ko-Rado.

Sketch of Proof of Erdős-Ko-Rado. Let G be the graph with vertex set
(
[n]
r

)
where two sets

are adjacent if and only if they are disjoint. Observe that independent sets of G are exactly
intersecting families, so Erdős-Ko-Rado is equivalent to saying that

α(G) =

(
n− 1

r − 1

)
provided n ≥ 2r. In this case, one can verify that G has eigenvalues (−1)j

(
n−r−j
r−j

)
for 0 ≤ j ≤ r

(each appearing with multiplicity
(
n
j

)
−
(

n
j−1

)
), and hence

λmin = −
(
n− r − 1

r − 1

)
= − r

n− r

(
n− r

r

)
.

Since G has
(
n
r

)
= n

r

(
n−1
r−1

)
vertices and is regular with degree

(
n−r
r

)
, plugging things into

Lemma 15.8 gives α(G) ≤
(
n−1
r−1

)
as desired.

Perhaps the biggest constraint in Lemma 15.8 is the need for G to be regular, which we used
in this proof to guarantee that the all 1’s vector is an eigenvector, allowing us to extract
α = ⟨x,1⟩. We can get around this issue if we change how we measure independent sets. To
this end, given a graph G together with a vector w indexed by V (G) and a set of vertices I,
define |I|w =

∑
i∈I w

2
i , and define αw(G) = maxI |I|w where I ranges over all independent sets

of G.

With this we can generalize Lemma 15.8 by both allowing G not to be regular, and by allowing
A to only be a “pseudo-adjacency matrix.” It will also be important for our main application to
allow G to have loops, where we emphasize that no independent set of G can contain a vertex
which has a loop.
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Lemma 15.9. Let G be a graph with loops and M a matrix such that Mi,j = 0 whenever i ̸∼ j
and such that M has a basis of eigenvectors. If λmin is the smallest eigenvalue of M , and if w
is a unit eigenvector of M with eigenvalue λ > λmin, then

αw(G) ≤ −λmin

λmin − λ
.

The proof of Lemma 15.9 is nearly identical to that of Lemma 15.8, and we leave the details as
an exercise to the reader.

In order to use Lemma 15.9, we need a problem where we care about independent sets which
are weighted in non-standard ways. Motivated by our application of Lemma 15.8, we will do
this for a weighted version of the Erdős-Ko-Rado problem.

Specifically, given an n-vertex set system F , we define its p-biased measure by

µp(F) =
∑
F∈F

(1 − p)n−|F |p|F |.

In this setting, our main question is: what is the largest size (in the p-biased sense) of an
intersecting set system? Here we emphasize that we consider the non-uniform families, as
otherwise this is just equivalent to Erdős-Ko-Rado. The answer to this question is more or less
what one would expect (after observing that µp(F) = p when F consists of all sets containing
a given element).

Theorem 15.10. If F is an n-vertex intersecting family and p ∈ [0, 1/2], then µp(F) ≤ p.

One can show that this result is false for p > 1/2. It also turns out that for p < 1/2 the unique
construction with µp(F) = p is the star, but we’ll refrain from going into this.

One can also get uniqueness but I don’t know how much extra work this is. Also
note that this result is false for larger p

Just like with the original EKR theorem, there exist many proofs of Theorem 15.10 (in fact,
Friedgut has a talk going through 5 and a half proofs of this theorem REF). The spectral proof
we present here is due to Friedgut [80], and this proof ends up having the advantage that a
closer analysis of the proof gives stability results.

Mimicking our proof of EKR using Lemma 15.8 described above, we define the graph Gn on
2[n] where two sets are adjacent if and only if they are disjoint. Note that G has a loop at the
vertex ∅. Again, independent sets of Gn are intersecting families, and proving Theorem 15.10
is equivalent to showing αw(Gn) ≤ p where w is the vector defined by wS = (1 − p)n−|F |p|F |

(which is a unit vector).

To complete the proof using Lemma 15.9, it remains to cook up a pseudo-adjacency matrix Mn

which in particular has w as an eigenvector. To develop some intuition, we focus on the case
n = 1. Here G1 is just an edge where one vertex has a loop, so the M1 we are looking must

have the form M1 =

[
∗ ∗
∗ 0

]
. To limit our search space a little, we will try and find such a

matrix which is symmetric (though this isn’t required to use Lemma 15.9), at which point we

103



can scale M appropriately so that it has the form

M1 =

[
c 1
1 0

]
,

for some value c to be determined. Again, we must have that w = (
√

1 − p,
√
p) is an eigenvector

for this matrix, which means there exists some λ with λw1 = cw1 + w2 and with λw2 = w1.
Plugging things in, we see that λ =

√
(1 − p)/p, and hence that

M1 =

[√
1−p
p

−
√

p
1−p

1

1 0

]

We also observe that the other eigenvector of this matrix is w′ = (
√
p,−

√
1 − p), which has

eigenvalue λ′ = −
√
p/(1 − p). Plugging this into Lemma 15.9, we find

αp(G) ≤
√
p/(1 − p)√

(1 − p)/p+
√
p/(1 − p)

=
p

1 − p+ p
= p,

proving the result when n = 1.

It remains to generalize M1 to work for larger n. While it isn’t hard to do this directly, we’ll
do this in one go with the following linear algebra fact about tensor products.

Lemma 15.11. Given real symmetric matrices B1, B2 with rows and columns indexed by V1, V2
respectively, define the tensor product matrix B1 ⊗ B2 by having its rows and columns indexed
by V1 × V2 with (B1 ⊗B2)(i1,i2),(j1,j2) = (B1)i1,j1(B2)i2,j2.

If u1, . . . , u|V1| and v1, . . . , v|V2| are orthonormal sets of eigenvectors for M1,M2 with ui having
eigenvalue µi and vi having eigenvalue λi, then the vectors ui ⊗ vj defined by (ui ⊗ vj)(k1,k2) =
(ui)k1(vj)k2 are an orthonormal set of eigenvectors for M1 ⊗M2 with eigenvalue µiλj.

This is pretty easy to prove once you unwind the definitions. With this in mind, we inductively
define Mn = Mn−1⊗M1 (i.e. Mn is the nth tensor power of M1). Equivalently, this is the matrix

defined by (Mn)S,T = 0 whenever S ∩ T = ∅ and which has (Mn)S,T = (
√

1−p
p

−
√

p
1−p

)n−|S∪T |

otherwise. The point is that by the lemma above, the vector w with wS = (1 − p)(n−|S|)/2p|S|/2

is an eigenvector corresponding to the eigenvalue ((1 − p)/p)n/2. Further, if p ≤ 1/2, then we
have

λmin = min
i

(−1)i(p/(1 − p))i/2((1 − p)/p)(n−i)/2 = −
√
p/(1 − p)) · ((1 − p)/p)(n−1)/2.

Plugging this into Lemma 15.9 gives

αw(Gn) ≤
√
p/(1 − p)) · ((1 − p)/p)(n−1)/2

((1 − p)/p)n/2 +
√
p/(1 − p)) · ((1 − p)/p)(n−1)/2

= p,

proving Theorem 15.10.

Comment on uniqueness and stability; maybe go through this for t = 1.
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With some work, one can extend the approach of this subsection to work for t-intersecting
families. Unfortunately the most naive approach of solving the problem for n = 1 and then
tensorizing doesn’t work (since the n = 1 case is too small to capture the situation for t > 1).
The way Friedgut gets around this in [80] is by doing linear algebra over the ring R[X]/(X t = 0)
instead of just R. In this setting, he roughly considers matrices where the S, T entry is equal
to cS,TX

|S∩T | for some real number cS,T , which makes it so that these entries are 0 whenever
|S ∩ T | ≥ t. A lot of the steps become more intricate in this setup, but eventually everything
does end up going through.
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16 The Polynomial Method I: Slice Rank

Roughly speaking, the polynomial method is the method of using polynomials to solve problems,
though there is no real agreed upon definition of what does and does not constitute an instance
of this method.

One might argue that the modular intersection section used this method, in that we obtained
our results by cooking up a system of (low degree) polynomials which “encoded” our problem
(i.e. by choosing them so that the roots of the polynomials corresponded to intersections being
of a given size). Over the next two sections, we will look at two other systematic ways one can
take (low degree) polynomials which “encode” your problem and translate them into bounds
for an extremal problem: slice rank and combinatorial Nullstellensatz. We note that these two
methods are independent of each other and can be read in any order.

16.1 Slice Rank

In the previous section we considered proofs using linear algebra. Here we go a step further
and use multilinear algebra.

To this end, given a set S and an integer k, we let Sk denote the set of all k-tuples of elements
of S. Given a field F, we will say that any function of the form f : Sk → F is a k-tensor. Note
that when k = 2, we can express f as a matrix whose rows and columns are indexed by S,
and as such we can think of k-tensors as “higher order” matrices. Our main goal here is to use
“ranks” of tensors to obtain bounds for combinatorial problems, analogous to what we did in
our second proof of Oddtown.

There are various non-equivalent ways one can generalize the notion of rank from matrices to
tensors. One way is through slice rank. For this, we say that a k-tensor f is a slice if

f(x1, . . . , xk) = g(xi)h(x1, . . . , xi−1, xi+1, . . . , xk),

where i is some integer, g is a 1-tensor, and h is a (k − 1)-tensor. Note that when k = 2, slices
are exactly rank 1 matrices, i.e. the outer product of two vectors g and h. We define the slice
rank sr(f) of a k-tensor f to be the smallest integer r such that f can be written as the sum
of r slices. Again note that in the case k = 2 this exactly corresponds to the usual notion of
rank.

Although not every property of matrix rank carries over to the setting of slice rank, one impor-
tant property that does is the fact that the slice rank of a “diagonal tensor” equals the number
of non-zero entries it has. To this end, we say that a tensor is proper diagonal if f(x⃗) ̸= 0 if
and only if xi = xj for all i, j.

Lemma 16.1. If f : Sk → F is a proper diagonal k-tensor, then sr(f) = |S|.

Proof Sketch. We first show sr(f) ≤ |S|. For each a ∈ S, let ga(x) be the 1-tensor with
ga(a) = 1 and ga(b) = 0 otherwise. We observe

f(x⃗) =
∑
a∈S

ga(x1)f(a, x2, . . . , xk),
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proving that f has slice rank at most |S| as desired.

The proof of the lower bound sr(f) ≥ |S| is a somewhat fiddly induction argument that takes
about two pages to do; we refer the reader to a nice writeup by Martinez [138, Lemma 2.2.9]
for the full details.

Our general approach using Lemma 16.1 will be as follows:

(1) Start with some set S which has some desired properties.

(2) Using the properties of S, we construct a proper diagonal k-tensor f : Sk → F which is
“simple” (e.g. a polynomial of low degree).

(3) Using the fact that f is “simple”, we find some explicit way to write f as the sum of r
slices.

(4) In total, steps (2) and (3) imply

|S| = sr(f) ≤ r,

giving us an effective bound on sets S with our desired properties.

We note that this sort of approach was first used by Croot, Lev, and Pach [53]. This method
was then adapted by Ellenberg and Gijswitj [63] before being systemetized by Tao [174].

We will use the general approach outlined above to give very short proofs of two problems
which were previously thought to be incredibly difficult. Throughout this section, we suggest
before the reader goes through each proof that they first sit down and try to construct an f as
in the framework outlined above in order to solve the problem.

16.2 The Capset Problem

Given an abelian group G, we say that a triple of elements (x, y, z) ∈ G3 forms a 3-term
arithmetic progression (or 3AP for short) if y− x = z− y, and we say this is a non-trivial 3AP
if we do not have x = y = z. A fundamental question in additive combinatorics is to determine
how large a subset S ⊆ G can be if it contains no non-trivial 3AP. For example, Roth’s theorem
famously says that when G = Z such a set must have density 0.

Another natural case to consider is Fn
p for prime p. The case p = 2 is trivial (if S ⊆ Fn

2 contains
two distinct elements x, y, then (x, y, x) forms a non-trivial 3AP). As such, the first interesting
case is to look at Fn

3 , and in this setting sets S ⊆ Fn
3 without non-trivial 3AP’s are referred to

as cap sets. Using a difficult Fourier analytic argument, Bateman and Katz [20] showed that
capsets can have size at most O(3n/n1+ϵ) and Edel [62] gave the best known lower bound of
about 2.2n. At one point Tao mentioned that this capset problem was perhaps his favorite open
problem and that he thought the answer was probably (3 − o(1))n. It was thus a major shock
when Ellenberg and Gijswijt [63] gave a remarkably short proof showing an upper bound of
(3 − ϵ)n.
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Theorem 16.2 (Ellenberg-Gijswijt [63]). For all primes p, there exists a real number ϵ > 0
such that any set S ⊆ Fn

p which contains no non-trivial 3AP has |S| ≤ (p− ϵ)n.

Again, the reader is encouraged to try and come up with a tensor f which might work to give
the result before going through the details of this proof.

Proof. For slight ease of notation we will only deal with the case p = 3, the proof for general
p being almost identical. As outlined above, our goal will be to use S to construct a proper
diagonal tensor f of low degree. Given the inputs of the problem, perhaps the most natural
kind of tensor to consider is one of the form f : S3 → F3, where again we want to ensure that
if x, y, z ∈ S then f(x, y, z) ̸= 0 if and only if x = y = z. Critically, because of our hypothesis
that S contains no non-trivial 3AP, we see that we want f(x, y, z) ̸= 0 if and only if x, y, z is a
3AP, and as such our goal is essentially equivalent to constructing an f which is the indicator
function for 3AP’s!

By definition, (x, y, z) is a 3AP if and only if y− x = z− y, and rearranging gives x− 2y+ z =
0. As such, we’re essentially left with the problem of constructing an indicator function for
x − 2y + z ̸= 0, or equivalently that xi − 2yi + zi ̸= 0 for all i. And this is somewhat easy:
simply take

f(x, y, z) =
n∏

i=1

(1 − (xi − 2yi + zi)
2),

which one can readily check is an indicator function for 3AP’s in S, and hence is a proper
diagonal tensor.

It remains to estimate the slice rank of f . That is, we want to show that f can be written as
the sum of a small number of functions of the form e.g. g(x)h(y, z). To this end, we make the
observation that by the definition of f given above, each of its monomials has degree at most
2n, and as such each of its monomials has one of its x-degree, y-degree, or z-degree is at most
2n/3. The idea now is to group each of these monomials with the same low degree variable and
then bound the slice rank of each of these groups by using the low degree variable.

To be somewhat more precise, given a vector α ∈ {0, 1, 2}n, define xα =
∏
xαi
i , and similarly

define yβ and zγ. Let |α| :=
∑
αi, and let M denote the set of all triples (α, β, γ) with

α, β, γ ∈ {0, 1, 2}n and |α| + |β| + |γ| ≤ 2n. Observe that each monomial of f is of the form
xαyβzγ for some (α, β, γ) ∈ M.

Let Mx ⊆ M be the set of triples with |α| ≤ 2n/3, let My ⊆ M\Mx be those with |β| ≤ 2n/3,
and let Mz ⊆ M \ (Mx ∪My) be those with |γ| ≤ 2n/3. As noted above, Mx ∪My ∪Mz

partition M. Given α with |α| ≤ 2n/3, define the polynomial

hα(y, z) =
∑

β,γ:(α,β,γ)∈Mx

cα,β,γy
βzγ,

where cα,β,γ is the (possibly 0) coefficient of xαyβzγ in f . Similarly define hβ(x, z) and hγ(x, y).
By definition and the fact that Mx ∪My ∪Mz partition M, we have

f(x, y, z) =
∑

α:|α|≤2n/3

xαhα(y, z) +
∑

β:|β|≤2n/3

yβhβ(x, z) +
∑

γ:|γ|≤2n/3

zγhγ(x, y).
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With this, we conclude that the slice rank of f is at most 3 times the number of terms in
eahc sum, which is equal to the number of vectors α ∈ {0, 1, 2}n with |α| ≤ 2n/3. It is not
convince oneself that the number of such vectors is at most (3 − ϵ)n for some ϵ (essentially
because a random α ∈ {0, 1, 2}n behaves like the sum of two bionomial random variables with
total expectation n), proving the result.

We note in particular in the case p = 3 one can go through the analysis and get an upper
bound of roughly |S| = O(2.756n) for sets S ⊆ Fn

3 not containing a capset. In fact, it turns
out that this upper bound continues to hold for a slightly more general problem: we say that
three sets X, Y, Z ⊆ Fn

3 contain no rainbow 3AP if the only 3AP’s (x, y, z) ∈ X × Y × Z are
trivial. With a bit more work one can show that the above proof yields that if X, Y, Z contains
no rainbow 3AP then |X|+ |Y |+ |Z| = O(2.756n), and moreover there exist constructions that
essentially match this upper bound. Thus any improvement to the bound for capsets has to
somehow utilize that we only allow triples from S3 and not from three distinct sets. We refer
to the interested reader to the nice survey article by Grochow [97] for more on this topic.

16.3 Nonuniform Sunflowers

Recall that a k-sunflower is a collection of sets h1, . . . , hk such that hi ∩ hj is equal to the same
set for all i ̸= j. In the setting of uniform hypergraphs, the famous Erdős-Rado sunflower
conjecture says that there exists a constant C = C(k) such that every r-uniform hypergraph
with at least Cr hyperedges contains a k-sunflower.

Here we consider an analogous conjecture in the non-uniform setting due to Erdős and Szemerédi
[72]: there exists a constant ϵ = ϵ(k) > 0 such that for all n ≥ ϵ−1, every H ⊆ 2[n] with at least
(2 − ϵ)n hyperedges contains a k-sunflower. This conjecture turns out to be weaker than the
Erdős-Rado sunflower conjecture [72].

The slice rank method allows us to give an easy proof of this non-uniform sunflower conjecture
when k = 3.

Theorem 16.3 (Naslund-Sawin [149]). If H is an n-vertex hypergraph without any 3-sunflower,
then

|H| ≤ (n+ 1)
∑
t≤n/3

(
n

t

)
≤ 1.89n.

Proof. Let S be the set of characteristic vectors corresponding to the hyperedges of H. As
a first attempt for this problem, one would probably try to work with the set S directly to
construct a tensor f , but this causes some technical issues pop up.

To get around these issues, we let Sr ⊆ S be those characteristic vectors with r 1’s. The insight
here is that maxr |Sr| ≤ |S| ≤ (n + 1) · maxr |Sr|, so up to some negligible factor it suffices to
bound the size of each Sr set. This will allow us to get around the previously mentioned issues.

With this, our goal is to construct a 3-tensor f , now with domain S3
r , such that f(x, y, z) ̸= 0

if and only if x = y = z. The crucial insight here is that if we do not have x = y = z, then
there exists some i such that xi + yi + zi = 2. Indeed, if this were not the case and x, y, z were
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all pairwise distinct from each other, then this would imply that every i is either contained in
0, 1, or 3 of the sets x, y, z, which would imply these distinct hyperedges form a 3-sunflower.
If, say x = y ̸= z, then the non-existence of such an i would imply x ⊆ z, a contradiction to
x ̸= z both being in Sr, i.e. both having the same number of elements.

With this observation in mind, we see that our desired f is essentially the indicator function
for [no coordinate i having xi + yi + zi = 2]. Thus we can take f : S3

r → F3 by defining

f(x, y, z) =
n∏

i=1

(xi + yi + zi − 2),

and one can easily check that f is a proper diagonal tensor given that Sr ⊆ S contains no
3-sunflowers, so it remains to bound the slice rank of f . Similar to before, we observe that
each monomial of f has either x, y or z degree at most n/3, so by a similar trick as before we
conclude

max
r

|Sr| ≤ sr(f) ≤
∑
t≤n/3

(
n

t

)
≤ 2nH(1/3),

where H(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. Evaluating this
(and multiplying by n+ 1) gives the desired upper bound.
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17 The Polynomial Method II: Combinatorial Nullstel-

lensatz

Roughly speaking, the main idea of the previous section was to construct low degree polynomials
f that were capable of encoding any set S with a given property; and from there we used slice
rank to show that any such set S must be small in terms of deg(f).

In this subsection we take a subtlely different approach: we construct polynomials f in terms
of some given set S (generally with degree |S|), and then use the properties of S to argue that
f must have relatively small degrees.

To emphasize, in the previous subsection we constructed f which was independent of the specific
S we were given with some property, but here we construct f which will defined based off of
whatever S is given to us. This is somewhat more reminiscent of the approach we took with
modular intersections.

In any case, the main tool we will use for this new approach is the following result of Alon’s,
which is inspired by Hillbert’s Nullstellensatz theorem from algebraic geometry. Roughly speak-
ing, it says that if f has small degree, then f can not vanish on a large cartesian product.

Theorem 17.1 (Alon’s Combinatorial Nullstellensatz [3]). Let F be a field and f ∈ F[x1, . . . , xn]
a polynomial. If t1, . . . , tn are non-negative integers such that deg(f) =

∑
ti > 0 and such that

the monomial
∏
xtii has a non-zero coefficient in f , then for any sets Si ⊆ F satisfying |Si| > ti

for all i, there exist elements si ∈ Si such that f(s1, . . . , sn) ̸= 0.

We will somewhat informally write the conclusion of this statement as f(S1, . . . , Sn) ̸= 0 (and
we will also write f(S1, . . . , Sn) = 0 whenever this conclusion fails to hold). We note that this
result is best possible, as can be seen by taking the function

∏
s∈S1

(x1− s)g(x2, . . . , xn) for any
set S1 ⊆ F and function g.

Proof. We give a short proof due to Micha lek [143] by induction on deg(f), the case deg(f) = 1
being straightforward. Let f , t1, . . . , tn, and S1, . . . , Sn be as in the hypothesis, and assume we
have proven the result for all polynomials of degree smaller than deg(f) > 1. Without loss of
generality, we can assume t1 > 1, and we let s ∈ S1 be an arbitrary element. Using polynomial
division, we can write

f(x1, . . . , xn) = (x1 − s)g(x1, . . . , xn) + h(x1, . . . , xn)

such that deg(g) = deg(f) − 1 and such that h does not depend on x1. If we assume for
contradiction that f(S1 × · · · × Sn) = 0, then in particular we have

0 = f({s} × S2 × · · · × Sn) = 0 + h({s} × S2 × · · · × Sn).

Because h does not depend on x1, this implies h(S1×· · ·×Sn) = 0. Again using that h does not
depend on x1 and the hypothesis of the theorem, g must have a monomial xt1−1

1

∏
i ̸=1 x

ti
i with a

non-zero coefficient, so by induction we can find some (s1, . . . , sn) ∈ (S1 \ {s}) × S2 × · · · × Sn

which g does not vanish on. Note that h(s1, . . . , sn) = 0 by our previous observation, so in total
we conclude that f(s1, . . . , sn) = (s1 − s)g(s1, . . . , sn) ̸= 0, a contradiction.
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We will now showcase a slew of examples which use the combinatorial Nullstellensatz, with many
more examples being found in Alon’s original paper [3]. We note that in most cases, proofs of
these results were known well before the introduction of the combinatorial Nullstellensatz, but
this tool allows for elegant and unified solutions to all of them. Again, the reader is encouraged
to try and figure out which polynomial to use before reading through the proof.

17.1 Cauchy-Davenport

We begin with a basic result from additive combinatorics. Given two subsets A,B of an abelian
group G, we define A + B = {a + b : a ∈ A, b ∈ B}. If G = Z, then it is not difficult to
show that |A+B| ≥ |A|+ |B| − 1, which is best possible. However, if G is a finite group, then
this bound no longer holds for the simple reason that one could have |A| + |B| − 1 > |G|. The
Cauchy-Davenport theorem says that this is the only obstruction for Fp.

Proposition 17.2 (Cauchy-Davenport). If A,B ⊆ Fp for some prime number p, then |A+B| ≥
min{|A| + |B| − 1, p}.

Proof. Let’s think for a moment about what parameters we might choose when utilizing The-
orem 17.1. Seemingly we should take F = Fp. Since we ultimately want to conclude something
about the size of A + B, it seems reasonable that we want to construct our polynomial f to
depend on A+B, and in particular to have degree equal to |A+B|. The only relevant sets we
have that could play the role of the Si are A,B,A+B and Fp. Since we’re already planning to
use A+B to construct our polynomial, it perhaps makes the most sense to try and use S1 = A
and S2 = B.

Roughly then, we want to construct a polynomial f(x, y) of degree equal to |A + B|, which
means that if |A+B| = deg(f) ≤ (|A|−1)+(|B|−1), then by the combinatorial Nullstellensatz
we will have f(A,B) ̸= 0. We want to then derive a contradiction from this and from this; that
is, we want to define f in such a way that we obviously have f(A,B) = 0.

With the discussion above in mind, we want to define an f such that f(A,B) = 0 and such
that f has degree |A+B|. An obvious candidate for this is to take

f(x, y) =
∏

c∈A+B

(x+ y − c),

which has all of the properties described above.

To complete the proof, we assume for contradiction that |A+B| ≤ min{|A|+ |B|−2, p−1}. To
apply the Nullstellensatz with S1 = A, S2 = B, we need to show that there exists a monomial
xt1yt2 with t1 + t2 = |A + B|, t1 < |A|, and t2 < |B|. To this end, consider t1 = |A| − 1 and
t2 = |A+ B| − |A| + 1 ≤ |B| − 1, with this inequality coming from our assumption on A+ B.
It is not difficult to see that the coefficient of xt1yt2 in f is equal to

(|A+B|
|A|−1

)
. Crucially, because

|A+B| < p, this binomial coefficient is not a multiple of p and hence is non-zero. We can thus
apply the Nullstellensatz with S1 = A, S2 = B to conclude that f(A,B) ̸= 0, a contradiction
to how we defined f .
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17.2 Covering the Hypercube

How many hyperplanes in Rn does it take to cover all of the points of the hypercube {0, 1}n?
It’s not difficult to see that the minimum you need is 2. To make things more interesting, we
ask the following variant for affine hyperplanes: how many hyperplanes do you need to cover all
of {0, 1}n \ (0, . . . , 0) such that none of the hyperplanes contain (0, . . . , 0)? It isn’t too difficult
to work out that n hyperplanes suffice, but proving this is best possible isn’t as easy. However,
this becomes doable with the Nullstellensatz.

Theorem 17.3 (Alon-Füredi [7]). If h1, . . . , hm are a sequence of hyperplanes in Rn which do
not contain the origin and which contain every other point of {0, 1}n, then m ≥ n.

Proof. Again let us discuss what sort of parameters we might choose in applying the Null-
stellensatz. The most natural choice for field is probably R. Again our polynomial f should
probably have degree m, and a natural way to do this is to take f to be a product over terms
indexed by the hj. Motivated by this, for each j let aj ∈ Rn and bj ∈ R be such that hj contains
all of the points x ∈ Rn satisfying ⟨x, aj⟩ = bj, and we note for later that bj ̸= 0 for all j since
the origin is not contained in any hj. Then a natural choice of f : Rn → R to consider is

f(x) =
m∏
i=1

(bj − ⟨x, aj⟩),

since by hypothesis we know that our choice of f vanishes on all of {0, 1}n except the origin.

At this point, if we assume for contradiction that m ≤ n−1, then we know f has degree at most
n− 1, and hence there’s a chance we can find a monomial of the form

∏
i ̸=k xi for some k with

a non-zero coefficient. In this case we could apply the Nullstellensatz with Si = {0, 1} for i ̸= k
and Sk = {1} to find a point which isn’t the origin that f fails to vanish on, a contradiction to
how we defined f .

While the above approach is theoretically possible, it’s not at all clear how you could correctly
choose the value of k given the very limited information of the problem setup. Thus instead
of doing the above, we’ll modify our polynomial f so that it vanishes at every point of {0, 1}n
(including the origin). Since f only fails to vanish at the origin, this can easily be done by
taking

g(x) =
m∏
j=1

(bj − ⟨x, aj⟩) −
m∏
j=1

bj ·
n∏

i=1

(1 − xi),

and it is striaghtforward to check that g now vanishes on all of {0, 1}n. Moreover, because f(x)
had degree m ≤ n − 1 and because

∏
bj ̸= 0 (as noted at the start of the proof); we have

that g(x) has degree equal to n with its only monomial of this degree equal to
∏
xi. Thus

we can apply the Nullstellensatz with Si = {0, 1} for all i to conclude that g({0, 1}n) ̸= 0, a
contradiction to how we constructed g. We conclude that we must have m ≥ n as desired.

We note that this proof features a common trick with the Nullstellensatz: often you will have
some “main term” in your polynomial which encodes the bulk of your problem, and from there
you add in some additional terms to forbid certain “bad” witnesses s1, . . . , sn.
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17.3 Regular Subgraphs mod p

Our last example concerns finding subgraphs of graphs which are “regular mod p”. The proof
will showcases a useful trick one can utilize together with the Nullstellensatz: over the finite
field Fp, the function 1 − xp−1 is the indicator function for x being equal to 0 (since xp−1 = 1
whenever x ̸= 0).

Proposition 17.4. Let p be a prime. If G is an n-vertex graph with more than (p− 1)n edges,
then G has a non-empty subgraph H where every degree is a multiple of p.

Proof. Again lets consider the parameters. We should take F = Fp. One might first consider
taking f : Fn

p → Fp with our variables indexed by vertices of G, but in fact the more appropriate

domain is Fe(G)
p where each variable xe corresponds to an edge e ∈ G. This is because we

ultimately want to construct a subgraph of G, which is most naturally thought of as a subset
of the edges. Since we want our edges to either be in or out of this subgraph, it seems most
natural to take Se = {0, 1}, where we’ll think of xe = 1 meaning e ∈ H. As in the proof of
Alon-Füredi, we’ll need to ensure f(0) = 0 so that H will be non-empty.

Given this setup, we need to cook up an f which encodes the degrees of our vertices being a
multiple of p in H. The degree of a vertex v in H is exactly equal to

∑
e∋v xe, and as noted

before the proof, we can turn this into an indicator function for being a multiple of p by taking
1 − (

∑
e∋v xe)

p−1. We again want to make sure we vanish at x = 0, so in total the function we
come to is

f(x) =
∏
v

1 −

(∑
e∋v

xe

)p−1
−

∏
e

(1 − xp−1
e ).

Note that the degree of the left term is (p−1)n while the degree on the right is e(G) > (p−1)n.
Thus f is a polynomial of degree e(G) with

∏
xp−1
e a monomial achieving this. Thus we can

apply the Nullstellensatz with Se = {0, 1} for all e to conclude there’s some x ∈ {0, 1}n on which
f does not vanish. By construction we know x ̸= 0, and hence the graph H = {e : xe ̸= 0} is
a non-empty subgraph of G, which by construction has every vertex a multiple of p (since if
some vertex failed to have this, then we would have f(x) = 0).
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Part V

Hypergraph Containers

This part is heavily based off of lecture notes by Balogh [15]. Throughout this section we let
I(H) denote the set of independent sets of a hypergraph H and Im(H) the set of independent
sets of size m. We adopt the notation

(
n
≤k

)
to denote the number of subsets of [n] of size at

most k. Many of the bounds in this part will be rough approximations to the truth in order to
emphasize the intuition of the results and techniques rather than the nitty gritty detail that is
actually required.
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18 Introduction

Many problems in extremal combinatorics can be stated in terms of independent sets of hyper-
graphs. For example, one can define HAP

n to be the 3-graph on [n] where every triple S ⊆ [n] is
a hyperedge if and only if S is a 3-term arithmetic progression. Thus Roth’s theorem is equiva-
lent to saying α(HAP

n ) = o(n). Similarly one can define H∆
n to be the 3-graph whose vertex set

is E(Kn) and whose hyperedges are triples of edges in Kn which form a triangle. Independent
sets of H∆

n are triangle-free subgraphs of Kn, so Mantel’s theorem says α(H∆
n ) = ⌊n2/4⌋.

This part is dedicated to a powerful method of upper bounding the size of I(H). Observe that
for any hypergraph H we have

2α(H) ≤ |I(H)| ≤
(

n

α(H)

)
2α(H) ≤ (2n)α(H).

In particular, the upper bound follows because every independent set is a subset of a set of size
α(H). More generally, we say that a collection C of subsets C ⊆ V (H) is a set of containers
for H if every independent set I ∈ I(H) is a subset of some C ∈ C. If such a set of containers
exists, then

|I(H)| ≤
∑
C∈C

2|C| ≤ |C|2maxC∈C |C|. (20)

Thus we will get an effective upper bound on |I(H)| whenever we can find a small collection
of containers, each of which are relatively small. Sometimes we will be interested in finding the
number of independent sets of H of size m. The same reasoning as above gives(

α(H)

m

)
≤ |Im(H)| ≤ |C|

(
maxC∈C |C|

m

)
. (21)

The method of hypergraph containers gives a systematic way of obtaining such a collection of
containers whenever H satisfies some fairly mild conditions. The main condition we need is
that the codegrees of H to be relatively small, and in practice this often corresponds to having
some notion of supersaturation.
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19 Graph Containers

While the general method of containers involves bounding independent sets of hypergraphs, one
can get pretty far by only considering independent sets of graphs. To this end we prove the
following graph container lemma, which will be the main workhorse for the rest of this section.
Recall that a collection C of subsets C ⊆ V (G) is a set of containers for G if every independent
set I ∈ I(G) is a subset of some C ∈ C.

Lemma 19.1. Let G be an n-vertex graph and t > 0 a positive number. There exists a collection
C of containers such that

(a) |C| ≤
(

n
≤n/t

)
.

(b) ∆(G[C]) < t− 1 for all C ∈ C.

In other words, there exists a small set of containers C such that each C ∈ C is “small” in the
sense that it induces a graph with small maximum degree.

Proof. Our proof will be algorithmic: we construct a (deterministic) algorithm which takes as
input a set I ⊆ V (G) and which outputs a pair (S(I), A(I)) such that S(I) ⊆ I ⊆ S(I)∪A(I),
and we will ultimately use {S(I) ∪A(I) : I ∈ I(G)} as our set of containers. We now describe
the algorithm.

Fix an arbitrary ordering of V (G). As input we take in an independent set I ⊆ V (G). We
initially set S = ∅ and A = V (G) (the former corresponds to a set of “selected” vertices which
are in I, and the latter to the set of “available” vertices which could possibly be in I given the
current stage of the algorithm). The algorithm proceeds as follows:

Step 1 If ∆(G[A]) < t− 1, output (S(I), A(I)). Otherwise proceed to Step 2.

Step 2 Let v be the vertex of maximum degree in G[A], with ties being broken according to the
fixed ordering of V (G). If v /∈ I, then set A = A − v and repeat Step 1. Otherwise
proceed to Step 2.

Step 3 Set A = A− v −NG[A](v), S = S ∪ {v}. Proceed to Step 1.

Let’s reiterate what’s going on here. It’s not difficult to show inductively that we always have
I ⊆ S ∪A, so S ∪A serves as a container set for I, and we would like to trim this set down as
much as possible. We do this by selecting a vertex v ∈ A∩ I and adding it to S. If v has large
degree in G[A], then v being in the independent set I means that its many neighbors are not,
so we get to remove all of these vertices from A while maintaining I ⊆ S ∪ A. In particular,
since we keep going so long as G[A] has large maximum degree, we know at each step of this
process that we’re removing many vertices from A.

Define
C = {S(I) ∪ A(I) : I ∈ I(G)},
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which is a set of containers since I ⊆ S(I) ∪ A(I) at every step of the algorithm. Since we
terminate the algorithm precisely when ∆(G[A(I)]) = ∆(G[S(I) ∪A(I)]) < t− 1 (the equality
holds since S(I) has no neighbors in S(I) ∪ A(I)), (b) holds. It thus remains to verify (a). To
do this, we note the following which is easy to verify.

Claim 19.2. Let I1, I2 be two independent sets and let (S1, A1), (S2, A2) be their outputs from
the algorithm. If S1 = S2, then A1 = A2.

This claim implies that given S(I), the container S(I) ∪ A(I) is uniquely determined1. In
particular, if we always have |S(I)| ≤ n/t, then the number of containers will be at most(

n
≤n/t

)
. And indeed, each round of the algorithm has ∆(G[A]) ≥ t − 1, so every time a vertex

is added to S at least 1 + (t − 1) = t vertices are removed from A. In particular, at most n/t
vertices can be added to S, giving the result.

Actually, a closer inspection of the proof gives the following.

Lemma 19.3. Let G be a graph on n vertices and t ∈ R. There is a collection C of containers
and functions

f : I(G) →
(
V (G)

≤ n/t

)
, g :

(
V (G)

≤ n/t

)
→ C

such that the following hold.

(a) The function g is a surjection. In particular, |C| ≤
(

n
≤n/t

)
.

(b) We have ∆(G[C]) < t− 1 for all C ∈ C.

(c) For every I ∈ I(G) we have
f(I) ⊆ I ⊆ g(f(I)).

Proof. Consider the exact same algorithm as before. Define f(I) = S(I) and g(S) = C(S) (if
S ̸= S(I) for any I, then assign g arbitrarily). It’s not hard to check that this works.

The extra source of power of this lemma is that for each I ∈ I we are given some set S = f(I)
contained in I. In many examples this extra information is needed to get tight upper bounds
when counting independent sets, though for pedagogical purposes we will often work with the
simpler Lemma 19.1 to get close to tight results.

In the coming subsections we’ll show how to use Lemma 19.1 to solve several combinatorial
problems. All of the proofs will be very similar to each other, though they’ll become increasingly
sophisticated as we go along.

Before going on, let us briefly note that there are many variants of Lemma 19.1 that one can
prove using a similar approach. These variants of Lemma 19.1 are both a blessing and a curse
since they give many options for how to solve a given problem (and it isn’t always clear which
is best).

1Because of this, S is often called a “certificate” or “fingerprint” of I.
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19.1 Regular Graphs

Our first application of Lemma 19.1 will be to count the number of independent sets in a d-
regular graph. As a point of reference, it is not difficult to show that if G consists of n/2d
disjoint copies of Kd,d, then

|I(G)| = (2d+1 − 1)n/2d = 2n/2+n/2d+o(n).

Thus for d-regular graphs, we can’t possibly hope to prove an upper bound on |I(G)| stronger
than roughly 2n/2 when d is large. We can prove that this is close to best possible using
containers.

Theorem 19.4. Let G be a d-regular n-vertex graph with log n≪ d≪ n/2. Then

|I(G)| ≤ 2n/2+o(n).

In fact, it turns out that |I(G)| ≤ (2d+1 − 1)n/2d for all d-regular n-vertex graphs. This was
proven for bipartite graphs by Kahn [115] using entropy, and the problem was solved in full by
Zhao [185]. As far as I’m aware, the proof of Theorem 19.4 presented here is due to Balogh.

As a first step to proving Theorem 19.4, we will apply Lemma 19.1 to our graph G to get a
collection of containers C. We would like to conclude the result by the observation from (20):

|I(G)| ≤
∑
C∈C

2|C| ≤ |C|2maxC∈C |C|,

but there’s an issue with this. Namely, Lemma 19.1 only tells us that each C ∈ C induces a
graph in G with small maximum degree. For a general graph this tells us nothing about |C|,
but fortunately in d-regular graphs, G[C] having small maximum degree is only possible if C
is small. The following states a precise version of the contrapositive of the previous sentence.

Lemma 19.5. For any ϵ > 0, if G is a d-regular graph and C ⊆ V (G) with |C| = n/2 + ϵn,
then ∆(G[C]) ≥ 2ϵd.

This lemma is a form of supersaturation: a d-regular graph can have a subset of size n/2 with
G[C] empty (e.g. if G is bipartite), but if C is just a bit larger than this, then it must have
relatively high maximum degree. As we will see, supersaturation results are almost always a
necessary ingredient for applying the method of containers.

Proof. Because the maximum degree is always at least the average degree, we have

∆(G[C]) ≥ 2e(G[C])/|C| ≥ 2e(G[C])/n

, so it will suffice to show that e(G[C]) is large. To do this, we let C = V (G) \C and note that

d|C| =
∑
v∈C

d(v) = 2e(G[C]) + e(C,C) ≤ 2e(G[C]) + d|C|.

Because |C| = n/2 + ϵn and |C| = n/2 − ϵn, in total this implies

2e(G[C]) ≥ 2ϵdn.

Combining this with the observation at the start gives the result.
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Corollary 19.6. For all t, if G is an n-vertex d-regular graph, then there exists a set of
containers C with |C| ≤

(
n

≤n/t

)
and |C| ≤ 1

2
n+ t

d
n for all C ∈ C.

Proof. Let C be a set of containers as guaranteed by Lemma 19.1. Because ∆(G[C]) < t−1 ≤ t,
Lemma 19.5 implies that |C| ≤ 1

2
n+ t

d
n.

With this we can prove Theorem 19.4.

Proof of Theorem 19.4. At this point all we need to do is use (20) after applying Corollary 19.6
with a carefully chosen value of t. Note that

|C| ≈
(
n

n/t

)
≈ 2n log(t)/t,

and we already know 2max |C| ≈ 2
1
2
n+ t

d
n. Thus to minimize |C| · 2max |C| we should choose t so

that t
d
≈ log(t)/t, and in particular t =

√
d log n is a reasonable choice. One can verify with a

more formal argument that this does indeed give the desired result after applying (20).

We note that the statement of Corollary 19.6 and the optimization of t in the proof of Theo-
rem 19.4 is in some sense independent1 of the problem of determining |I(G)| for G a d-regular
graph. That is, these results are effective for other problems which involve counting independent
sets of d-regular graphs.

For example, recall that a q-coloring of a graph G is a map χ : G→ [q] such that χ(u) ̸= χ(v)
whenever uv ∈ E(G). Equivalently, a q-coloring is a partition of V (G) into independent sets
I1, . . . , Iq, With this latter formulation, we can use containers to get an effective bound on the
number of q-colorings of G, which we’ll denote by Xq(G).

Again, let’s consider a test case to figure out how strong of a bound we could possibly hope to
prove. Let G be n/2d disjoint copies of Kd,d. We know that G has close to as many independent
sets as it could possible have, so it seems plausible that it would have many q-colorings as well.
In particular, one can prove that Xq(G) ≈ (q/2)n, and once again we can prove that this is
essentially best possible.

Theorem 19.7 ([86]). Let G be an n-vertex d-regular graph and q an integer such that q2 log n≪
d. Then

Xq(G) ≤ (q/2 + o(1))n.

We note that a stronger result was proven by Galvin [86] with a somewhat more involved proof.

Proof. By the same reasoning as in Theorem 19.4, there exists a set of containers C for G such

that |C| ≈ 2
√

logn
d

n and |C| ≈ 1
2
n for each C ∈ C. Consider all vectors of the form (C1, . . . , Cq)

with Ci ∈ C, noting that the number of such vectors is at most |C|q = 2o(n).

Observe that every q-coloring can be identified by a vector (I1, . . . , Iq) where each Ij is an
independent set and

⋃
Ij = V (G). Each of these vectors is “contained” in some “container

1Ha.
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vector” (C1, . . . , Cq) with Cj ∈ C in the sense that Ij ⊆ Cj for all j. Thus it’s enough to count
how many q-colorings each container vector contains.

A naive upper bound for the number of q-colorings contained in (C1, . . . , Cq) is roughly 2qn/2

since this is the number of ways to choose an independent set from each Ci. This bound is too
weak, so we have to utilize the extra information that the Ij partition V (G).

To this end, assume V (G) = {v1, . . . , vn}. Given (C1, . . . , Cq), let ai be the number of containers
Cj with vi ∈ Cj. It’s not difficult to see that the number of q-colorings contained in this vector
is then at most

∏
ai, and by the AMGM inequality this is at most (

∑
ai/n)n = (

∑
|Cj|/n)n.

Each of the q containers has size at most roughly n/2 +
√

logn
d
n, so this gives the desired

result.

19.2 A Randomized Sperner’s Theorem

Throughout this subsection we fix an integer n and define N := 2n and m =
(

n
⌊n/2⌋

)
. An

antichain of [n] is a subset S ⊆ 2[n] such that A ̸⊆ B for any distinct A,B ∈ S. For example,(
[n]
k

)
is an antichain for all k. A famous result of Sperner’s says that an antichain of [n] has size

at most m.

Our first goal is to count the number of antichains of [n]. To do this, we form a graph where
independent sets correspond to antichains. Let GN denote the graph whose vertex set is 2[n] and
where A,B are adjacent to each other if either A ⊆ B or B ⊆ A. Analogous to Lemma 19.5,
we need a supersaturation lemma for GN which says that any collection of vertices that is much
larger than m induces many edges. In particular, the following suffices.

Lemma 19.8 ([126, 18]). If C ⊆ 2[n] has |C| > (1 + ϵ)m with 0 < ϵ ≤ 1/3, then e(GN [C]) ≥
ϵmn/2.

We won’t prove this, but we will briefly comment on some intuition for the result. Intuitively,
if you want to build a set of size (1 + ϵ)m which induces few edges, then a good place to
start is with the middle layer

(
[n]

⌊n/2⌋

)
since this is a maximum independent set. From there

one could greedily choose ϵm sets which have as few neighbors as possible in this middle layer,
and in particular choosing them allfrom

(
[n]

⌊n/2⌋+1

)
gives a total of (⌊n/2⌋ + 1) · ϵm ≥ ϵmn/2

edges. Kleitman [126] proved that this is indeed the best construction, and the exact numerical
computation1 was done by Balogh, Mycroft, and Treglown [18].

With our supersaturation lemma in hand, we can easily prove the following result of Kleitman.

Theorem 19.9 ([127]). The number of antichains of [n] is 2m+o(m).

Proof. We obtain a set of containers C for GN by applying lemma 19.1 to GN with a parameter
t to be determined later. Let ϵ be such that (1 + ϵ)m = maxC∈C |C| and let C be a container

1The numbers in Lemma 19.8 are slightly different from those that appear in [18], but it’s not difficult to
refine their proof to give this result.
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achieving this bound. By Lemma 19.8 we have1

∆(GN [C]) ≥ 2e(GN [C])/|C| ≥ ϵmn/(1 + ϵ)m ≈ ϵn.

By assumption this quantity is at most t, or equivalently we roughly have max|C|∈C |C| ≤
(1 + t/n)m. By (20) we have an upper bound of roughly(

N

N/t

)
2(1+t/n)m ≈ 2

N
t
log(t)+(1+t/n)m.

This quantity is optimized when N log(t)/t ≈ tm/n. We have m ≈ N/
√
n, so in total we want

t ≈ n3/4/
√

log n, and one can verify that this choice of t gives the desired bound.

We next prove a random version of Sperner’s theorem. The setup is as follows. Choose a subset
Rp ⊆ 2[n] by including each set in Rp independently and with probability p. How large is the
size of a largest antichain in Rp (in expectation)? In terms of our graph GN , this is equivalent
to computing E[α(GN [Rp])].

Let’s consider some simple cases first. If p = 1, then GN [Rp] = GN and we know its
independence number is m. Somewhat more generally, we always have the lower bound
E[α(GN [Rp])] ≥ pm since this is the expected size of the set

(
[n]

⌊n/2⌋

)
∩ Rp. However (as will

often be the case), the behavior of E[α(GN [Rp])] changes considerably when p is very small.

For example, if p23n ≪ p2n, then asymptotically we have E[α(GN [Rp])] ∼ |Rp| by a simple
deletion argument. Even above the deletion threshold it is possible to improve on the trivial
lower bound. Indeed, construct an independent set I by keeping each vertex in

(
[n]

⌊n/2⌋

)
∩ Rp

together with all the vertices in
(

[n]
⌊n/2⌋−1

)
∩Rp which are not contained in any of the vertices of(

[n]
⌊n/2⌋

)
∩ Rp. The expected number of vertices we get from this first part is p

(
n

⌊n/2⌋

)
, and from

the second is2 p(1 − p)n+1−⌊n/2⌋( n
⌊n/2⌋−1

)
. In particular, if p = c/n for a fixed constant c, then

this asymptotically gives (1 + ϵ)pm for some ϵ > 0.

It turns out that for larger p we do have E[α(GN [Rp])] ∼ pm. More precisely we have the
following due to Balogh, Mycroft, and Treglown [18].

Theorem 19.10 ([18]). For any ϵ > 0, there exists a constant c so that if p > c/n, then a.a.s.
α(GN [Rp]) ≤ (1 + ϵ)pm.

Roughly speaking the approach we would like to use is as follows. Observe that α(GN [Rp]) ≥ k
if and only if GN [Rp] contains an independent set of size k. The expected number of such sets
in GN [Rp] is exactly pkIk(GN), and if this quantity is small then we can conclude the result by
Markov’s inequality. Thus to solve this problem (and in general to solve extremal problems in
random sets), we need to get effective upper bounds on Ik(GN).

Unfortunately a naive application of Lemmas 19.1 and 19.8 together with (21) turns out to
be too weak. The bottleneck here is the supersaturation result from Lemma 19.8. While the

1Implicitly this assumes ϵ ≤ 1/3. One can get around this by taking C ′ ⊆ C a set of size exactly 4m/3, but
ultimately this computation is just to obtain intuition for what value t should be.

2To keep a vertex it has to be in Rp and all its neighbors in
(

[n]
⌊n/2⌋−1

)
have to be out.
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stated bound is essentially tight for |C| = (1 + ϵ)m with 0 < ϵ ≤ 1/3 and n sufficiently large,
the bound is not tight when e.g. |C| = (2 + ϵ)m. Intuitively in this case the extremal example
should come from taking two middle layers together with ϵm of the layer right above these two.
In particular, each of the ϵm vertices will have degree about n2, so we expect around ϵmn2

edges in GN [C]. And indeed, this is the case.

Lemma 19.11 ([126, 18]). If C ⊆ 2[n] has |C| > (2 + ϵ)m with 0 < ϵ ≤ 1/3, then e(GN [C]) ≥
ϵmn2/9.

With this we can prove the main result.

Proof of Theorem 19.10. The key idea is to apply the container lemma twice using the two
different levels of supersaturation from Lemmas 19.8 and 19.11. In particular, let C1 be a set
of containers coming from Lemma 19.1 using GN and some t1, and for each C1 ∈ C1, let C2(C1)
be a set of containers coming from Lemma 19.3 using GN [C1] and some t2.

We first want to choose t1 so that each C1 ∈ C1 has size roughly α(GN) = m. Observe that if
|C1| > 3m, then by Lemma 19.11, every C ′

1 ⊆ C1 of size 3m has

∆(GN [C1]) ≥ ∆(GN [C ′
1]) ≥ 2e(GN [C ′

1])/|C ′
1| ≥ n2/81.

Thus if we take t1 = n1.99 in Lemma 19.1, we find for n sufficiently large that |C1| ≤ 3m for all
C1 ∈ C1.

We now want to choose t2 so that each C2 ∈ C2(C1) has size very close to m. Let G′ = GN [C1].
If |C2| > (1 + γ)m with γ ≤ 1/3 we find that

∆(G′[C2]) ≤ 2e(G′[C2])/|C2| ≤ γn/3.

With some foresight we take t2 = ϵn/12 to guarantee that |C2| ≤ (1+ ϵ/4)m for all C2 ∈ C2(C1)
by Lemma 19.8.

Recall that we want to show with high probability no independent set I of size (1 + ϵ)pm lies in
the random set Rp. To this end, we note that we can identify each I with a pair (C1, S2) where

� C1 ∈ C1 contains I,

� S2 is the set f(I) from Lemma 19.3, i.e. |S2| ≤ |C1|/t2, S2 ⊆ I, and S2 determines a set
C2 ⊇ I in C2(C1).

Given this pair, if I ⊆ Rp has size at least (1 + ϵ)m, then (1) S2 ⊆ Rp since S2 ⊆ I, and (2)

|Rp ∩ (C2 \ S2)| ≥ (1 + ϵ)pm− |S2|,

since C2 \ S2 contains I \ S2. Observe that for p = c/n with c≫ ϵ−2 we have

|S2| ≤
|C1|
t1

≈ m

ϵn
≤ ϵpm

2
.
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With this in mind, we define A(S2) to be the event that S2 ⊆ Rp and B(S2) to be the event that
|Rp ∩ (C2 \ S2)| ≥ (1 + ϵ/2)pm. Observe that A(S2) and B(S2) are independent events, so by
a union bound over all pairs (C1, S2), we see that the probability that α(GN [Rp]) ≥ (1 + ϵ)pm
is at most ∑

C1∈C1

∑
S2:|S2|≤|C1|/t1

Pr[A(S2)] · Pr[B(S2)]. (22)

We have Pr[A(S2)] = p|S2|. By a Chernoff bound it is not difficult to show that Pr[B(S2)] ≤
e−c′ϵ2pm for some c′ > 0. Thus if we fix some C1 in the first term of the sum we get∑
s≤|C1|/t2

(
|C1|
s

)
ps·e−c′ϵ2pm ≤

∑
s≤|C1|/t2

(ep|C1|/s)s·e−c′ϵ2pm ≈ (p·ϵn/12)12|C1|/ϵn·e−c′ϵ2pm ≤ (ϵc)36m/ϵn·e−c′ϵ2cm/n,

where the approximation only looked at the term with s = |C1|/t2. Note that for c ≫ ϵ−4 the
second term dominates, so this bound is roughly

e−c′ϵ2cm/n. (23)

Note that this is the critical place where we used the two applications of the container lemma:
if we only applied the container lemma once to V (GN) instead of using C1, then the first term
here would be roughly eN/ϵn instead of em/ϵn, which would dominate the expression.

Returning to (22), we sum the bound of (23) for each element in C1, which multiplies (23) by(
N

≤ N/t1

)
≈ eN log(t1)/t1 ≈ emn−1.49 log(n).

This is much smaller than e−c′ϵ2cm/n, so the probability in (22) tends to 0 as n tends towards
infinity as desired.

We note that one can get almost as strong a result if one only uses Lemma 19.1, i.e. if one
doesn’t use the more refined Lemma 19.3. Indeed, the main consequence of using this refined
lemma was the extra term Pr[A(S2)] = ps appearing in (22). If one omits this turn, then
the same proof will go through provided p = c log n/n. This is a common phenomenon in
containers: if you don’t use the fact you have certificates S ⊆ I, then you’ll end up with a
bound which is worse by a log factor.

19.3 Counting Sidon Sets

This is a neat example where you use roughly log n iterated supersaturation lemmas
to get the right result. I may write this at some point, but in any case it will be
nearly identical to Balogh’s notes [15].
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20 A Proof of an r-Uniform Container Lemma

In the previous section, we saw how Lemma 19.1 allowed us to effectively count the number of
independent sets in “sufficiently nice” graphs. In this section we present a proof of a hypergraph
container lemma which applies to “sufficiently nice” hypergraphs, but two things should be
noted.

The first is that there are many different variants of hypergraph container lemmas, though most
of them are quite similar and broadly speaking apply only to hypergraphs with small codegrees.

The second is that, quite frankly, one doesn’t need to know the proof of the container lemma
to use it or its variants. As such, the reader may just want to glance at the definition below,
and then skip over to latter sections to see some nice applications before jumping back over
here whenever they want to see the full proof.

20.1 An Informal Discussion

The hypergraph container lemma we prove comes from [?] (though we deviate somewhat from
their notation). We’ll formally state this as Theorem 20.5 below, but roughly our goal will be to
prove the following. Recall that ∆ℓ(H) denotes the maximum ℓ-degree of H, i.e. the maximum
number of edges containing a given set of ℓ vertices.

Proposition 20.1 (Informal). If H is an r-graph such that for all 1 ≤ ℓ ≤ r we have

∆ℓ(H) ≪ qℓ−1 e(H)

v(H)
,

then there exists δ > 0, S ⊆
(

V (H)
≪q·v(H)

)
, and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H) → S

such that
g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

In other words, if H has small codegrees, then one can find a set of small certificates S which
are each associated with a container f(S) which is of size at most (1 − δ)v(H).

The proof of Proposition 20.1 will in essence be a proof by induction on the uniformity r, and
the inductive step of the proof uses an algorithm which is similar to the one used in Lemma 19.1.

Definition 3 (Informal). The Scythe Algorithm takes as input a pair (Hk+1, I) with Hk+1 a
(k + 1)-uniform hypergraph and I ⊆ V (Hk+1) an independent set. It then outputs a triple
(Hk, Ak, Sk) with Hk a k-uniform hypergraph such that I ⊆ V (Hk) is an independent set with
I ⊆ Ak∪Sk, and Sk is a small set which uniquely determines Hk and Ak given Hk+1. Moreover,
if Hk+1 is “nice”, then either Hk will be “nice” or Ak will be small.

Given such an algorithm, we can start with any “nice” r-uniform hypergraph Hr and indepen-
dent set I. We then repeatedly apply this algorithm until we get some Hk which is not “nice”,
at which point

⋃
i≥k Si is a small certificate which determines a small container Ak ∪

⋃
i≥k Si

for I.
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While it’s not a priori clear what the “nice” conditions should be, they should in particular
guarantee that Hk+1 has few independent sets, as otherwise there’s no hope of this method
being effective. In particular, a reasonable set of conditions is to enforce that Hk+1 has many
edges and relatively low codegrees, and this will ultimately be the conditions that we use.

Now that we know what we want our algorithm to do, how should it actually work in practice?
Perhaps the most naive approach is to do what we did in Lemma 19.1, where we iteratively
select the vertex u of I ∩Hk+1 which has the largest degree and then adds this to Sk. Once we
identify such a u, we know that I does not contain any k-set of the form e \ {u} for any e ∋ u
which is an edge in Hk+1, so it is natural to make all of these k-sets edges of Hk. If we do this
repeatedly, then Ak will be relatively small and I will be an independent set of Hk. Moreover,
if we enforce from the start that we’ll run this procedure at most s times, then we will have
|Sk| ≤ s, giving a small certificate.

Unfortunately we have to be more careful than this. Namely, we need to ensure that Hk is
“nice”, and in particular that it has small codegrees. As it currently stands this might not
work out, e.g. there may be some ℓ-set T which is in many edges containing vertices of Sk. To
get around this, we define Dℓ(Hk,∆) to be the set of “dangerous” ℓ-sets of V (Hk) which have
degree at least ∆/2, where we think of ∆ as being the maximum ℓ-degree we want Hk to have
(which is analogous to the t parameter used in the algorithm of Lemma 19.1).

We now adjust our naive algorithm by making it so that whenever a set T gets added to
Dℓ(Hk,∆), we delete from Hk+1 all of the edges that contain T . This ensures that T never
passes over the enforced codegree threshold. With this it turns out that our algorithm will
succeed.

20.2 A Formal Algorithm

Motivated by our discussion in the previous section, we make the following definitions. For any
hypergraph H ′, we define the max-degree order on V (H ′) as follows. Fix an arbitrary ordering
of V (H ′). For each integer j, recursively define uj to be the maximum-degree vertex in the
hypergraph H ′[V (H ′) \ {u1, . . . , uj−1}] with ties broken based on the ordering of V (H ′). The
max-degree order is then the ordering u1, u2, . . ., and for all j we define WH′(uj) = {u1, . . . , uj}.

For any k-uniform hypergraph H ′, integer ℓ ≤ k, and real number ∆, we define

Dℓ(H
′,∆) =

{
T ∈

(
V (H ′)

ℓ

)
: degH′(T ) ≥ 1

2
∆

}
.

Definition 4. The Scythe Algorithm is defined as follows. It takes as input a (k + 1)-uniform
hypergraph Hk+1 with k ≥ 1, an independent set I ⊆ V (Hk+1), and parameters s,∆k

1, . . . ,∆
k
k.

At the start of the algorithm, we set H
(0)
k+1 = Hk+1, S

(0)
k = ∅, and we let H

(0)
k be the empty

hypergraph on V (Hk+1). For j = 0, . . . , s− 1, the algorithm proceeds as follows:

Step 1: If I ∩ V (H
(j)
k+1) = ∅, then set Hk = H

(0)
k , Ak = ∅, Sk = S

(j)
k . If this happens, stop the

algorithm and output (Hk, Ak, Sk).
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Step 2: Let uj be the vertex of I ∩ V (H
(j)
k+1) which is first according to the max-degree ordering

of H
(j)
k+1. Set S

(j+1)
k = S

(j)
k ∪ {uj}.

Step 3: Let H
(j+1)
k by the hypergraph on V (H) defined by

H
(j+1)
k ∪ {e \ {uj} : e ∈ H

(j)
k+1, uj ∈ e}.

Step 4: Let H
(j+1)
k+1 be the hypergraph on V (H

(j)
k+1) \WH

(j)
k+1

(uj) with

H
(j+1)
k+1 = {e ∈ H

(j)
k+1 : e ∩W

H
(j)
k+1

(uj) = ∅ and T ̸⊆ e for all T ∈
k⋃

ℓ=1

Dℓ(H
(j+1)
k ,∆k

ℓ )}.

After running through the above procedure, set Hk = H
(s)
k , Ak = V (H

(s)
k+1), and Sk = S

(s)
k .

Output (Hk, Ak, Sk). ■

We emphasize that this algorithm allows the hypergraphs Hk+1 and Hk to have repeated edges.

We now analyze this algorithm through a series of lemmas. We omit many of the proofs since
most are either straightforward or analogous to what was done in Lemma 19.1.

Lemma 20.2. Assume one runs the Scythe Algorithm with parameters s,∆k
1, . . . ,∆

k
k on inputs

(Hk+1, I), (Hk+1, I
′) and that the algorithm outputs (Hk, Ak, Sk), (H ′

k, A
′
k, S

′
k), respectively. If

Sk ⊆ I ′ and S ′
k ⊆ I, then (Hk, Ak, Sk) = (H ′

k, A
′
k, S

′
k).

For the rest of this subsection we will assume that we have run the Scythe Algorithm with pa-
rameters s,∆k

1, . . . ,∆
k
k on (Hk+1, I) which outputs some (Hk, Ak, Sk). We observe the following

basic properties.

Lemma 20.3. The following hold:

� I is an independent set of Hk,

� Sk ⊆ I ⊆ Ak ∪ Sk,

� Both Hk and Ak are determined by Hk+1 and Sk,

� |Sk| ≤ s,

� For all ℓ ≤ k we have ∆ℓ(Hk) ≤ 1
2
∆k

ℓ + ∆ℓ+1(Hk+1).

We now turn to the main lemma of this subsection, which roughly says that if Hk+1 is “nice,”
then either Hk will also be “nice” or Ak will be small.

Lemma 20.4. Either

e(Hk) ≥ min

{
s

v(H)
,

∆k
1

∆1(Hk+1)
, . . . ,

∆k
k

∆k(Hk+1)

}
· e(Hk+1)

(k + 1)2k+2
,
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or

|Ak| ≤ v(Hk+1) −
e(Hk+1)

4 · ∆1(Hk+1)
.

Note that this lemma will be most “effective” when each ratio of the minimum is roughly the
same. And indeed, we will end up choosing our parameters so that these ratios are all at least
s/v(H).

Proof. If the algorithm ever stops at Step 1, then |Ak| = 0 and there is nothing to prove, so we
can assume that Steps 2 through 4 are completed a total of s times. We observe that

|Ak| = v(H
(s)
k+1) = v(Hk+1) −

s−1∑
j=0

|Wj(uj)|,

where for ease of notation we let Wj = W
H

(j)
k+1

. Thus we can assume

s−1∑
j=0

|Wj(uj)| <
e(Hk+1)

4∆1(Hk+1)
. (24)

By construction, for all j we have

e(H
(j+1)
k ) − e(H

(j)
k ) = deg

H
(j)
k+1

(uj).

Because uj is the largest element of I ∩V (H
(j)
k+1) in the max-degree order, the degree of uj is at

least as large as the average degree of the subgraph of H
(j)
k+1 after deleting Wj(uj) \ {uj}, and

again by definition of the max-degree order, this is at least as large as the average degree of
H

(j)
k+1 (which has at most v(H) vertices). In total then we find

e(Hk) =
s−1∑
j=0

e(H
(j+1)
k ) − e(H

(j)
k ) ≥

s−1∑
j=0

(k + 1)e(H
(j+1)
k+1 )

v(H)
.

If we have (k+1)e(H
(j+1)
k+1 ) ≥ e(Hk+1) for all j, then the above sum is at least (s/v(H))·e(Hk+1),

giving the desired result. Thus we can assume this fails for some j, and this implies

e(H
(s)
k+1) ≤ e(H

(j+1)
k+1 ) <

e(Hk+1)

k + 1
. (25)

This means that many edges of Hk+1 were deleted in Step 4 of the algorithm. We claim that
this implies that one of the sets Dℓ(Hk,∆

k
ℓ ) is large. Indeed, observe that

e(H
(j)
k+1) − e(H

(j+1)
k+1 ) ≤ |Wj(uj)| · ∆1(Hk) +

∑
ℓ

|Dℓ(H
(j+1)
k ,∆k

ℓ ) \Dℓ(H
(j)
k ,∆k

ℓ )| · ∆ℓ(Hk+1),

since edges are either deleted by deleting vertices in Wj(uj) or by deleting ℓ-sets which are in

Dℓ for H
(j+1)
k but not H

(j)
k . Summing this over all j gives

e(Hk+1) − e(H
(s)
k+1) ≤

∑
j

|Wj(uj)| · ∆1(Hk+1) +
∑
ℓ

|Dℓ(Hk,∆
k
ℓ )| · ∆ℓ(Hk+1)

<
k · e(Hk+1)

2(k + 1)
+
∑
ℓ

|Dℓ(Hk,∆
k
ℓ )| · ∆ℓ(Hk+1),
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where this last step used (24) and k ≥ 1. Using (25) shows that

k · e(Hk+1)

2(k + 1)
≥
∑
ℓ

|Dℓ(Hk,∆
k
ℓ )| · ∆ℓ(Hk+1),

so for some ℓ we must have

|Dℓ(Hk,∆
k
ℓ )| ≥ e(Hk+1)

2(k + 1)∆ℓ(Hk+1)
.

With ℓ as above, the handshaking lemma and definition of Dℓ implies

e(Hk) =

(
k

ℓ

)−1 ∑
T∈(V (Hk)

ℓ )

degHk
(T ) ≥

(
k

ℓ

)−1

· |Dℓ(Hk,∆
k
ℓ )| · 1

2
∆k

ℓ ≥
e(Hk+1) · ∆k

ℓ

(k + 1)2k+2∆ℓ(Hk+1)
,

giving the desired result.

20.3 Proof of The Formal Result

We are now ready to prove the following formal statement.

Theorem 20.5 ([17]). For every integer r ≥ 2 and c ≥ 1, there exists δ > 0 such that the
following holds. Let q ∈ (0, 1) and suppose H is an r-uniform hypergraph such that for every
1 ≤ ℓ ≤ r we have

∆ℓ(H) ≤ cqℓ−1 · e(H)

v(H)
.

Then there exists S ⊆
(

V (H)
≤(r−1)q·v(H)

)
and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H) → S such

that for every I ∈ I(H) we have

g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

Moreover, S ∩ f(S) = ∅ for all S ∈ S, and if I, I ′ ∈ I(H) satisfy g(I) ⊆ I ′, g(I ′) ⊆ I, then
g(I) = g(I ′).

Proof. For all ℓ ≤ r let ∆r
ℓ := ∆ℓ(H), and inductively define

∆k
ℓ := max{2 · ∆k+1

ℓ+1 , q · ∆k+1
ℓ }.

The following is straightforward to prove given the hypothesis of the theorem.

Claim 20.6. For all k < r we have ∆k+1
1 ≤ C2rqr−k−1 e(H)

v(H)
.

For each I ∈ I(H), iteratively run through the Scythe Algorithm with the parameters above
and s = q · v(H), starting with Hr = H. Let (Hr−1, Ar−1, Sr−1), . . . , (H1, A1, S1) denote the
outputs of this algorithm.

It is straightforward to show that ∆ℓ(Hk) ≤ ∆k
ℓ for all ℓ, k by using induction and Lemma 20.3.

For k < r we define ck = (Cr2r+1)k−r. Let K be the smallest integer such that |AK | ≤
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(1 − cK)v(H), and if no such K ≥ 1 exists we set K = 0. It is straightforward to prove that
e(Hk) ≥ ckq

k−re(H) for all k > K by using induction, Lemma 20.4, and Claim 20.6.

Let δ := c1. Before we define our functions, for technical reasons it will be convenient to
first define a function f ∗ : I(H) →

(
V (H)

≤(1−δ)v(H)

)
before defining f . Pick some I and let the

hypergraphs Hk and integer K be as defined above. Observe that if K ≥ 1, then |AK | ≤
(1 − δ)v(H), so in this case we will set

g(I) =
⋃
k≥K

Sk, f ∗(I) = AK .

If K = 0, then we set

g(I) =
⋃
k≥1

Sk, f ∗(I) = {v ∈ V (H1) : {v} /∈ H1}.

Note that in this case |f ∗(I)| = v(H)−e(H1), which is at most (1−δ)v(H) by our observations
above. Lastly, we define S = {g(I) : I ∈ I(H)} and f(S) = f ∗(I) for any I ∈ g−1(S). The fact
that f is well defined is implied by the following claim, which itself follows from Lemma 20.3.

Claim 20.7. If I, I ′ ∈ I(H) with g(I) ⊆ I ′ and g(I ′) ⊆ I, then g(I) = g(I ′) and f ∗(I) = f ∗(I ′).

The fact that these definitions give the desired result, except possibly the condition S∩f(S) = ∅,
can be checked by using the properties from Lemma 20.3. This last condition can be established
by taking f ′(S) := f(S) \ S if needed.

The following weaker version of Theorem 20.5 is often good enough for most applications and
is conceptually simpler.

Corollary 20.8. For every integer r ≥ 2 and c ≥ 1, there exists δ > 0 such that the following
holds. Let q ∈ (0, 1) and suppose H is an r-uniform hypergraph such that for every 1 ≤ ℓ ≤ r
we have

∆ℓ(H) ≤ cqℓ−1 · e(H)

v(H)
.

Then there exists a collection of sets C such that every independent set of H is a subset of some
C ∈ C, and moreover, |C| ≤ (1 − δ)v(H) for all C ∈ C and |C| ≤

(
v(H)

≤(r−1)q·v(H)

)
.

Proof. In the notation of Theorem 20.5, we let C = {f(g(I)) ∪ g(I) : I ∈ I(H)}.

On its own, Corollary 20.8 (and even Theorem 20.5) isn’t terribly useful since the containers
it generates are rather large, and in practice one needs to reapply this lemma to each C ∈ C
which is large, and to keep repeating this argument until the contains are sufficiently small.
Because δ depends only on r and C, this only needs to be done a constant number of times.
However, to reapply the lemma, each large C ∈ C must satisfy essentially the same hypothesis
as H. While a generic hypergraph will fail to have this property, many nice hypergraphs will.
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21 Hypergraph Containers and Triangle-Free Graphs

Let us restate our weak container theorem Corollary 20.8 for the special case of 3-uniform
hypergraphs.

Theorem 21.1 ([17]). For every c ≥ 1, there exists δ > 0 such that the following holds. Let
q ∈ (0, 1) and suppose H is a 3-uniform hypergraph such that

∆1(H) ≤ c
e(H)

v(H)
,

∆2(H) ≤ cq
e(H)

v(H)
,

∆3(H) ≤ cq2
e(H)

v(H)
.

Then there exists a collection of sets C such that every independent set of H is a subset of some
C ∈ C, and moreover, |C| ≤ (1 − δ)v(H) for all C ∈ C and |C| ≤

(
v(H)

≤2q·v(H)

)
.

Note that for simple hypergraphs we have ∆3(H) = 1, so this last bound is equivalent to lower
bounding the average degree by c−1q−2. One important consequence of Theorem 21.1 is the
following.

Theorem 21.2. For all n, ϵ > 0, there exists a collection of n-vertex graphs C such that

(a) Every triangle-free graph G ⊆ Kn is a subgraph of some C ∈ C,

(b) Every C ∈ C has less than ϵn3 triangles, and

(c) We have |C| = nOϵ(n3/2).

That is, there exists a small set of nearly triangle-free graphs which contains every triangle-free
graph.

Proof. Start with C = {Kn}, and note that C trivially satisfies (a). Iteratively proceed as
follows. If every C ∈ C has less than ϵn3 triangles then output the current collection C.
Otherwise, let C ∈ C be such that it contains at least ϵn3 triangles. Form a 3-graph H with
vertex set E(C) where three edges of C form a hyperedge in H if they form a triangle. Note
that e(H) ≥ ϵn3 and v(H) = e(C) ≤ n2. Every edge is contained in at most n triangles,

so ∆1(H) ≤ n ≤ ϵ−1 e(H)
v(H)

. We also have ∆2(H) = ∆3(H) = 1 ≤ ϵ−1(n−1/2)2 e(H)
v(H)

. With this

we see that we can apply Theorem 21.1 with q = n−1/2 and c = ϵ−1. This gives a collection
of containers C ′ for C, i.e. subgraphs C ′ ⊆ C such that every triangle-free subgraph of C is
contained in some C ′ ∈ C. Remove C from C and add every C ′ ∈ C ′ to C. Repeat this process.

Let C be the final collection that this algorithm produces. It is straightforward to show that (a)
holds inductively, and (b) holds by construction. To show that the final collection is small, first
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note that each time we apply the container lemma, the number of new graphs we create is at
most

( v(H)

≤2n−1/2v(H)

)
= nO(n3/2). Second, observe that each time we apply the container lemma to

C, the graphs in C ′ have at most (1−δ)e(C) edges, where δ depends only on ϵ. Because we only
iterate on C which have at least ϵn2 edges (since they need at least ϵn3 triangles), we iteratively
apply the lemma at most some bounded number of times b = b(ϵ) to reach any element in the

final collection C. Thus the total number of containers we create is
(
nO(n3/2)

)b
= nOϵ(n3/2) as

desired.

For Theorem 21.2 to be useful, we need to get a handle on graphs with at most ϵn3 triangles.
As is typical with containers, this will come from a supersaturation lemma.

Lemma 21.3. For every δ > 0 there exists an ϵ > 0 such that if G is an n-vertex graph with
e(G) ≥ (1

2
+ δ)

(
n
2

)
, then G contains at least ϵn3 triangles.

I’m not crazy about the ordering of δ, ϵ but I admit the final thing should be about ϵ...well
actually in a lot of the applications it kind of makes more sense to do it the other way. Maybe
do the Kr version in general depending on what I need later on.

Proof. TODO

With this we can prove the following counting result.

Theorem 21.4. The number of n-vertex triangle-free graphs is equal to

2(1+o(1))n2/4.

Proof. The lower bound comes from considering all of the subgraphs of Kn/2,n/2. For the upper
bound, fix some δ > 0 and let ϵ be as in Lemma 21.3. Let C be the containers guaranteed
by Theorem 21.2 with parameter ϵ. Because every triangle-free graph is a subgraph of some
C ∈ C, the number of triangle-free graphs is at most∑

C∈C

2|C| ≤ nO(n3/2) · 2maxC∈C e(C),

Since each C ∈ C has less than ϵn3 and at triangles, Lemma 21.3 implies e(C) ≤ (1
2

+ δ)
(
n
2

)
for

all C ∈ C. In total we get an upper bound of

2( 1
2
+δ)(n

2)+O(n3/2 logn),

and letting δ tend towards 0 gives the result.

While containers most directly allow one to solve problems that are equivalent to counting the
number of independent sets of a hypergraph, there are other related problems which they’re
effective for. For example, in the next subsection we show how containers can be used to prove
probabilistic analogs of classical extremal results. In the section after this we show how one can
use containers to count special kinds of independent sets, namely maximal independent sets.
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21.1 Mantel’s Theorem in Random Graphs

Given two graphs G,F , we let ex(G,F ) denote the largest F -free subgraph of G. For example,
ex(Kn, F ) = ex(n, F ). The following result can be viewed as a random version of Mantel’s
theorem.

Theorem 21.5. Define ex(Gn,p, K3) to be the largest triangle-free subgraph of Gn,p. We have
ex(Gn,p, K3) = (1 + o(1))pn2/4 whp provided p≫ n−1/2 log n.

Proof. The lower bound follows by considering Gn,p∩Kn/2,n/2, which is always triangle-free and
which has (1 + o(1))pn2/4 edges whp. For the upper bound, fix δ > 0, and let ϵ > 0 be as in
Lemma 21.3. Let C be the set of containers given by Theorem 21.2 with parameter ϵ, and as
before we have e(C) ≤ (1/2+δ)

(
n
2

)
for all C ∈ C. Because every triangle-free graph is contained

in some C ∈ C, in order to have ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4, there must exist some C ∈ C
such that |Gn,p∩C| ≥ (1 + 4δ)pn2/4. Let EC be the event that this bound holds. Observe that
|Gn,p ∩C| is a binomial random variable with probability p and at most (1 + 2δ)n2/4 trials. By
the Chernoff bound, we find Pr[EC ] ≤ e−Oδ(pn

2). In total then, we have

Pr[ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4] ≤ Pr

[⋃
C∈C

EC

]
≤ nOδ(n

3/2) · e−Oδ(pn
2) → 0,

with this last step holding by hypothesis on p. We conclude the reuslt by taking δ arbitrarily
close to 0.

We note that for p ≪ n−1/2, a simple deletion argument shows that for p ≪ n−1/2 there exist
triangle-free subgraphs with (1 + o(1))p

(
n
2

)
edges, and this is certainly best possible since Gn,p

has at most this many edges asymptotically. Thus the bound for p in Theorem 21.5 is almost
optimal. In fact, we can obtain the optimal bound in this theorem by using the strong container
theorem Theorem 20.5, which in the case of 3-graphs can be written as follows.

Theorem 21.6. For every c ≥ 1, there exists δ > 0 such that the following holds. Let q ∈ (0, 1)
and suppose H is a 3-uniform hypergraph such that

∆1(H) ≤ c
e(H)

v(H)
,

∆2(H) ≤ cq
e(H)

v(H)
,

∆3(H) ≤ cq2
e(H)

v(H)
.

Then there exists S ⊆
(

V (H)
≤2q·v(H)

)
and functions f : S →

(
V (H)

≤(1−δ)v(H)

)
and g : I(H) → S such

that for every I ∈ I(H) we have

g(I) ⊆ I ⊆ f(g(I)) ∪ g(I).

Moreover, S ∩ f(S) = ∅ for all S ∈ S, and if I, I ′ ∈ I(H) satisfy g(I) ⊆ I ′, g(I ′) ⊆ I, then
g(I) = g(I ′).
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This allows us to construct the following “strong” set of containers for triangle-free graphs.

Theorem 21.7. Let Gn, Tn denote the set of all n-vertex graphs and all n-vertex triangle-free
graphs, respectively. For all n, ϵ > 0, there exists a set of graphs S with at most Oϵ(n

3/2) edges,
as well as functions f : S → Gn and g : Tn → S such that for every G ∈ Tn, we have

g(G) ⊆ G ⊆ f(g(G)) ∪ g(G),

and such that f(S) has less than ϵn3 triangles for all S ∈ S.

Proof. We start with S consisting only of the empty graph and define g(G) = ∅ and f(∅) = Kn.
Iteratively assume we have constructed some S, f, g satisfying all of the conditions except
possibly that each S ∈ S has at most Oϵ(n

3/2) edges and that f(S) has less than ϵn3 triangles
(which holds for our initial step). If f(S) has less than ϵn3 triangles for all S ∈ S then we end
the procedure. Otherwise, let S be such that C = f(S) has at least ϵn3 triangles. By repeating
our computations from the proof of Theorem 21.2, we see that we can apply Theorem 21.6 to
the 3-graph H encoding triangles of C, and we let SC , fC , gC be the output of this theorem.

Claim 21.8. Let S ′ := (S \ {S}) ∪ {SC ∪ S : SC ∈ SC}, define g′(G) = g(G) if g(G) ̸= S and
g′(G) = gC(G−S) otherwise, and define f ′(S ′) = f(S ′) if S ′ ∈ S \{S} and f ′(S ′) = fC(S ′−S)
otherwise. These maps are well defined and satisfy the conditions of the theorem except possibly
that each S ∈ S ′ has at most Oϵ(n

3/2) edges and that f ′(S) has less than ϵn3 triangles.

Proof. First observe that because C ∩ S = ∅, each element of SC (which is a subgraph of C) is
disjoint from S. This implies that all of the elements SC∪S for SC ∈ SC are distinct. Moreover,
none of these elements are equal to any element of S \ {S}. Indeed, if SC ∪S = S ′ ∈ S, then S
would contain two elements with S ⊊ S ′. The last condition of Theorem 21.6 then implies that
we must have S = S ′. This all implies that g′, f ′ are well defined maps, and it is not difficult
to check that they inherit all of the other desired properties.

With this we can keep applying Theorem 21.6 until we get S, f, g which satisfies all of the
conditions except possibly that e(S) is small. As in the proof of Theorem 21.2, one can check
that each S ∈ S is obtained by applying Theorem 21.6 at most Oϵ(1) times, and each time its
applied at most O(n3/2) edges get added to S. With this we can conclude the result.

We note that there exists a somewhat stronger version of Theorem 21.6 (and more generally
Theorem 20.5) which allows one to prove the previous result with less work. However, the
theorem statement is somewhat more complicated conceptually (involving things called (F , ϵ)-
dense families), so for this exposition we have opted to use the simpler version. In any case,
with this enhanced version of Theorem 21.2, we can improve upon our threshold for the random
Mantel theorem by dropping a logarithmic term.

Theorem 21.9. Define ex(Gn,p, K3) to be the largest triangle-free subgraph of Gn,p. We have
ex(Gn,p, K3) = (1 + o(1))pn2/4 whp provided p≫ n−1/2.

Proof. The lower bound follows by considering Gn,p ∩ Kn/2,n/2, which is always triangle-free
and which has (1 + o(1))pn2/4 edges whp. For the upper bound, fix δ > 0, and let ϵ > 0
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be as in Lemma 21.3. Let S, f, g be as in Theorem 21.7. Note that each f(S) has at most
(1/4+2δ)n2 edges by Lemma 21.3. For each S ∈ S, let ES be the event that S ⊆ Gn,p and that
|f(S)∩Gn,p| ≥ (1+4δ)pn2/4. Note that in order to have ex(Gn,p, K3) ≥ (1+4δ)pn2 +Oϵ(n

3/2),
some ES event must occur, and moreover that Pr[ES] = p|S| · e−Oδ(pn

2). With this we have

Pr[ex(Gn,p, K3) ≥ (1 + 4δ)pn2/4 +Oϵ(n
3/2)] ≤ Pr

[⋃
S∈S

ES

]
≤

Oϵ(n3/2)∑
s=0

∑
S∈S:|S|=s

pse−Oδ(pn
2).

As the number of S ∈ S with |S| = s is trivially at most
(
n2

s

)
≤ (en2/s)s, we find that the

above is at most
Oϵ(n3/2)∑

s=0

(epn2/s)se−Oδ(pn
2).

One can check that the function (epn2/s)s is increasing for s ≤ pn2. Since we know s ≤ Cϵn
3/2

for some suitable Cϵ, we get that the sum above is at most

Cϵn
3/2 · (eC−1

ϵ pn1/2)Cϵn3/2

e−Oδ(pn
2),

and this tends to 0 provided pn1/2 → ∞ (since pn2 ≫ n3/2 log(pn1/2)), proving the result.

Note that in this proof, the main extra power we gained by utilizing Theorem 21.7 is that S
must be contained in our subgraph. This makes it so that the S ∈ S with many edges “cost
more”, allowing us to gain.

We note that in general, it is very common that by using the weak container lemma, one ends up
getting tight bounds up to a logarithmic factor, and this extra factor can usually be remedied
by utilizing the strong container lemma in some straightforward (if slightly more tedious) way.

21.2 Maximal Triangle-Free Graphs

In this subsection we use containers to count maximal independent sets, i.e. those that are
maximal with respect to set inclusion. To do this, we again apply the container lemma to find
a small collection of containers C for a hypergraph H. We then argue that each C ∈ C contains
few maximal independent sets, which gives the result.

In order for this approach to be effective, we need a supersaturation result saying that if H[C]
has few edges, then C contains few maximal independent sets, and these results are typically
a bit more complicated to prove compared to the non-maximal setting, and often these proofs
invoke facts about the number of maximal independent sets in special kinds of graphs.

One case where we can pull off the scheme outlined above is in counting maximal triangle-free
graphs. By Theorem 21.4, we know that there are 2n2/4+o(n2) triangle-free graphs on n vertices,
and moreover, it is a well known result of Erdős, Kleitman, and Rothschild [70] that almost all
of these graphs are bipartite. However, a bipartite triangle-free graph is a maximal triangle-free
graph if and only if it is a complete bipartite graph, and there are less than 2n such graphs. A
different set of constructions gives the following.
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Proposition 21.10. There are at least 2n2/8 maximal triangle-free graphs on n-vertices.

Proof. Write the vertices of [n] as a1, . . . , an/4, b1, . . . , bn/4, c1, . . . , cn/2. Add every edge of the
form aibi. For every 1 ≤ i ≤ n/4 and 1 ≤ j ≤ n/2, add exactly one of the edges aicj or bicj. In
total this gives 2(n/4)(n/2) = 2n2/8 different graphs {G1, G2, . . . , }, and it’s not hard to see that
each of these are triangle-free. Let G′

k be any maximal triangle-free graph containing Gk (so
G′

k = Gk if Gk is maximal). One can check that each of the G′
k graphs are distinct from each

other, giving the desired result.

Our goal is to show that this result is best possible. This was originally proven by Balogh and
Petř́ıčková [19], and our proof follows their same approach.

Similar to the proof of Theorem 21.4 where we counted the number of triangle-free graphs, we’ll
begin by constructing a set of using Theorem 21.2 to obtain a set of containers C where each
element is a graph which contains few triangles. From there it remains to show that each of
these C ∈ C contains at most roughly 2n2/8 maximal triangle-free graphs.

Essentially the only thing we know about each C ∈ C is that they contain few triangles, and
fortunately quite a lot can be said about such graphs: the triangle removal lemma says that
we can delete a small number of edges from C to get a triangle-free graph, and supersaturation
says that e(C) is not much larger than 1

4
n2. With these ideas in mind we prove the following.

Lemma 21.11. Let ϵ, γ > 0 be constants. Let δ(ϵ) be as in REF, δ(γ) be as in REF, and
δ = min{δ(ϵ), δ(γ)}. If G is an n-vertex graph with at most δn3 triangles, then the number of
maximal triangle-free subgraphs of G is at most

2n2/8+γn2/2+ϵn2

.

Proof. By Triangle-removal, there exists a set F ⊆ E(G) of size at most ϵn2 such that G−F
is triangle-free. For F ′ ⊆ F , let M(F ′) denote the set of maximal triangle-free subgraphs
G′ ⊆ G with G′ ∩ F = F ′. Observe that the M(F ′) sets partition the maximal triangle-free
subgraphs into 2ϵn2

sets, so it suffices to show that for any F ′ ⊆ F ,

|M(F ′)| ≤ 2n2/8+γn2/2.

The result is trivial if F ′ contains a triangle (since there are 0 graphs which contain F ′ and
which are triangle-free), so from now on we’ll assume F ′ is triangle-free. Define an auxiliary
graph T via

V (T ) = G− (F − F ′) − {e : ∃f, g ∈ F ′ and e, f, g form a triangle},

and where two edges f, g ∈ V (T ) are adjacent in T if there exists an edge e ∈ F ′ which forms
a triangle with f, g. We make these definitions so that the following holds.

Claim 21.12. Every G′ ∈ M(F ′) is a maximal independent set of T .

Proof. Fix some G′ ∈ M(F ′). We first claim that

G′ ⊆ V (T ) = G− (F − F ′) − {e : ∃f, g ∈ F ′ and e, f, g form a triangle}.
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Indeed, we must have G′ ⊆ G − (F − F ′) in order to have G′ ∩ F = F ′, and given this, G′

cannot contain any edge e for which there exist f, g ∈ F ′ forming a triangle with e since G′ is
triangle-free. This proves the claim.

We next claim that G′ is an independent set of T . Indeed, if f, g ∈ G′ were adjacent in T ,
then there exists some edge e ∈ F ′ ⊆ G′ forming a triangle with f, g, contradicting G′ being
triangle-free.

It remains to show that G′ is a maximal independent set. To this end, consider any f ∈
V (T ) \G′. Because G′ is a maximal triangle-free graph, there must exist edges e, g ∈ G′ which
form a triangle with f . Observe that at least one of e, g must be in F ′, since by assumption of
G−F being triangle-free, every triangle must contain at least one edge of F (and the only such
edges in V (T ) are in F ′). Thus we may assume e ∈ F ′. We also note that g does not form a
triangle with two edges of F ′, as this would contradict g ∈ G′ and G′ being triangle-free. Thus
we have f, g ∈ V (T ), and e ∈ F ′ implies that these two edges are adjacent in T . This implies
that G′ is indeed a maximal independent of T , completing the proof.

It remains to show that T has few maximal independent sets. For this we make the following
key observation.

Claim 21.13. The graph T is triangle-free.

Proof. Assume for contradiction that there existed edges f1, f2, f3 forming a triangle in T . By
definition of T , this is only possible if these edges are intersecting, and hence these edges either
form a triangle or a star. If they form a triangle, then by definition of T we in fact have fi ∈ F ′

for all i, and hence F ′ forms a triangle, a contradiction to our assumption on F ′. If these edges
form a star, say with leaves x, y, z, then again by definition of T we must have xy, yz, xz ∈ F ′,
a contradiction to our assumption of F ′ being triangle-free. We conclude the result.

Thus we’ve reduced the problem to upper bounding the number of maximal independent sets
in a triangle-free graph T . A well known result of Moon and Moser [146] says that an N -vertex
triangle-free graph has at most 2N/2 maximal independent sets, so the number of maximal
independent sets of T is at most

2|V (T )|/2 ≤ 2e(G)/2 ≤ 2n2/8+γn2/2,

where the last step used δ ≤ δ(γ). This implies the result.

From here one can prove that there are at most 2n2/8+o(n2) maximal triangle-free graphs on
n-vertices analogous to how we proved Theorem 21.4 I should check this more carefully.

Before moving on, it is natural to ask how many maximal K4-free graphs there are. Unfortu-
nately the present argument completely fails to generalize to this setting.

Essentially, the issue is that T can be viewed as the link graph of a 3-uniform hypergraph. More
precisely, let H be the 3-graph with V (H) = G− (F −F ′) and whose hyperedges are triangles.
Then the link hypergraph H[F ′] contains the graph T together with a 1-edge on every edge
e such that there exist f, g ∈ F ′ forming a triangle with e. For the K4 problem, one could
again consider the link set of some 6-graph, but the structure you end up getting is some very
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non-uniform hypergraph which avoids some strange set of subgraphs, and as such the analysis
becomes somewhat unwieldy.
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22 TODOCounting F -free graphs

Ferber-McKinley-Samotij.
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Part VI

Matchings in Hypergraphs
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23 Pippenger’s Theorem and the Rödl Nibble

Throughout this part we recall that for a hypergraph H and a set of vertices S, we let degH(S)
denote the number of edges of H containing S and define ∆i(H) = max

S⊆(V (H)
i ) degH(S).

We saw in our previous part on hypergraph containers that many problems in extremal combi-
natorics can be rephrased in terms of independent sets of an appropriate auxiliary hypergraph.
In this part we similarly observe the same phenomenon for matchings in hypergraphs rather
than independent sets, where we recall that a matching M is a set of pairwise-disjoint edges of
a hypergraph H.

In fact, studying matchings in hypergraphs is just a (very) special case of studying independent
sets in graphs: given a hypergraph H, we can define its line graph L(H) to be the graph with
vertex set E(H) where two e, f ∈ H are adjacent in L(H) if and only if e ∩ f ̸= ∅; in which
case matchings in H are exactly independent sets in L(H).

Because matchings are a very special kind of independent set, one might hope that more can
be said about them compared to general independent sets, and this will indeed turn out to be
the case. In particular, we will study a number of powerful theorems themed around finding
(almost) perfect matchings in “nice” hypergraphs. The first of these results is the following
fundamental theorem of Pippenger REF(building upon earlier results of Rödl [160]), which
says that nearly regular hypergraphs with small codegrees have almost perfect matchings. Here
we write c = 1 ± δ as shorthand for saying that c is a real number in the interval [1 − δ, 1 + δ].

Theorem 23.1 (Pippenger’s Theorem). For every r ≥ 2 and reals K ≥ 1 and a > 0, there are
δ = δ(r,K, a) > 0 and D0 = D0(r,K, a) such that the following holds for every D ≥ D0: let H
be an r-graph such that

(i) For all but at most δv(H) vertices x ∈ V , we have deg(x) = (1 ± δ)D,

(ii) ∆1(H) < KD, and

(iii) ∆2(H) < δD.

Then there exists a matching of H using at least (1 − a)(v(H)/r) edges.

While the proof of Pippenger’s Theorem uses only elementary tools and contains a number of
important ideas, the full details of the argument are rather annoying to write down (see for
example the proof detailed in [11, Theorem 4.7.1] which uses over 20 named constants!). As
such, we will omit going through this complete proof here, instead electing to focus on some
applications of the result followed by a high-level look at the proof ideas.

23.1 Applications

Historically, the first application of (the precursor to) Pippenger’s Theorem was done by Rödl
in order to solve a problem in design theory. To state this, we say that a hypergraph S is a
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partial (n, q, k)-Steiner system if S is an n-vertex q-uniform hypergraph such that every k-set
of vertices is contained in at most one edge, and we say that S is a (n, q, k)-Steiner system if
we further have that every k-set is contained in exactly one edge.

It is not difficult to see that every partial (n, q, k)-Steiner system has at most
(
q
k

)−1(n
k

)
edges,

with equality holding if and only if S is an (n, q, k)-Steiner system. Erdös and Hannini [69]
asked whether one could find partial Steiner systems with asymptotically this many edges, and
this was answered positively by Rödl.

Theorem 23.2 (Rödl [160]). For all fixed q ≥ k, there exists a partial (n, q, k)-Steiner system
S with

|S| ≥ (1 − o(1))

(
q

k

)−1(
n

k

)
.

Proof. In order to apply Pippenger’s Theorem, we need to construct a hypergraph where large
matchings correspond to large partial (n, q, k)-Steiner systems. To this end, we define H to be
the r :=

(
q
k

)
-uniform hypergraph whose vertex set is

(
[n]
k

)
and whose edge set is {

(
Q
k

)
: Q ∈

(
[n]
q

)
}.

That is, each hyperedge of H consists of all the sets of size k that are covered by a given edge
Q ∈ E(Hq

n).

It is not too difficult to check that Theorem 23.2 is equivalent to saying that there exists a
matching of H of the stated size. Moreover, it is easy to check that H is

(
n−k
q−k

)
-regular and

that every pair of vertices is in at most
(
n−k−1
q−k−1

)
≪
(
n−k
q−k

)
edges. We can thus apply Pippenger’s

Theorem with v(H) =
(
n
k

)
, r =

(
q
k

)
, and D =

(
n−k
q−k

)
to give a matching of the desired size.

Theorem 23.2 shows that “approximate” Steiner systems exist, and it is natural to ask when
Steiner systems exist. The simplest non-trivial case is S(n, 3, 2), which are also known as Steiner
triple systems. It is not difficult to see that if a Steiner triple system on n vertices exists, then
3|
(
n
2

)
(each edge covers 3 pairs and each of the

(
n
2

)
pairs are covered exactly once) and 2|(n−1)

(for any given vertex v, each edge contains 2 pairs containing v and there are exactly n − 1
such pairs). Equivalently, this argument says that if a Steiner triple system exists, then it is
necessary that n ≡ 1, 3 mod 6. It turns out that this condition is also sufficient due to certain
constructions involving quasigropus and latin squares.

In general for an S(n, q, k) to exist, there are certain “obvious” divisibility conditions that must
be satisfied, but in general these are not sufficient. In fact, as of 2014, it wasn’t even known if,
say, any S(n, q, 6) Steiner systems existed, let alone if there were infinitely many n for which
such a Steiner system existed. In a major breakthrough, it was shown by Keevash [121] and
independently by Glock, Kühn, Lo, and Osthus [93] that if n is sufficiently large in terms of
q, k, then S(n, q, k) systems exist if and only if n satisfies the obvious divisibility conditions.
The core of Keevash’s proof was a variant of the proof technique we discuss below for proving
Pippenger’s Theorem done in a more algebraic setting, but the proof is very, very complicated!

Todo: insert Glock’s application to Brown-Erdős-Sós.

142



23.2 The Rödl Nibble

Informally, Pippenger’s Theorem says that every “nice” r-graphs H contains a matching cov-
ering almost all of its vertices. At a very high-level, our approach for constructing such a
matching will go as follows:

� We start by randomly choosing ϵn/r edges E1 from H for some small ϵ > 0. With high
probability E1 will cover about e−ϵn vertices.

� We delete vertices covered by E1 to get a new hypergraph H2. With high probability H2

will also be “nice”, so conditional on this we can iterate the procedure above and pick
some random set of edges E2 from H2 to cover some more vertices.

� We keep doing this until ϵn vertices remain uncovered, at which point we stop the process.

The approach outlined above is broadly known as the Rödl nibble or the semirandom method.
To reiterate, the core idea is that you iteratively do something to a small chunk of vertices
in such a way that the structure of the rest of your hypergraph remains the same with high
probability, which allows one to continuously iterate this procedure until one is left with a very
small leftover part. For our purposes, we will specifically want to prove the following.

Lemma 23.3. For every r ≥ 2 and reals K ≥ 1 and ϵ, δ′ > 0, there are δ = δ(r,K, ϵ, δ′) > 0
and D0 = D0(r,K, ϵ, δ

′) such that for every n ≥ D ≥ D0 the following holds.

Let H = (V,E) be an n-vertex r-graph such that

(i) For all but at most δn vertices x ∈ V , we have deg(x) = (1 ± δ)D,

(ii) ∆1(H) < KD, and

(iii) ∆2(H) < δD.

In this case there exist a set of edges E ′ ⊆ E such that

(a) |E ′| = (1 ± δ′)(ϵn/r),

(b) The set V ′ := V −
⋃

e∈E′ e has |V ′| = (1 ± δ′)e−ϵn, and

(c) For all but at most δ′|V ′| vertices x ∈ V ′, the degree deg′(x) of x in the induced hypergraph
H[V ′] satisfies deg′(x) = (1 ± δ′)De−ϵ(r−1).

The main point of the conclusion here is that the number of uncovered vertices and their degrees
shrink in a predictable way, allowing one to repeatedly apply this result with carefully chosen
values of ϵ, δ to prove Pippenger’s Theorem. Again, we omit the exact details of this reduction
and only give a high-level sketch of how to prove this key lemma.
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Sketch of Proof. Throughout the proof we’ll introduce various constants δi which we assume
to be sufficiently small in terms of our relevant parameters. Our proof will only make use of
Chebyshev’s inequality in order to give a thorough example of implementing the second moment
method in practice, though we emphasize that e.g. the Chernoff bound could alternatively be
used in various places.

Randomly choose a subset E ′ ⊆ E such that each edge of E appears in E ′ independently and
with probability p := ϵ/D. Roughly speaking, our goal will be to show that with this choice
of E ′, each of (a),(b),(c) occur in expectation, after which we will use Chebyshev to show that
each of these occur with high probability.

To start, because H is essentially D-regular, we have |E| = (1 ± δ1)Dn/r, so

E[|E ′|] = p|E| = (1 ± δ1)ϵn/r.

We also have
Var(|E ′|) = p(1 − p)|E| ≤ 2ϵn/r.

Because Var(|E ′|) = o(E[|E ′|]), Chebyshev will be able to show that E ′ is close to E[E ′] with
high probability. More precisely, Chebyshev’s inequality implies

Pr[||E ′| − E[|E ′|] ≥ δ1
√

2ϵn/r ·
√

2ϵn/r] ≤ r

2δ21ϵn
≤ .01,

with this last step holding for n sufficiently large. Thus with probability at least .99,

|E ′| = E[|E ′|] ± 2δ1ϵn/r = (1 ± 3δ1)ϵn/r.

This shows that (a) occurs with high probability. To deal with (b), let us first get a grasp
on E[|V ′|]. For x ∈ V , let 1x = 1 if x /∈

⋃
e∈E′ e and 1x = 0 otherwise. With this we see

|V ′| =
∑

x 1x, so by linearity of expectation it suffices to bound each of E[1x].

We will say that a vertex x is good if deg(x) = (1 ± δ)D and that it is bad otherwise. If x is
bad we will simply use the trivial estimates 0 ≤ E[1x] ≤ 1. If x is good we have

E[1x] = (1 − p)deg(x) = (1 − ϵ/D)(1±δ)D = (1 ± δ3)e
−ϵ, (26)

where this last step used that 1−p is within a constant factor of e−p for p sufficiently small and
that δ is chosen to be sufficiently small in terms of ϵ (e.g. we can make sure that it’s smaller
than ϵ−1).

Having at most δn bad vertices by (i) together with (26) implies E[|V |′] = (1 ± δ4)e
−ϵn. To

compute the variance, we observe that

Var[|V ′|] =
∑
x

Var[1x] +
∑
x

∑
y ̸=x

E[1x1y] − E[1x]E[1y]. (27)

Because each 1x is an indicator random variable, we have∑
x

Var[1x] ≤
∑
x

E[1x] = E[|V ′|].
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For the mixed terms of (27), we have for any x, y that

E[1x1y] − E[1x]E[1y] = (1 − p)deg(x)+deg(y)−deg(x,y) − (1 − p)deg(x)+deg(y)

≤ (1 − p)− deg(x,y) − 1 ≤ (1 − ϵ/D)−δD − 1 ≤ eϵδ − 1 ≤ δ5,

where our bound on deg(x, y) used (iii). In total we find

Var[|V ′|] ≤ E[V ′] + δ5n
2 ≤ δ6(E[V ′]|)2,

where this last step used that E[|V ′|] = Θϵ(n). By Chebyshev we can guarantee with probability
at least .99 that

|V ′| = (1 ± δ7)E[|V ′|] = (1 ± δ8)ne
−ϵ.

Proving that condition (c) holds with high probability is a little more complicated, so we’ll omit
the full details1. Let us instead give a heuristic argument as to why (c) holds in expectation.
We first condition on the event x ∈ V ′, which means that no edge containing x is in E ′. An
edge e ∋ x survives in H[V ′] only if every edge f with e ∩ f ̸= ∅ has f /∈ E ′. Because H is
roughly linear and D-regular, there are about rD such edges f , but D of these (namely those
containing x) are automatically not in E ′ since we conditioned on x ∈ V ′. The remaining
(r − 1)D edges are each included independently and with probability ϵ/D, so the probability
that none are included is (1 − ϵ/D)(r−1)D ≈ e−(r−1)ϵ, and summing this over all of the roughly
D edges containing x gives the result.

Once we have shown that each of (a),(b),(c) holds with probability at least .99, then the
probability that all of them hold is at least .97, so in particular some choice of E ′ exists which
satisfies these conditions.

1The argument is similar in spirit to that of (b): you define 1e = 1 if e survives in H[V ′] and 1e = 0
otherwise. Then deg′(x) is just the sum of some of these indicator random variables, so one has to bound
terms of the form E[1e] and E[1e1f ]. If e, f are “typical” edges then the computation of E[1e] and E[1e1f ] are
straightforward to estimate, and there are few terms involving e which are not typical, giving the result.
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24 Forbidden Submatchings

In the previous section we sketched a proof of Pippenger’s Theorem 23.1, which roughly says
that nearly-regular hypergraphs H with small codegrees have matchings which cover almost
all of the vertices of H. Very recently there have been two significant strengthenings of this
result due independently to Delcourt and Postle [56] and to Glock, Joos, Kim, Kühn, and
Lichev [92], with these results very roughly saying that not only can we find large matchings
in low-codegree hypergraphs, but moreover these matchings can be chosen while avoiding some
set of “forbidden” submatchings.

In the present section we will discuss three theorems of increasing power due to Delcourt and
Postle [56], the applications of which are typically referred to as the “forbidden submatching
method.” We will also make a few passing remarks about [92] as relevant, with a more detailed
discussion of their work known as the “conflict-free hypergraph method” being be made in the
following chapter.

We will make heavy usage of the following notation here and in the next chapter. We recall
that a hypergraph H is r-bounded if every edge has size at most r, and we let H(k) ⊆ H be the
subhypergraph of H consisting of all the edges of size exactly k. Given a hypergraph H, we
say that a hypergraph F is a conflict hypergraph of H if V (F) = E(H) and if every hyperedge
of F is a matching of size at least 2. In order to avoid confusion, we will typically refer to the
edges of H as “edges” and the edges of F as “hyperedges”. Given a conflict hypergraph F of
H, we say that a matching M of H is F-avoiding if no hyperedge of F (which is just a set of
edges of H) is contained in M .

24.1 Pippenger’s Theorem with Forbidden Submatchings

We begin with the following analog of Pippenger’s Theorem, which gives almost perfect match-
ings that are additionally F -avoidiing for some appropriate F .

Theorem 24.1 ([56]). For all integers r, r′ ≥ 2 and real β ∈ (0, 1), there exists α,Dβ > 0 such
that the following holds for all D ≥ Dβ: let H be an r-bounded hypergraph such that

(H1) ∆1(H) ≤ D, and

(H2) ∆2(H) ≤ D1−β.

Further, let F be an r′-bounded conflict hypergraph of H with

(F1) ∆1(F (k)) ≤ αDk−1 logD for all 2 ≤ k ≤ r′,

(F2) ∆ℓ(F (k)) ≤ Dk−ℓ−β for all 2 ≤ ℓ < k ≤ r′, and

(F3) Every hyperedge of F has size at least 3.

Then there exists an F-avoiding matching of H of size at least (1 −D−α)D−1|H|.
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Note that if we take F = ∅ in this theorem and if H is r-uniform and close to D-regular,
then this essentially recovers Pippenger’s Theorem with the slightly stronger hypothesis of
∆2(H) ≤ D1−β for the codegrees of H.

Theorem 24.1 as stated is a slight weakening of [56, Corollary 1.17], the full version of which
replaces (F3) with a condition allowing for hyperedges of size 2 which are “well behaved”. We
will not need this strengthening for our main applications, so we defer a discussion about this
full version of Theorem 24.1 to Section 24.3. We note that a nearly identical statement of (the
strengthened version of) Theorem 24.1 also appears in [92], though their theorem requires the
extra (and typically mild) assumption that H is not too sparse.

Just as we elected not to go through the proof of Pippenger’s Theorem in full in the previous
chapter, we will similarly not go through the significantly more complicated proof of Theo-
rem 24.1 here, instead focusing on only on how to apply this theorem in practice. Just as we
did in the previous chapter, we begin with a problem in design theory.

Recall that a hypergraph is called a partial (n, q, k)-Steiner system if it has n-vertices, is q-
uniform, and if every k-set of vertices is contained in at most one edge, and we call this
hypergraph an (n, q, k)-Steiner system if we further have that every k-set is contained in exactly
one edge. For a partial (n, q, k)-Steiner system, we define a (v, e)-configuration to be a set of e
edges which span at most v vertices.

It turns out that every (n, q, k)-Steiner system contains a ((q − k)i + k + 1, i)-configuration
for every fixed i ≥ 2 [94, Proposition 7.1]. In the simplest case of q = 3, k = 2 where we are
guaranteed (i + 3, i)-configurations, Erdős [66] asked if for all g ≥ 2 and sufficiently large n,
there exist (n, 3, 2)-Steiner systems with no (i + 2, i)-configurations for all 2 ≤ i ≤ g, which
we can think of as “high girth” Steiner systems. This problem was eventually solved in the
positive in breakthrough work of Kwan, Sah, Sawhney, and Smikin [133].

Following this, Glock, Kühn, Lo, and Osthus [94] asked if a similar phenomenon held for all
(n, q, k)-Steiner systems. That is, do there exist “high girth” Steiner systems with arbitrary
parameters q, k? A not too difficult application of Theorem 24.1 gives the asymptotic version
of this result, which was proven independently by Delcourt and Postle [56] and by [92].

Theorem 24.2 ([56, 92]). For all q > k ≥ 2 and g ≥ 2, there exist partial (n, q, k)-Steiner
systems S with

|S| ≥ (1 − o(1))

(
q

k

)−1(
n

k

)
and which contains no ((q − k)i+ k, i)-configuration for all 2 ≤ i ≤ g.

Note that this in particular implies Rödl’s Theorem 23.2 on asymptotically large designs.

Proof. As in the proof of Theorem 23.2, we start by definingH to be the
(
q
k

)
-uniform hypergraph

whose vertex set is
(
[n]
k

)
and which for every Q ∈

(
[n]
q

)
, there exists a hyperedge hQ = {K ∈(

[n]
k

)
: K ⊆ Q}. In this way, partial Steiner systems are exactly matchings in H. To incorporate

Steiner systems with large girth, we (naively) define the conflict hypergraph F0 which consists
of hyperedges F corresponding to ((q − k)i+ k, i)-configurations. More precisely, we define F0

to contain all matchings F of H with 2 ≤ |F | ≤ g such that
∣∣∣⋃hQ∈F Q

∣∣∣ ≤ (q − k)|F | + k.
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With these definitions, we have that partial Steiner systems of large girth correspond exactly
to F0-avoiding matchings in H. However, there is some unnecessary redundancy in how we
defined F0. Namely, if we let F ⊆ F0 consist of those F such that there exists no F ′ ⊆ F of

size at least 2 with
∣∣∣⋃hQ∈F ′ Q

∣∣∣ ≤ (q−k)|F ′|+k, then it is not difficult to check that we still have

that partial Steiner systems of large girth correspond exactly to F -avoiding matchings in H.
Thus, while in principle we could solve the problem by working with either conflict hypergraph,
we will only be able to verify the degree conditions in Theorem 24.1 for the smaller hypergraph
F . As we will see in later applications, this need to reduce to a slightly less straightforward
conflict hypergraph with better degree conditions is a common component of implementing the
forbidden submatching method in practice.

In total, we have now reduced our problem to finding an F -avoiding matching in H that
asymptotically covers all of its vertices, and for this we aim to apply Theorem 24.1. To this
end, we fix some sufficiently small β ∈ (0, 1) (say β = 1

2(q−k)
, for example) and let Dβ, α > 0 be

the numbers given by Theorem 24.1 for r =
(
q
k

)
, r′ = g, and this value of β. As we will justify

in a moment, we aim to apply Theorem 24.1 with D =
(
n−k
q−k

)
= Θ(nq−k), and for this we check

the conditions of the theorem.

We first verify (H1), that ∆1(H) ≤ D. And indeed, every K ∈ V (H) has degH(K) =
(
n−k
q−k

)
=

D.

We next verify (H2), that ∆2(H) ≤ D1−β. And indeed, it is not difficult to check that distinct
K,K ′ ∈ v(H) satisfy degH({K,K ′}) ≤

(
n−k−1
q−k−1

)
≤ D1−β provided n is sufficiently large in terms

of β.

We next verify (F1), that ∆1(F (i)) ≤ αDi−1 logD for all 2 ≤ i ≤ g. Let hQ be an edge of H.
Observe that by definition of F , any F ∈ F (i) containing hQ can be identified by first choosing
the at most (q − k)i+ k − q elements in [n] \Q that are contained in

⋃
hQ′∈F Q

′ \Q, and then

choosing some i − 1 subsets Qj contained in this set of at most (q − k)i + k ≤ 2qg elements
of [n]. In total then the number of choices is at most n(q−k)i+k−q · 22qg ≤ αDi−1 logD for n
sufficiently large, and hence we conclude that the degree of any edge of H in F is at most this
amount, verifying this condition.

We next verify (F2), that ∆ℓ(F (i)) ≤ Di−ℓ−β for all 2 ≤ ℓ < i ≤ g. Fix an arbitrary matching

M = {hQ1 , . . . , hQℓ
} of H for some ℓ ≥ 2. We first claim that if

∣∣∣⋃ℓ
j=1Qj

∣∣∣ ≤ (q − k)ℓ + k,

then degF(i)(M) = 0 for all i > ℓ. Indeed, in this case any F ∈ F of size i containing M

would contain a subset F ′ := M of size at least 2 satisfying
∣∣∣⋃hQ∈F ′ Q

∣∣∣ ≤ (q − k)|F ′| + k,

contradicting the assumption F ∈ F . Thus we may assume
∣∣∣⋃ℓ

j=1Qj

∣∣∣ ≥ (q − k)ℓ + k + 1.

Similar to the (F1) case, this implies we can identify F ∈ F (i) containing M by first choosing
at most (q − k)(i− ℓ) − 1 elements in [n] \

⋃ℓ
j=1Qj, and then choosing some i− 1 subsets Qj

of this set of at most 2qg vertices. In total this implies

degF(i)(M) ≤ n(q−k)(i−ℓ)−1 · 22qg ≤ Di−ℓ−β

for n sufficiently large and β < 1
q−k

.

Finally, we verify (F3), that every hyperedge of F has size at least 3. Note that any F =
{hQ, hQ′} ∈ F must have |Q∪Q′| ≤ 2q− k by definition of F . This implies Q,Q′ intersect in a
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set of size at least k, and hence hQ, hQ′ intersect in H, contradicting F ∈ F being a matching.
We conclude that every hyperedge of F has size at least 3, verifying (F3).

By Theorem 24.1, there exists an F -avoiding matching of H of size at least

(1 −D−α)
|H|
D

= (1 − o(1))

(
n
q

)(
n−k
q−k

) = (1 − o(1))

(
q

k

)−1(
n

k

)
.

This F -avoiding matching corresponds to a partial Steiner system of high girth of the same
size, proving the result.

To get a better understanding of this proof and using the method, the reader may want to ask
themselves the following questions:

� Where would the proof breakdown if we worked with F0 instead of F?

� Where would the proof breakdown if we tried to find asymptotically large partial Steiner
systems without ((q − k)i + k − 1, i)-configurations (which we know by [94] always will
exist in sufficiently large partial Steiner systems)? How large of a partial Steiner system
can you find using this method without any of these configurations?

24.2 Bipartite Perfect Matchings

Theorem 24.1 turns out to be a consequence of an even stronger hypergraph matching result
which guarantees not only a matching covering most of the vertices of H, but in fact a perfect
matching provided our hypergraph is “bipartite”. To this end, we say that a hypergraph B
is bipartite if there exists an ordered partition (B1, B2) of the vertex set of B such that every
edge of B intersects B1 in exactly 1 vertex, and we refer to such a partition as a bipartition. In
this setting we say that a matching M of B is a B1-perfect matching if every vertex of B1 is
contained in exactly one edge of M .

Theorem 24.3 ([56] Theorem 1.16, Abridged). For all integers r, r′ ≥ 2 and real β ∈ (0, 1),
there exists α,Dβ > 0 such that the following holds for all D ≥ Dβ: Let B be a bipartite
r-bounded hypergraph with bipartition (B1, B2) such that

(B1) Every vertex in B1 has degree at least (1 + D−α)D and every vertex in B2 has degree at
most D, and

(B2) ∆2(B) ≤ D1−β.

Further, let F be an r′-bounded conflict hypergraph of B with

(F1) ∆1(F (k)) ≤ αDk−1 logD for all 2 ≤ k ≤ r′,

(F2) ∆ℓ(F (k)) ≤ Dk−ℓ−β for all 2 ≤ ℓ < k ≤ r′, and
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(F3) Every hyperedge of F has size at least 3.

Then there exist an F-avoiding A-perfect matching of B.

It is not immediately obvious that Theorem 24.3 strengthens Theorem 24.1. The key idea for
this reduction comes from the following coloring result. Here we recall that the line graph L(H)
of a hypergraph H is the graph with vertex set E(H) and where two edges of H are adjacent
in L(H) if and only if they intersect. We also define a proper t-coloring of a hypergraph to be
a partition of its vertices into sets V1, . . . , Vt so that no hyperedge is contained in any Vi set,
and we define the chromatic number χ(H) to be the smallest t such that there exists a proper
t-coloring.

Corollary 24.4. For all integers r, r′ ≥ 2 and real β ∈ (0, 1), there exists α,Dβ > 0 such that
the following holds for all D ≥ Dβ: let H be an r-bounded hypergraph such that

(H1) ∆1(H) ≤ D, and

(H2) ∆2(H) ≤ D1−β.

Further, let F be an r′-bounded conflict hypergraph of H with

(F1) ∆1(F (k)) ≤ αDk−1 logD for all 2 ≤ k ≤ r′,

(F2) ∆ℓ(F (k)) ≤ Dk−ℓ−β for all 2 ≤ ℓ < k ≤ r′, and

(F3) Every hyperedge of F has size at least 3.

Then χ(L(H) ∪ F) ≤ (1 +D−α)D.

It is not difficult to check that Theorem 24.1 follows from this by considering the matching
which is the largest color-class in a proper (1 +D−α)D-coloring of L(H) ∪ F , so it remains to
prove this reduction.

Proof. Let C be a set of (1 + D−α)D colors. The main idea is that a coloring of the vertices
V (L(H)) = E(H) is just an assignment of each edge of E(H) to exactly one value in C, and
we will encode this assignment by a matching which covers each element of E(H) exactly once
(while making sure to add in some extra constraints to make sure this coloring is proper and
avoids forbidden submatchings).

With this in mind, we define an auxilliary bipartite hypergraph B with bipartition (B1, B2)
where B1 = E(H), B2 = {(v, c) : v ∈ V (H), c ∈ C}, and with hyperedges of the form
he,c := {e} ∪ {(v, c) : v ∈ e} for every e ∈ H and c ∈ C. Observe that B1-perfect matchings
in B correspond exactly to |C|-proper colorings of L(H), since each (v, c) vertex appearing in
exactly one edge implies that no two edges e, e′ which both contain v (and hence are adjacent
in L(H)) are given the same color. Finally, we define an auxilliary forbidden hypergraph F ′ to
consist of all hyperedges of the form (F, c) := {he,c : e ∈ F} with F ∈ F and c ∈ C, and one
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can check that F ′-avoiding B1-perfect matchings exactly correspond to proper |C|-colorings of
L(H) ∪ F .

With the above in mind, it remains to check that an F -avoiding B1-perfect matching exists,
for which we need to verify the conditions of Theorem 24.3.

We first verify (B1), that every vertex in B1 has degree at least (1 + D−α)D and that every
vertex in B2 has degree at most D. And indeed, every vertex in B1 has degree exactly |C| =
(1 + D−α)D, and every vertex (v, c) ∈ B2 has degree at most degH(v) ≤ ∆1(H) ≤ D, giving
this condition.

We next verify (B2), that ∆2(B) ≤ D1−β. Indeed, any two vertices of B1 have codegree 0, and
any vertex in B1 and vertex in B2 have codegree at most 1, so the only case left to consider is
when we have (u, c), (v, c′) ∈ B2. Their codegree will be 0 if c ̸= c′, and if c = c′ then we have

degB({(u, c), (v, c)}) = degH({u, v}) ≤ ∆2(H) ≤ D1−β,

giving this condition.

Finally, we observe that F ′ is isomorphic to |C| disjoint copies of F , and as such all the degree
conditions for F carry over to F ′, verifying these last three conditions. We conclude that we
can indeed apply Theorem 24.3, giving the desired F -avoiding B1-perfect matching.

The idea in the proof above about interpreting B1-perfect matchings as colorings of the elements
of B1 can be used to solve other types of coloring problems. In particular, this observation (as
well as further ideas in the study of conflict-free matchings) has been used recently to make
tremendous progress around the generalized Ramsey problem of Erdős and Gyárfás which we
introduced earlier in Theorem 3.5 around the local lemma. We highlight one particularly nice
application of Theorem 24.3 to this area below, for which we recall some basic definitions.

A (p, q)-coloring of a graph G is an edge-coloring of G such that every p-clique of G receives
at least q distinct colors, and we define the generalized Ramsey number GR(n, p, q) to be the
smallest number of colors needed in a (p, q)-coloring of Kn. In Theorem 3.5 we proved a result
of Erdős and Gyárfás [68] showing the general bound

GR(n, p, q) ≤ p

p2

(p
2)−q+1n

p−2

(p
2)−q+1 .

While it is unknown how effective this bound is in general, it was shown in [68] that in the
special case of q =

(
p
2

)
−p+3, we have GR(n, p, q) ≥ n−1

p−2
, which matches the order of magnitude

in the bound above of (very roughly) GR(n, p, q) ≤ ppn. Because of this, the value

qlin :=

(
p

2

)
− p+ 3

is known as the linear threshold for p, and a lot of the work around generalized Ramsey theory
has been dedicated to determining what GR(n, p, qlin) is asymptotically for various values of p.

Some of the initial progress towards understanding GR(n, p, qlin) came about from the powerful
but technical tools of the differential equation method, which led to very complicated proofs.
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Later it was realized that these same results (and many more) could be achieved with much
simpler proofs through the use of the matching methods of [56, 92]. Here we highlight one
particularly nice application due to Bennett, Cushman, and Dudek [23] which improves the
upper bound of roughly GR(n, p, qlin) ≤ ppn from Erdős and Gyárfás’s original paper to an
asymptotic bound independent of p.

Theorem 24.5 ([23]). For all p ≥ 3, we have GR(n, p, qlin) ≤ (1 + o(1))n.

Unwinding the definitions here, this theorem calls for constructing some edge-coloring of Kn

which avoids certain properties. Similar to how we proved Corollary 24.4, we will prove this
result by constructing an auxiliary bipartite hypergraph B whose B1-perfect matchings cor-
respond to edge-colorings of Kn and a conflict hypergrpah F which sufficiently captures the
properties we need to avoid.

Proof. When p = 3 we have qlin = 3, so we are simply looking for the smallest number of colors
needed to guaranteethat every triangle of Kn has 3 distinct colors, which is equivalent to asking
for a proper edge-coloring of Kn. Vizing’s theorem says this can be achieved using at most n
colors, giving the result in this case. As such we assume p ≥ 4 from now on.

Let C be a set of (1 + o(1)n colors, with the exact size of C to be determined later. Exactly
mimicing the proof of Corollary 24.4, we define a bipartite hypergraph B with B1 = E(Kn)
and B2 = {(v, c) : v ∈ Kn, c ∈ C} with hyperedges huv,c = {uv} ∪ {(u, c), (v, c)} for all
edges uv ∈ E(Kn) and c ∈ C. Note that with this, matchings M in B correspond exactly to
partial proper colorings χM of the edges of Kn, with B1-perfect matchings exactly correspond to
proper edge-colorings of all the edges ofKn. Here the most natural (though ultimately incorrect)
conflict hypergraph F0 is defined by including all the hyperedges F whose corresponding partial
coloring χF color the edges of some p-clique of Kn using at most qlin − 1 =

(
p
2

)
− p+ 2 distinct

colors. As in our proof of Theorem 24.2, we will eventually need to replace F0 with a smaller
conflict hypergraph F , but for the moment we stick with this definition and see what goes
wrong along the way.

Again, we emphasize that finding a (p, q)-coloring of Kn using at most |C| colors is exactly the
same as finding an F0-avoiding B1-perfect matching in B. As such, we should start by checking
the conditions of Theorem 24.3 and see if we can conclude the result this way. To this end, we
let β ∈ (0, 1) be arbitrary and let Dβ, α > 0 be the values guaranteed from Theorem 24.3 with
r = 3 and r′ =

(
p
2

)
. We would like to show that B,F0 satisfy the conditions of Theorem 24.3 for

some appropriate value D ≥ Dβ, and (as will be justified shortly) we will try doing this with

D := n,

and we will further specify C := n + n−α for future convenience. We begin by verifying the
conditions for B.

Claim 24.6. With the parameters above, the hypergraph B satisfies conditions (B1) and (B2)
of Theorem 24.3.

Proof. We first check (B1), that every vertex in B1 has degree at least (1 + D−α)D and every
vertex in B2 has degree at most D. For B1, we note that the degree of every vertex uv ∈ B1 is
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exactly
|C| = n+ n−α = (1 +D−α)D,

verifying this part of the condition. Moreover, every (v, c) ∈ B2 is in exactly one edge of B for
every u ∈ V (Kn) \ {v}, namely the edge {uv, (u, c), (v, c)}, so there degrees are all n− 1 ≤ D,
finishing the verification of this property. Moreover, this analysis for B2 shows that for our
given choice of hypergraphs, we could not possibly take D to be asymptotically smaller than
n, which in turn shows with our analysis of B1 that our set of colors C must have size at least
roughly n + n−α, justifying our choices of parameters and explaining the ultimate conclusion
of our theorem.

We next check (B2), that ∆2(B) ≤ D1−β. It is easy to check that B is in fact linear, so this
holds automatically.

From here it is not difficult to check that F0 satisfies conditions (F1) and (F3) of ??, but it fails
miserably with (F2), as we verify in detail with the following claim. We note that this claim is
entirely optional and only serves to help motivate our later choice of conflict-hypergraph F .

Claim 24.7. For ℓ =
(
p
2

)
− 1, we have ∆ℓ(F (ℓ+1)

0 ) ≥ n. In particular, we do not have

∆ℓ(F (ℓ+1)
0 ) ≤ D1−β.

Proof. Because F0 is
(
p
2

)
-uniform, this statement just boils down to showing ∆ℓ(F0) ≥ n. To

this end, consider some p-clique together with a proper coloring of
(
p
2

)
− 1 of its edges with the

property that the coloring uses at most qlin − 2 distinct colors (which exists, for example, by
using Vizing’s theorem to guarantee a proper coloring of these edges using at most p ≤ qlin − 2
colors for p ≥ 4). Note that this partial coloring corresponds to some matching M in B of size
ℓ. Because any of the |C| choices for how to color the missing edge of this p-clique gives a p-
clique using at most qlin−1 distinct colors, each of these |C| choices corresponds to a forbidden
hyperedge of F0 containing M . We conclude that ∆ℓ(F0) ≥ degF0

(M) ≥ |C| ≥ n.

Similar to what we did in Theorem 24.2, our goal now is to construct a “smaller” conflict-
hypergraph F such that F -avoiding matchings are also F0-avoiding (so that these matchings
still correspond to (p, q)-colorings). This will be achieved if we choose F such that it is an
“undercover” of F0, i.e. if for all F0 ∈ F0 there exists some F ∈ F with F ⊆ F0.

The idea for how to choose such an undercover F comes in part from the proof of the claim.
There we saw that a major obstruction to verifying (F2) for F0 was the existence of partial
colorings of most of the edges of a p-clique which use very few distinct colors, and in particular
so few that no completion of our coloring could possibly work. The core idea now is that we
will add to F0 all of the “minimal” partial colorings with the property that no completion can
possibly work and then remove from F0 any colorings that contain this, thereby eliminating
from F0 all of its “very bad” edges while maintaining the desired undercover property.

To this end, given a matching M , we let v(M) denote the number of vertices of Kn incident
to a colored edge of the associated coloring χM , and we let c(M) denote the total number of
colors used by χM . We then define F to consist of all matchings F of B with 3 ≤ v(F ) ≤ p
such that

ρ(F ) := |F | − c(F ) − v(F ) + 2 ≥ 0,
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and further such that there exists no submatching F ′ ⊆ F with v(F ′) ≥ 3 satisfying ρ(F ′) ≥ 0.
It should not be obvious at this point why we have defined ρ exactly as we have. The very rough
intuition here is that the total number of matchings M with a given value of c(M) and v(M)
is roughly nc(M)+v(M) (since we have about n ways to choose each color and each vertex used).
As such, if we want F to not have too many elements (and hence not too large of a degree like
we had before), then we need to omit from F any F with c(F ) + v(F ) large. Our choice of ρ
achieves this since it omits from F any F with ρ(F ) < 0, i.e. with c(F ) + v(F ) > |F | + 2. Our
exact choice of +2 as a normalizing factor is done so that ρ(F ) ≥ 0 whenever v(F ) = p and
c(F ) = qlin − 1, which is implicitly the key fact we use in the following important observation.

Claim 24.8. If M is an F-avoiding B1-perfect matching, then χM is a (p, qlin)-coloring.

Proof. Assume for contradiction that there existed some p-clique whose edges contained at most
qlin − 1 distinct colors under χM . Letting M ′ ⊆M denote the matching restricted to the edges
of this p-clique, we see that

ρ(M ′) =

(
p

2

)
− c(M ′) − p+ 2 ≥

(
p

2

)
− qlin + 1 − p+ 2 = 0.

Letting F ⊆ M ′ be any minimal subset with the properties v(F ) ≥ 3 and ρ(F ) ≥ 0 (which
exists by the computation above), we have by definition that F ⊆ M is a hyperedge of F ,
contradicting our assumption of M being F -avoiding.

With this and our first claim, we see by Theorem 24.3 that it suffices to verify that F satisfies
conditions (F1), (F2), and (F3).

We first verify (F1), that ∆1(F (k)) ≤ αDk−1 logD for all 2 ≤ k ≤
(
p
2

)
. Fix some 3-edge h in B

(which is a vertex in F) and an integer k, and for each integer 1 ≤ t ≤ p, let F (k)
t (h) denote

the set of hyperedges F ∈ F (k) containing h with v(F ) = 2 + t.

Claim 24.9. We have |F (k)
t (h)| ≤ k3k

2
nk−1 for all 1 ≤ t ≤ p.

Proof. Let h = {uv, (u, c), (v, c)}. We first observe that because every F ∈ F (k)
t (h) in particular

has ρ(F ) ≥ 0, we must have c(F ) ≤ k − t by definition of ρ, and we note that one of these at
most k − t colors must be c since h ∈ F .

With this in mind, we can identify each F ∈ F (k)
t (h) as follows: first choose the t additional

vertices other than u, v which are incident to colored edges of χF in at most nt ways, then
choose the at most k − t − 1 colors other than c used by χF in at most |C|k−t−1 ways, then
finally choose k−1 new edges to add to M which are incident to our chosen set of 2 + t vertices
and color them using the at most k colors that we have allowed (the number of ways for which
can very roughly be estimated to be at most k2k(k−1) ≤ k2k

2
). Putting all this together and

using |C| ≤ 2n ≤ kn for n sufficiently large gives the result.

Since degF(k)(h) =
∑

t |F
(k)
t (h)| ≤ pk3k

2
nk−1 ≤ αDk−1 logD for n sufficiently large, we conclude

that (F1) holds.

We next verify (F2), that ∆ℓ(F (k)) ≤ Dk−ℓ−β for all 2 ≤ ℓ < k ≤
(
p
2

)
. Fix some matching M

of size ℓ ≥ 2 (noting that this implies v(M) ≥ 3) and some integer k > ℓ. Observe that if
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ρ(M) ≥ 0 then degF(k)(M) = 0, as any F of size k containing M would in particular contain
the submatching F ′ = M with v(F ′) ≥ 3 and ρ(F ′) ≥ 0, meaning F /∈ F by definition. Thus

we may assume ρ(M) < 0. Similar to before, for all 0 ≤ t ≤ p we let F (k)
t (M) denote the set of

F ∈ F of size k containing M with v(F ) = v(M) + t.

Claim 24.10. We have |F (k)
t (M)| ≤ k3k

2
nk−ℓ−1 for all 0 ≤ t ≤ p.

Proof. Because F (k)
t (M) ⊆ F , we must have ρ(F ) ≥ 0 for all F ∈ F (k)

t (M), which by our
assumption ρ(M) < 0 above implies

0 < ρ(F )−ρ(M) = [k− c(F )−v(M)− t+2]− [ℓ− c(M)−v(M)+ 2] = k− ℓ− t− c(F )+ c(M),

or equivalently c(F ) ≤ c(M) + k − ℓ− t− 1 for all F ∈ F (k)
t (M). As we will see in a moment,

this is the other key fact we need about our exact definition of ρ.

We now identify each F ∈ F (k)
t (M) as follows: first choose the set of colors used by χF that

do no appear in χM (which can be done in at most |C|k−ℓ−t−1 ways by our calculation above),
then choose the t vertices that are incident to colored edges of χF that are not incident to χM

in at most nt ways, then finally choose k − ℓ new edges to add to M which are incident to our
chosen set of v(M) + t vertices and color them using the at most k colors that we have allowed
(which can very roughly be estimated to be at most k2k(k−ℓ) ≤ k2k

2
). Putting all this together

and using |C| ≤ 2n ≤ kn for n sufficiently large gives the result.

Since degF(k)(M) =
∑

t |F
(k)
t (M)| ≤ (p + 1)k3k

2
nk−ℓ−1 ≤ Dk−ℓ−β for n sufficiently large, we

conclude that (F2) holds.

Finally we verify (F3), that F contains no edges of size 3. This is immediate from how we
defined F , so we conclude that Theorem 24.3 applies, giving the desired result.

Again, the interested reader is encouraged to think about where this proof would have broken
down if we tried proving a linear upper bounding on GR(n, p, q) for some q > qlin.

24.3 Matchings of Size 2

While Theorem 24.3 is often enough for applications of the forbidden submatching method,
sometimes we need to consider conflict hypergraphs F which have matchings of size 2. To deal
with this, we need to introduce some particular notions of degrees involving edges of size 2.

To this end, if F is a conflict hypergrpah of a hypergraph H, then for v ∈ V (H) and e ∈ E(H)
with v /∈ e, we define their mixed-codegree to be the number of hyperedges F ∈ F of size 2 which
contains e and another edge e′ which contains v. For two distinct vertices e, e′ ∈ V (F) = E(H),
we define their common 2-degree to be the number of vertices e′′ such that {e, e′′}, {e′, e′′} are
both hyperedges in F .

The following result is exactly the same as Theorem 24.3 except for the modified (F3) condition
and the slightly stronger conclusion about multiple disjoint matchings.
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Theorem 24.11 ([56] Theorem 1.16). For all integers r, r′ ≥ 2 and real β ∈ (0, 1), there
exists α,Dβ > 0 such that the following holds for all D ≥ Dβ: let B be a bipartite r-bounded
hypergraph with bipartition (B1, B2) such that

(B1) Every vertex in B1 has degree at least (1 + D−α)D and every vertex in B2 has degree at
most D, and

(B2) ∆2(B) ≤ D1−β.

Further, let F be an r′-bounded conflict hypergraph of B with

(F1) ∆
(k)
1 (F) ≤ αDk−1 logD for all 2 ≤ k ≤ r′,

(F2) ∆
(k)
ℓ (F) ≤ Dk−ℓ−β for all 2 ≤ ℓ < k ≤ r′,

(F3’) The maximum mixed-codegree and maximum common 2-degree of F is at most D1−β.

Then there exist at least D disjoint F-avoiding B1-perfect matchings of B.

Again, we note that essentially the same theorem appears in [92] with the additional mild
hypothesis that H is not too sparse. The conclusion of Theorem 24.11 that B contains many
disjoint perfect matchings is rarely used in practice, but it is certainly a neat fact that you can
guarantee all of these exist.

One place where this stronger version of Theorem 24.3 was used is with proving the following
improvement to the Erdős-Gyárfás bound Theorem 3.5 for generalized Ramsey numbers by a
logarithmic factor for a wide range of p, q. We note that, at least of this time of writing, this is
the only known order of magnitude improvements for the original bound of Erdős and Gyárfás.

Theorem 24.12 ([25, 26]). If p, q are integers such that p − 2 is not divisible by
(
p
2

)
− q + 1,

then

GR(n, p, q) = O

((
np−2

log n

) 1

(p
2)−q+1

)
.

This result was originally proven in the range q ≤ p2/4 by Bennett, Dudek, and English [26]
using the differntial equations method, after which the proof was significantly simplified and
extended to the full range of q by Bennett, Delcourt, Li, and Postle [25] using the forbidden
submatching method.

Sketch of Proof. One immediate observation is that for most values of q in the theorem, the
bound we are shooting for here is o(n). As such, there is no hope in us proving the existence
of a proper coloring which uses at most this many colors. In particular, there is no hope in us
using a bipartite hypergraph like we did in the proof of Theorem 24.5 which had hyperedges of
the form {uv, (u, c), (v, c)} since in matchings in this hypergraph correspond to proper colorings
of Kn.
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Getting around this first obstacle is not too difficult: we instead consider the bipartite (hy-
per)graph B with B1 = E(Kn), B2 = {(e, c) : e ∈ E(Kn), c ∈ C}, and all edges of the form
{e, (e, c)} (so B is just a graph which is the union of stars). From here we can mimic the exact
proof strategy we had before with Theorem 24.5 where we defined our conflict hypergraph F
to consist of matchings of B which correspond to (minimal) colorings of Kn which have few
vertices and few distinct colors. More precisely, we let F consist of all minimal matchings M
with the property that

ρ(M) := |M | − c(M) −
(
p
2

)
− q + 1

p− 2
(v(M) − 2) ≥ 0,

noting that in the special case of q = qlin =
(
p
2

)
− p + 3 this exactly recovers our previous

definition of ρ, and just like in this case we have ρ(M) = 0 whenever M corresponds to a
coloring of all the edges of a p-clique using q − 1 colors.

At this point, checking the conditions of our forbidden matching theorem largely proceed as
before, with the critical exception being that for q small enough, the conflict hypergraph F will
now contain many hyperedges of size 2, essentially because B no longer corresponds to proper
colorings. Thus one has to additionally check the bounds of (F3’) in our analysis, and this is
not too difficult to do since one can check that we in fact have ∆1(F (2)) ≤ D1−β, implying
(F3’).

While our proof above did utilize the stronger Theorem 24.11 over Theorem 24.3, we note that
in this case this is not entirely necessary. Indeed, one can check here that conflicts of size 2
only appear if p−2

(p
2)−q+1

< 1. However, if we’re in the opposite range then we could just define

B with hyperedges of the form {uv, (u, c), (v, c)} like before and also avoid conflicts of size 2.
Thus while using Theorem 24.11 here gives the most streamlined proof of this result, it is not
entirely necessary in this context. That being said, there are applications in the literature which
genuinely need the full power of Theorem 24.11, see for example [24].
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25 TODOConflict-Free Matchings
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Part VII

Simplifying Set Systems

Here we study methods based around the idea that many set systems (i.e. hypergraphs) that
we care about are either “simple” or “well approximated” by something which is “simple”,
with both of these possible scenarios allowing us to say quite a bit about the set system in
question. We begin by discussing methods showing that set systems can be well approximated
by simple objects related to sunflowers, after which we talk at length about set systems of “low
complexity” through the language of VC-dimension.

Comment somewhere that the fingerprint approach from containers is spiritually
similar to this part where we approximate complicated objects by simple/small
objects.
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26 The Delta-System Method

Need to adjust exposition here/elsewhere given its new placement, eg comment
how results here kind of improve Ray-Chaudhri-Wilson and maybe move the last
subsection to the end of spread approximations (if that comes after).

Recall that a k-sunflower (also called a delta-system) is a hypergraph S with edges e1, . . . , ek
such that there exists a set K called the kernel which has ei ∩ ej = K for all i ̸= j. Roughly
speaking, the Delta-system method is any proof using the following observation, which is usually
credited to Deza, Erdős, and Frankl [58].

Lemma 26.1. If H is an r-graph which contains an (r+ 1)-sunflower with kernel K, then for
every edge e ∈ H, there exists an edge f ∈ H with e ∩ f ⊆ K.

Proof. Let e1, . . . , er+1 be the edges of the sunflower. Since each of the sets e1 \K, . . . , er+1 \K
are non-empty disjoint sets, one of these ei \ K sets must be disjoint from e. Taking f = ei
gives the result.

An effective tool to use in conjunction with this observation is Füredi’s intersection semilattice
lemma (which itself is proven using the Delta-system method). The full statement is a little
intimidating, so we’ll start by just stating a consequence of it.

Lemma 26.2 (Weak intersection semilattice lemma). For all r, s, there exists c = c(r, s) > 0
such that for every r-graph H, there exists a subgraph H′ ⊆ H with |H′| ≥ c|H| such that for
all e, f ∈ H′, e ∩ f is the kernel of an s-sunflower.

That is, we can approximate H by a hypergraph H′ such that any two edges of H′ are petals of
a large sunflower. This quickly gives the following strengthening of the Erdős-Rado sunflower
lemma due to Mubayi and Zhao [148].

Corollary 26.3 ([148]). For all r, s there exists a constant C = C(r, s) such that if H is an
n-vertex r-graph with |H| ≥ Cnr−t−1, then H contains an s-sunflower which has core of size at
most t.

Proof. We may assume n is sufficiently large in terms of r, as otherwise one can trivially find
a sufficiently large C. Let C = 2c−1 with c the constant from the previous lemma. Then
|H′| ≥ 2nr−t−1 >

(
n−t−1
r−t−1

)
. By the Erdős-Ko-Rado theorem for (t+ 1)-intersecting hypergraphs

(see Theorem 27.4), H′ must contain two edges e, f which intersect in less than t + 1 vertices.
By assumption e ∩ f is the core of a sunflower with at least s petals, proving the result.

We’ll now state the full intersection semilattice lemma. For this, if H is an r-partite r-graph
with partition

⋃
Vi and if S is a set of vertices, then we define proj(S) := {i : S ∩ Vi ̸= ∅}.

That is, proj(S) records which coordinates its vertices are in. Given a hypergraph H and a set
of vertices S, define d∗(S) to be the largest integer d such that there exist edges e1, . . . , ed ∈ H
with ei ∩ ej = S for all i ̸= j. In other words, d∗(K) is the size of the largest sunflower which
contains K as its kernel.
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It’s unfortunate that here H′ is the part we can approximate while it’s the opposite
for spread approximations. Probably change one of these, most likely the spread
approximation one.

Lemma 26.4 (Intersection semilattice lemma). For all r, s, there exists c = c(r, s) > 0 such
that for every r-graph H, there exists an r-partite subgraph H′ ⊆ H with |H′| ≥ c|H| and a
hypergraph J ⊆ 2[r] not containing the edge of size r such that:

(1) J is intersection closed, i.e. I, J ∈ J implies I ∩ J ∈ J .

(2) For every e ∈ H′, {proj(e ∩ f) : f ∈ H′ \ {e}} = J .

(3) d∗H′(e ∩ f) ≥ s for all e, f ∈ H′.

Note that if we ignore (1) and (2) we get back Lemma 26.2. Roughly speaking, this result says
that we can approximate a large chunk of H, namely H′, by a small hypergraph J such that
for any edge e ∈ H′, the hypergraph J tells you exactly how other edges can intersect e, and
moreover, (3) guarantees that each possible intersection occurs at least s times. We say that
an H′ as in the conclusion of this lemma is (s,J )-homogeneous.

We postpone proving this result for the moment and instead look at some consequences. For
J ⊆ 2[r] \ [r], define the rank

rank(J ) = min{|T | : T ⊆ [r], T ̸⊆ I ∀I ∈ J },

i.e. this is the smallest integer t such that there exists a t-set not contained in an edge of J .
For example, rank(J ) > 1 if and only if every vertex of [r] is contained in an edge of J .

Lemma 26.5. If H′ is an n-vertex (s,J )-homogeneous r-graph, then |H′| ≤
(

n
rank(J )

)
.

Note that s does not appear in this bound. Before looking at the proof, the reader may want
to try proving this result for themselves when rank(J ) = 1 in order to get a sense for the
definitions.

Proof. Let T ⊆ [r] be a set such that |T | = rank(J ) and such that T ̸⊆ J for all J ∈ J . Given
an edge e ∈ H′, let ϕ(e) = e ∩

⋃
i∈T Vi. We claim that ϕ is injective. Indeed, if ϕ(e) = ϕ(f),

then T ⊆ proj(e ∩ f) ∈ J , a contradiction to our assumption on T . Since ϕ maps edges of H′

injectively to sets of size rank(J ), we conclude the result.

We can use this result to give yet another proof of the Erdős-Ko-Rado theorem for t-intersecting
hypergraphs, whose statement we recall below.

Theorem 26.6. Let H be an n-vertex r-graph such that |e ∩ f | ≥ t for all e, f ∈ H. If n is
sufficiently large in terms of r, then |H| ≤

(
n−t
r−t

)
with equality holding if and only if H consists

of every edge containing some fixed set T of size t.
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Proof. Apply Lemma 26.4 with s = r+ 1 and let H′,J be the resulting hypergraphs with
⋃
Vi

the r-partition of H′. First note that if rank(J ) < r − t, then by Lemma 26.5 we have

|H| ≤ c−1|H′| ≤ c−1

(
n

r − t− 1

)
<

(
n− t

r − t

)
,

where this last step holds for n sufficiently large in terms of c = c(r, r+ 1). Thus if |H| ≥
(
n−t
r−t

)
,

we must have rank(J ) ≥ r − t.

Let S be with |S| = rank(J ) such that no edge of J contains S, and let T = [r] \ S. By the
above we may assume |S| ≥ r− t, and hence |T | ≤ t. By definition of rank(J ) = |S|, for every
i ∈ S, there exists an edge Ji ∈ J such that S \ {i} ⊆ Ji. Note that i /∈ Ji by assumption
of S not being contained in any edge of J , which means J :=

⋂
i∈S Ji ⊆ T . Because J is

intersection closed, we have J ∈ J .

We claim that |J | ≥ t. Indeed, by definition of J ∈ J , there exist two edges of H′ ⊆ H whose
intersection is exactly J , and by the t-intersecting property we must have |J | ≥ t. Because
|T | ≤ t and J ⊆ T , we conclude that J = T ∈ J .

Now let e ∈ H′ and K = e ∩
⋃

i∈T Vi, noting that |K| = t. Then Lemma 26.4 guarantees that
there is a sunflower with at least r + 1 petals and K as its kernel. This implies that for every
edge f ∈ H, there exists an edge e′ ∈ H′ which contains K and which is disjoint from f \K.
Thus to have |e′ ∩ f | ≥ t, we must have K ⊆ f . In other words, every edge of H must contain
the t-set K. This implies the result.

The above argument actually gives the following stability result: for all r, t there exists a
constant c′ = c′(r, t) such that if H is t-intersecting with |H| > c′

(
n−t
r−t

)
, then there exists a set

of size t which is contained in every edge of H.

Remark 26.7. Stronger versions of Theorem 27.4 are known. For example, Wilson [184]
determined the maximum size of a t-intersecting family for any value n. In another direction,
Frankl and Füredi [76] showed that the conclusion of the theorem holds if we only impose the
hypothesis |e ∩ f | ≠ t for e ̸= f provided r ≥ 2t + 2, with their proof using a somewhat more
involved version of the Delta-system method.

A similar argument works for more general kinds of intersection problems. Given a set L ⊆
{0, 1, . . . , r − 1}, we say that a hypergraph H is an (n, r, L)-system if it’s an n-vertex r-graph
such that |e ∩ f | ∈ L for all e, f ∈ H distinct. For example, (n, r, {t, t + 1, . . . , r})-systems are
t-intersecting hypergraphs. Little is known about how large (n, r, L)-systems can be for general
L, but one can get effective bounds in terms of ranks. To this end, for any L ⊆ {0, 1, . . . , r−1},
define

rank(r, L) = max
J

rank(J ),

where the maximum ranges over all J ⊆ 2[r] containing no edges of size r which are intersection-
closed with |J | ∈ L for all J ∈ J .

Theorem 26.8. If H is an (n, r, L)-system, then

|H| = O(nrank(r,L)).
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Proof. Let H′,J be as in Lemma 26.4. Observe that J is intersection closed and that |J | ∈ L
for all J ∈ J (since otherwise two edges of H′ ⊆ H would fail to have |e∩e′| ∈ L). Thus letting
c be the constant from Lemma 26.4, we have

|H| ≤ c−1e(H ′) ≤ c−1

(
n

rank(J )

)
≤ c−1

(
n

rank(r, L)

)
,

where this second inequality used Lemma 26.5 and the last inequality used the definition of
rank(r, L). We conclude the result.

It’s conjectured by Frankl that for all r, L there exist (n, r, L)-systems of size ω(nrank(r,L)−1). This
is unknown in general, but see e.g. [77, Theorem 16.6] for a construction of size Ω(n1+1/(r−1))
whenever rank(r, L) ≥ 2.

One of the best general bounds on the size of (n, r, L)-systems is the Deza-Erdős-Frankl theorem,
which states that such a system H satisfies

|H| ≤
∏
ℓ∈L

n− ℓ

r − ℓ
= O(n|L|),

provided n is sufficiently large. One can prove this result using a variant of the Delta-system
method, though we omit doing so here. Instead, we give an easy proof of the asymptotic result
by utilizing the following.

Lemma 26.9. Every L ⊆ {0, 1, . . . , r − 1} satisfies rank(r, L) ≤ |L|.

Proof. We prove the result by induction on |L|, the case |L| = 0 being trivial. Assume we
have proven the result for all L with |L| < k. We first consider the case |L| = k and 0 ∈ L.
Let J be an intersection closed hypergraph on 2[r] \ [r] with |J | ∈ L for all J ∈ J and
rank(J ) = rank(r, L). For any vertex x ∈ [r], let Jx = {J − x : x ∈ J ∈ J } be the link
hypergraph. If L′ = {ℓ − 1 : ℓ ∈ L, ℓ ̸= 0}, then we see that Jx is intersection closed
with |J | ∈ L′ for all J ∈ Jx. Because |L′| = |L| − 1, our inductive hypothesis implies that
rank(r − 1, L′) ≤ |L| − 1, i.e. there exists some set T of size |L| − 1 in [r] \ {x} which is not
contained in any edge of Jx, which implies T ∪{x} is a set of size |L| not contained in any edge
of J . We conclude rank(r, L) = rank(J ) ≤ |L|.

Now assume 0 /∈ L, and again let J be an intersection closed hypergraph on 2[r] \ [r] with
|J | ∈ L for all J ∈ J with rank(J ) = rank(r, L). Let I =

⋂
J∈J J . Note that by definition I is

contained in every edge of J , and by the intersection closed property we have I ∈ J , and hence
|I| ∈ L. Define L′ = {ℓ−|I| : ℓ ≥ |I|}, and note that the link hypergraph JI = {J \ I : J ∈ J }
has all of its edge sizes lying in L′. Since |L′| ≤ |L| and 0 ∈ L′, the previous case implies
rank(JI) ≤ |L|, which implies there exists some set J ⊆ [r] \ I of size L not contained in an
edge of JI , and hence this set continues to not be contained in an edge of J (since every edge
of J is the union of an edge of JI with I). We conclude rank(r, L) = rank(J ) ≤ |L|, proving
the result.

This together with the previous theorem immediately gives the following.
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Corollary 26.10. If H is an (n, r, L)-system, then

e(H) = O(n|L|).

It is not difficult to show that this result is tight if L = {0, 1, . . . , t− 1}.

Before moving on, we note that while all of our applications here came from extremal set theory,
the intersection semilattice lemma has application to other areas of extremal combinatorics as
well. See for example [147], where this lemma is used to bound the Turán number of a class of
linear hypergraphs called “expansions.”

26.1 Proof of the Semilattice Intersection Lemma

We first recall that for every r-graph H there exists a subgraph H′ ⊆ H which is r-partite and
which keeps a constant proportion of its edges. Thus it suffices to prove that if H has r-partition⋃
Vi, then one can find a subgraph H′ ⊆ H and J ⊆ 2[r] \ [r] such that |H′| ≥ c(r, s)|H| and

(1) J is intersection closed, i.e. I, J ∈ J implies I ∩ J ∈ J .

(2) For every e ∈ H′, {proj(e ∩ f) : f ∈ H′ \ {e}} = J .

(3) d∗H′(e ∩ f) ≥ s for all e, f ∈ H′.

Claim 26.11. If there exists H′,J satisfying (2) and (3) with s ≥ r+1, then they automatically
satisfy (1).

Proof. Let J1, J2 ∈ J . This means that for any edge e ∈ H′, there exist edges e1, e2 such
that e, ei intersect exactly in the coordinates of Ji and that this intersection is the kernel of a
sunflower in H′ on at least r + 1 petals. In particular, there must exist an edge f ∈ H′ which
contains e ∩ e1 and which is otherwise disjoint from e2 (namely, f is one of the edges of the
sunflower with core e ∩ e1). With this proj(f ∩ e2) = J1 ∩ J2, so necessarily J1 ∩ J2 ∈ J .

With this claim in mind, we only have to find H′,J satisfying (2) and (3) (this is immediate if
s ≥ r + 1, and for all other values of s we can take c(r, s) = c(r, r + 1) and apply the s = r + 1
result). For the rest of the proof, given a hypergraph H, we define

I(H) = {proj(e ∩ f) : e, f ∈ H, e ̸= f}.

Claim 26.12. For any r-partite r-graph H, one can decompose H as H = H0 ∪
⋃

I∈I(H) HI

such that H0 satisfies (2) and (3) for some J , and such that for all I, there does not exist a
set K with proj(K) = I and which is the kernel of a sunflower on at least s petals in HI .

Proof. Initially start with H0 = H and HI = ∅ for all I ∈ I(H). Consider the following
procedure. If at any point H0 satisfies (2) and (3) for some set J , then we stop and output
the current sets. Otherwise, it is not difficult to see that there must exist some edge e ∈ H0

and K ⊆ e such that proj(K) ∈ {proj(f ∩ g) : f, g ∈ H0, f ̸= g} but K is not the kernel of
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a sunflower with at least s petals in H0 (as otherwise the conditions would be satisfied with
J = {proj(f ∩g) : f, g ∈ H0, f ̸= g} Maybe (2) needs more of an explanation here: the
idea is that if there were some J ∈ J and edge e which didn’t have this intersection
pattern, then the K ⊆ e with proj(K) = J wouldn’t be contained in a sunflower
of size 2 and hence would be removed). In this case, e delete e from H0 and add it to
Hproj(K).

We claim that this procedure gives the desired result. Indeed, H0 satisfies (2) and (3) by
construction. Assume for contradiction that there existed some I with HI containing a sunflower
on at least s petals with kernel K satisfying proj(K) = I. Let e be the first edge of this sunflower
that was added to HI during the procedure. This implies that every edge of the sunflower was
in H0 right before e was removed, i.e. that H0 contains a sunflower with at least s petals and
kernel K. This contradicts us removing e from H0 at this step, so we include no such sunflower
exists in any HI .

Claim 26.13. Let H be an r-partite r-graph and I a set such that I ̸= proj(K) for any
K which is the kernel of a sunflower with at least s petals. Then one can decompose H as
H = H1 ∪ · · ·Hr(s−1) such that I /∈ I(Hj) for all j.

Proof. Note that for each edge e ∈ H, there exists a unique set K ⊆ V with proj(K) = I. For
each set of this form, let H(K) be its link hypergraph, i.e. H(K) = {e \ K : K ⊆ e ∈ H}.
By hypothesis, none of the H(K) sets contain a matching of size s (since this translates to
a sunflower of size s in H with kernel K). It is not difficult to see that one can decompose
each (r − |K|)-graph H(K) into at most (r − |K|)(s − 1) ≤ r(s − 1) intersecting hypergrpahs
H1(K), . . . ,Hr(s−1)(K) (e.g. by taking a largest matching M in H(K) and then assigning edges
to Hi(K) if they contain the ith vertex which is contained in an edge of M). Let Hi[K] =
{e′∪K : e′ ∈ Hi(K)} and let Hi =

⋃
K Hi(K). Note that this decomposes H, and that K ̸= e∩f

for any K with proj(K) = I and e, f ∈ H i (as this would imply e \ K, f \ K ∈ Hi(K), and
hence e, f contain an additional vertex since Hi(K) is intersecting).

By repeatedly applying the above two claims a bounded number of times Explain more,
maybe also adding exposition between the two claim statements, one can decompose
H as

⋃
Hi where each Hi satisfies (2) and (3). Taking the largest of these hypergraphs gives

the desired result.

26.2 Other Hypergraph Approximations

The results of this section are very similar in spirit to those of Section 27. To close this section,
we briefly compare and contrast these results.

By using the Delta-system method (and more precisely the semi-lattice intersection lemma), we
are able to conclude that many of the links of each e ∈ H′ contains large sunflowers. In contrast,
the spreadness of Theorem 27.2 not only gives us large sunflowers, but the stronger fact that a
random partitioning of our vertex set is likely to give a large sunflower (which is a more robust
condition). Moreover, the “error term” of Theorem 27.2 is typically much smaller than that
of Lemma 26.4 (which only approximates a constant proportion of H, which is in some sense
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necessary since it can only perfectly approximate r-partite r-graphs). On the other hand, the
approximating hypergraph of Theorem 27.2 is more “complex”, in the sense that it is not just a
hypergraph on [r] but all of V (H), and moreover here you lose the homogeneity of Lemma 26.4
which implies that every two edges have the same intersection pattern. In conclusion, the two
methods are overall incomparable to each other, with each finding different uses in different
situations.

We also note that there is another famous hypergraph approximation called the Junta method,
which was developed by Dinur and Friedgut [60]. This roughly says that if H is an intersecting
hypergraph, then there exists a hypergraph J on a small set of vertices J of H such that almost
every edge e ∈ H has e∩ J ∈ J . We omit going into this in detail and refer the reader to [60].

Finally, we emphasize a fundamental weakness in all of these approaches, which is that they
only work when n is quite large. In many cases we’re okay with this, but for some results like the
t-intersecting Erdős-Ko-Rado theorem, it is of interest in nailing down the exact dependency
on n. In cases such as these a more careful argument is needed.
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27 Spread Approximations

Need to adjust exposition based on new placement; in particular remind some of
the definitions.

Motivated by our success in proving bounds on hypergraphs which don’t contain sunflowers in
Theorem 8.4, we consider some additional applications of spread hypergrpahs to extremal set
theory. For this it will be convenient to define a slightly different notion of spreadness which
was introduced by Kupavskii and Zakharov [131].

Given a set of vertices A, we define the link hypergraph H(A) = {e \ A : e ∈ H, A ⊆ e}. We
say that an n-vertex r-graph H is τ -homogeneous if

d(A) = |H(A)| ≤ τ |A|

(
n−|A|
r−|A|

)(
n
r

) |H|.

Intuitively, τ -homogeneous hypergraphs should be thought of as (τ/n)-spread hypergraphs.
Formally, we have the following.

Lemma 27.1. If H is an n-vertex r-graph which is τ -homogeneous, then it is q-spread with
q = τr

n
.

Proof. Note that
(
n−1
r−1

)
= r

n

(
n
r

)
. By repeating this logic and using that r−i

n−i
≤ r

n
whenever

i ≤ r ≤ n, we find

d(A) ≤ τ |A|

(
n−|A|
r−|A|

)(
n
r

) |H| ≤
(τr
n

)|A|
|H|,

proving the result.

The main motivation for this definition is the following.

Theorem 27.2 ([131]). Fix k ∈ Z≥1 and τ ∈ R≥1. For every n-vertex r-graph H, there exists
an “approximation” hypergraph S with edges of size at most k, and a “remainder” H′ ⊆ H with
the following properties:

� For every e ∈ H \ H′, there exists S ∈ S such that S ⊆ e.

� |H′| ≤ τ−k−1
(
n
r

)
.

� For every S ∈ S there exists HS ⊆ H such that the link hypergraph HS(S) is τ -
homogeneous.

This first condition says that S “approximates” H \ H′ in the sense that it’s an undercover,
while the second condition says that “most” of H is approximated. The third condition gives
us the very useful property that each edge S of our approximating hypergraph S has a well
spread link, which will imply that a random partition of our vertex set will give a sunflower
whose kernel contains S.
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Add more intuition for this proof, possibly via recalling the proof of the improved
sunflower bounds (namely you go by picking a largest S such that F(S) isn’t spread).

Proof. If n ≤ k, then we can take S = H, HS = {S}, and H′ = ∅ to get the result, so we may
assume n > k. For this proof we define H[S] = {e : e ∈ H, S ⊆ e}, i.e. this is just the link
hypergraph H(S) after adding the set S back into each edge.

Let H1 = H. Given Hi, let Si be a maximal set of vertices with dHi(Si) ≥ τ |Si| (
n−|Si|
r−|Si|

)
(n
r)

|Hi|.
If |Si| > k (which happens automatically if Hi = ∅ and n > k), then stop the procedure.
Otherwise set Hi+1 = Hi \ Hi[Si].

Say we stop this procedure at i = m+ 1. Set H′ = Hm+1, S = {Si : i ≤ m}, and HSi
= Hi[Si].

Observe that by construction each edge of S has size at most k and that the first condition of
the theorem is satisfied (since e ∈ H \ H′ implies e ∈ Hi for some i ≤ m, and taking S = Si

works). Again by construction, we have

|H′| = |Hm+1| ≤ dHm+1(Sm+1)τ
−|Si|

(
n
r

)(
n−|Sm+1|
r−|Sm+1|

) ≤ τ−k−1

(
n

r

)
,

where this last step used the trivial bound dHm+1(Sm+1) ≤
(
n−|Sm+1|
r−|Sm+1|

)
and that |Sm+1| ≥ k + 1

by assumption of us stopping the procedure here. This establishes the second condition.

For the third condition, note that for any set T disjoint from Si, we have

dHSi
(T ) = dHi(S ∪ T ) < τ |Si∪T |

(
n−|Si∪T |
r−|Si∪T |

)(
n
r

) |Hi|,

where this last step used the maximality of Si. We also have

|Hi| ≤ τ−|Si|
(
n
r

)(
n−|Si|
r−|Si|

)dHi(Si) = τ−|Si|
(
n
r

)(
n−|Si|
r−|Si|

) |HSi
|.

Combining these two inequalities gives the third condition, proving the result.

It turns out that when τ is small, the S given by Theorem 27.2 inherits intersection properties
of the original hypergraph H. Recall that a hypergraph is t-intersecting if every two edges
intersect in at least t vertices.

Lemma 27.3. There exists an absolute constant C such that the following holds. Let H be an
n-vertex r-graph, and let S by the hypergraph guaranteed by Theorem 27.2 with parameters k, τ .
If n ≥ Cτrmax{log r, k}, then

{S ∩ T : S, T ∈ S} ⊆ {e ∩ f : e, f ∈ H}.

We emphasize that we allow S = T in the lemma statement.
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Proof. Let S, T ∈ S, and note that Lemma 27.1 implies HS(S) is τr
n

-spread. Let H′
S ⊆ HS(S)

be the hypergraph obtained by deleting all of the vertices x ∈ T \ S. Then

|H′
S| ≥ |HS(S)| −

∑
x∈T\S

dHS(S)(x) ≥ (1 − τr

n
· k)|HS(S)| ≥ 1

2
|HS(S)|,

where the second inequality used that HS(S) is spread, and the last inequality holds for C ≥ 2.
This together with HS(S) being τr

n
-spread implies H′

S is q := 2τr
n

-spread. Similarly if one defines
H′

T ⊆ HT (T ) by deleting the vertices of S \ T we get that this is q-spread.

Randomly partition the vertices of V (H)\(S∪T ) into two sets V1, V2 of size at least 1
2
(n−2k) ≥

1
4
n, where this holds if C is sufficiently large. By hypothesis this is at least 1

4
Cτr log r =

1
8
Cq log rn. Thus by Theorem 8.1, if C is sufficiently large, then with positive probability both
V1, V2 contain edges e′, f ′ of H′

S,H′
T respectively, which by definition means e′, f ′ contains no

vertices of T, S. This means e = e′ ∪ S, f = f ′ ∪ T are edges of H with e∩ f = S ∩ T , proving
the result.

A simple application of this result gives the t-intersecting version of the Erdős-Ko-Rado theorem
(albeit with suboptimal bounds on n).

Theorem 27.4. Let H be an n-vertex r-graph such that |e ∩ f | ≥ t for all e, f ∈ H. If n is
sufficiently large in terms of r, then |H| ≤

(
n−t
r−t

)
with equality holding if and only if H consists

of every edge containing some fixed set T of size t.

Proof. Apply Theorem 27.2 with k = t and τ = n
Crmax{log r,k} with C as in Lemma 27.3, and let

H′,S be the resulting families. Note that by Theorem 27.2,

|H′| ≤ τ−k−1

(
n

r

)
= O(nr−t−1).

By Lemma 27.3, our hypothesis on H, and the fact that |S| ≤ k = t for all S ∈ S, we see
that S is either empty or consists of a single set T of size t. In the former case |H| = |H′| =
O(nr−t−1) <

(
n−t
r−t

)
and there is nothing to prove, so we may assume such a T exists. This

implies that every element of H \H′ contains T .

First consider the case that H contains some e which does not contain T . By our observation
above, this means that every element of H \ H′ contains both T and some additional element
of e. This implies

|H \ H′| + |H′| ≤ r

(
n− t− 1

r − t− 1

)
+ |H′| = O(nr−t−1) <

(
n− t

r − t

)
.

Thus we can assume every element of H contains T , which means |H| ≤
(
n−t
r−t

)
.

The above argument actually gives the following stability result: for all r, t there exists a
constant c′ = c′(r, t) such that if H is t-intersecting with |H| > c′

(
n−t
r−t

)
, then there exists a set

of size t which is contained in every edge of H.

Another application is a bound for how large an intersecting hypergraph H can be if it’s “far”
from the extremal example, i.e. a star. There are many ways to make the notion of “far” precise.
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One way is to demand that every vertex of H to be contained in the same number of edges, i.e.
to demand that H be regular.

Theorem 27.5 ([131]). There exists an absolute constant C > 0 such that if n ≥ Crmax{log r, k},
then any n-vertex intersecting r-graph H has |H| ≤ 2−k

(
n
r

)
.

This result is roughly optimized when k ≈ n/r, giving an upper bound of roughly 2−n/r
(
n
r

)
,

which is typically much stronger than the bound
(
n−1
r−1

)
given by Erdős-Ko-Rado for (not nec-

essarily regular) intersecting families. Note that in particular this bound implies that regular
intersecting hypergraphs cannot exist if n ≫ r Which is maybe obvious by elementary
means.

Proof. Apply Theorem 27.2 with τ = 2, which we can do if C is sufficiently large. Let H′,S be
the corresponding families that we get. Note that by Theorem 27.2 we have

|H \ H′| ≥ 1

2
|H|.

We claim that every edge e ∈ H \ H′ intersects every S ∈ S. Indeed, by the first property of
Theorem 27.2, there exists some S ′ ⊆ e with S ′ ∈ S, and by Lemma 27.3, this S ′ (and hence
e) intersects S.

Pick any S ∈ S. By the previous claim, some vertex x ∈ S must satisfy

d(x) ≥ 1

|S|
|H \ H′| ≥ 1

2k
|H|,

where this last step used |S| ≤ k for any S ∈ S and |H \ H′| ≥ 1
2
|H|. However, since H is

regular, by the handshaking lemma we must have

d(x) =
r

n
|H|.

This contradicts the previous bound if n > 2rk, giving the result.

27.1 Further Results

One can push the ideas of this section significantly further. Here we sketch out some of these
ideas, and we refer the reader to [131] for the details.

One important direction is that one can consider different “ambient families.” That is, up to
this point we were considering r-uniform hypergraphs, i.e. H ⊆ A :=

(
[n]
r

)
. Alternatively, one

can identify subsets of [n2] by their 0-1 characteristic vectors, which can in turn be written
as n-dimensional 0-1 matrices. In particular, by letting A denote the set of such vectors
corresponding to permutation matrices, we can now consider “intersection” problems for sets
of permutations H ⊆ A. Here one can again go through similar steps to develop a notion of
homongenous families (with respect to our new choice of A) in order to get results about sets
of permutations H which are intersecting (i.e. such that any two permutations π, σ ∈ H have
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π(i) = σ(i) for some i, i.e. if there corresponding 0-1 matrices have a common entry equal to
1).

Through Lemma 27.3, we showed that if H is t-intersecting and τ is small enough, then we
can guarantee that S is t-intersecting. Through a more refined argument, one can show that
if τ is very small, then in fact this same conclusion holds if we only impose the much weaker
condition that |e ∩ f | ≠ t− 1 for e, f ∈ H.
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28 VC-Dimension I: Basics

There are various ways to measure how “complex” a set system F is, with one of the most
popular and powerful notions being that of VC-dimensions.

Definition 5. Given a set system F with ground set V , we say that a subset X ⊆ V is shattered
by F if for every subset X ′ ⊆ X there exists some FX′ ∈ F such that FX′ ∩X = X ′. We say
that a set system F has VC-dimension d if there exists a set X of size d which is shattered by
F and if no set of larger cardinality is shattered by F .

Roughly speaking we think of set systems with few shattered sets as being “simple.” This
intuition can be formalized through the following lemma.

Lemma 28.1. The number of elements in a set system F is at most the number of sets shattered
by F .

Proof. We prove this result by induction on the size of the ground set of F , and without loss
of generality we may assume this ground set is [n] for some integer n. The case n = 0 is trivial,
so we assume we have proven the result up to some value n ≥ 1.

In order to use our inductive hypothesis, we want to come up with families which have ground
set [n − 1], ideally with us doing so in such a way that the total size of these families equals
that of F . After playing around with some possibilities, one might be led to

F1 = {F ⊆ [n− 1] : either F ∈ F or F ∪ {n} ∈ F},

F2 = {F ⊆ [n− 1] : F ∈ F and F ∪ {n} ∈ F}.

It is not difficult to see that |F1| + |F2| = |F|, since for each F ∈ F1 at least 1 of the sets
F, F ∪ {n} is in F with exactly two of these sets being in F if and only if F ∈ F2 as well. Let
S1,S2 be the sets that are shattered by these respective families, noting that |Fi| ≤ |Si| by our
inductive hypothesis. Let S denote the set of shattered sets of F .

We claim that S1 ⊆ S. Indeed, consider some X ∈ S1 ⊆ 2[n−1], meaning that for each X ′ ⊆ X
there exists some FX ∈ F1 ⊆ 2[n−1] such that FX′ ∩ X = X ′. By definition of F1 this means
there exists some set F ′

X′ ∈ F (namely either FX′ or FX′ ∪ {n}) which contains FX′ and no
additional elements of [n − 1] ⊇ X, and hence F ′

X′ ∩ X = X ′ as well, implying that X is
shattered.

We next claim that if X ∈ S2, then X ∪ {n} ∈ S. Indeed, for each X ′ ⊆ X there is some
FX′ ∈ F2 with FX′∩X = X ′, and by definition this means that FX′ , FX′∪{n} ∈ F . Intersecting
these two sets with X ∪{n} give X ′, X ′ ∪{n}. As this holds for arbitrary X ′ ⊆ X we conclude
that X ∪ {n} is shattered in S.

Observe that the two sets S1,S2 are disjoint, as one only uses sets avoiding n while the other
always uses n. This combined with the claims above give

|S| ≥ |S1| + |S2| ≥ |F1| + |F2| = |F|,

proving the result.
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Lemma 28.1 immediately implies the following bound for sets of bounded VC-dimension.

Theorem 28.2 (Sauer-Shelah Lemma). If F is a set system with ground set V and VC-
dimension at most d, then

|F| ≤
d∑

i=0

(
|V |
i

)
.

Theorem 28.2 as well as the notion of VC-dimension was discovered independently by a number
of authors including Sauer [165], Shelah [169], and Vapnik and Chervonenkis [179], with this
latter group being where the name “VC-dimension” comes from. The strengthened bound
Lemma 28.1 is due to Pajor [152].

As mentioned at the start, the VC-dimension of a set system roughly measures how “complex”
it is, and we will motivate this intuition with a few examples. To start, given a set system F
and a set of vertices S, we define the trace of S in F to be the collection of sets

TrF(S) := {F ∩ S : F ∈ F}.

We denote this simply by Tr(S) whenever F is clear from context.

Lemma 28.3. If F is a set system with ground set V of VC-dimension at most d, then every
set S ⊆ V satisfies

|Tr(S)| ≤
d∑

i=0

(
|S|
i

)
≤ max{1, 2|S|d}.

That is, if the VC-dimension of F is small, then the number of ways that the edges in F can
intersect with a given set S is at most polynomial in the size of S. This is in sharp contrast
with what would happen in a “random” set system where the number of such intersections is
much closer to the maximum possible value of 2|S|.

Proof. The second inequality is straightforward, so we only prove the first bound. By the
Sauer-Shelah Lemma, it suffices to show the set system Tr(S) has VC-dimension at most d.

Assume for contradiction there was some set X ⊆ S of size greater than d shattered by Tr(S).
By definition this means that for each X ′ ⊆ S there exists a set FX′ ∈ F such that

X ′ = (S ∩ FX′) ∩X = FX′ ∩X.

These sets FX′ ∈ F show that X is in fact shattered in the original set system F , a contradiction
to this system having VC-dimension at most d.

Another way in which set systems of small VC-dimension set systems are “simple” is through
them having small transversals. Specifically, we say that a set of vertices T of a set system
F is a transversal if F ∩ T ̸= ∅ for all F ∈ F , and we let τ(F) denote the size of a smallest
transversal of F .

Theorem 28.4 (Haussler-Welzl [102]). If F is a set system on V which has VC-dimension at
most d and minF∈F |F | ≥ δ|V | for some 0 < δ < 1, then

τ(F) ≤ O

(
d

δ
log

1

δ

)
.
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In particular, this bound is independent of the size of F , which is not something one would
expect in “typical” set systems. We note that something like the condition enforcing that each
element of F uses a constant proportion of the ground set is necessary for this conclusion to
hold, as otherwise F could contain a large number of sets of size 1 (which will not increase the
VC dimension but which will force τ(F) to be large).

Proof. The bound is trivial if τ(F) ≤ 1, so we may assume t := τ(F)−1 ≥ 1. We will prove the
result by bounding the number of pairs of sets (X0, X1) such that (i) X0, X1 are disjoint with
X0 ∪X1 having size exactly t, and (ii) there exists some F ∈ F with F ∩ (X0 ∪X1) = F ∩X1.
Let X denote the set of all such pairs.

To begin, we claim that

|X | ≥
t∑

i=0

(
|V |
i

)(
δ|V |
t− i

)
=

(
(1 + δ)|V |

t

)
.

Indeed, consider the following process for constructing pairs in X . Start with some integer
0 ≤ i ≤ t and pick an arbitrary set X0 of size i. Because i ≤ t < τ(F), we by definition have
that X0 is not a transversal of F , meaning that there exists some F ∈ F disjoint from X0. We
then take X1 to be any subset of F of size t − i (with no pair being produced if |F | < t − i).
Observe that (X0, X1) is a pair of disjoint sets whose union has size t, and that the set F from
this procedure witnesses F ∩ (X0 ∪X1) = F ∩X1. As such, every pair formed in this way lies
in X , and it is not difficult to see that these pair are all distinct. Moreover, for each integer
i the number of choices for X0 is exactly

(|V |
i

)
, and given this the number of choices for X1 is(|F |

t−i

)
≥
(
δ|V |
i

)
. Putting this all together gives the desired lower bound.

For the upper bound, we claim that

|X | ≤
(
|V |
t

)
· 2td.

Indeed, we can first pick the set X0 ∪X1 in
(|V |

t

)
ways. We then observe that if (X0, X1) ∈ X ,

then X1 ∈ Tr(X0 ∪ X1), which by Lemma 28.3 and the assumptions t ≥ 1 implies that the
number of choices for X1 is at most 2td. Because (X0, X1) is uniquely determined by X0 ∪X1

and X1, we conclude that the number of pairs is at most the bound above.

Combining these two bounds and using basic inequalities for binomial coefficients implies

2td ≥ (1 + δ)t ≈ etδ.

This implies t = O(d
δ

log 1
δ
), which in turn implies the same bound for τ(F) = t+ 1.

We now turn to our first application of VC-dimension theory. Given a graph G, we say that a
set of vertices T is a hitting set of G if T intersects every independent set of G of size α(G),
i.e. every maximum independent set of G. Equivalently, T is piercing if α(G− T ) < α(G). Let
h(G) denote the smallest size of a hitting set of G.

It was asked by Hajebi, Li, and Spirkl [99] whether for all integers t ≥ 2 there exists some
function ft such that h(G) ≤ ft(ω(G)) (with ω(G) denoting the size of the largest clique of G)
whenever G contains no induced matching of size t. This was answered in a strong form by Ai,
Liu, Xu, and Zhou [1].
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Theorem 28.5 ([1]). If G does not have an induced matching of size t, then

h(G) = Ot(ω(G)3t−3 logω(G)).

Proof. We begin by translating the problem into a statement about set systems by letting F
denote the set system on V (G) consisting of all maximum independent sets. With this we
observe that a hitting set for G is the same as a transversal for F , so h(G) = τ(F) and it
suffices to upper bound the transversal number of this system. Given this interpretation, a
natural thing to try is Haussler-Welzl. In particular, if G is an n-vertex graph and if F has VC
dimension d then Haussler-Welzl implies

h(G) = τ(F) = O

(
d

n

α(G)
log

(
n

α(G)

))
, (28)

where here we used that each element of F uses exactly an α(G)/n fraction of the ground set
V (G). To have any hope of using (28) to give our desired result, we must show that graphs G
as in the hypothesis of our theorem have both d and n/α(G) bounded as a function of ω(G).
We do this in two steps.

Claim 28.6. The VC-dimension d of F satisfies d = Ot(ω(G)t−1).

Proof. By definition there exist some set X = {x1, . . . , xd} which is shattered by F . In par-
ticular, this means there exists some (maximum) independent set I ⊆ V (G) with I ∩X = X,
implying that X itself is an independent set. Our aim now is to use a large part of this inde-
pendent set X as one side of an induced matching in G, implying that X must be small since
G contains no large induced matchings.

Because X is shattered, we have for each j ∈ [d] some maximum independent set Ij ∈ F with
Ij∩X = X\{xj}. Observe that xj must be adjacent to some vertex yj ∈ Ij, as otherwise Ij∪{xj}
would be a larger independent set, contradicting that Ij is maximum. Let Y = {y1, . . . , yd},
noting that yi ̸= yj for i ̸= j since they have different neighbors and that X ∩ Y = ∅ since X
is independent and each vertex in Y has (exactly) one neighbor in X.

We claim that G[Y ] does not contain an independent set of size at least t. Indeed, if say
y1, . . . , yt were independent then these vertices together with the (disjoint) independent set
x1, . . . , xt would form an induced matching of size t. We also observe that G[Y ] does not
contain a clique larger than ω(G). By standard bounds on Ramsey numbers then, we must
have

d ≤ R(ω(G) + 1, t) ≤
(
ω(G) + t− 1

t− 1

)
= Ot(ω(G)t−1).

It remains to upper bound n/α(G). For this, one might recall the classical bound

n/α(G) ≤ χ(G).

As such, it suffices to bound the chromatic number of G in terms of its clique number. While
this is impossible to do for arbitrary graphs, a classic result of Wagon [182] establishes this for
graphs without induced matchings, the proof of which we reproduce below.
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Claim 28.7. If G is a graph without a matching of size t, then χ(G) = O(ω(G)2t−2).

Proof. Define a sequence of functions f1, f2, . . . by having f1(ω) = 1 and inductively setting
ft(ω) =

(
ω
2

)
ft−1(ω) + ω. We will show that G as in the claim satisfy χ(G) ≤ ft(ω(G)), from

which the result follows. This is trivial if t = 1, so assume we have proven the result up to
some value t.

Let K be a maximum clique of G. For each pair of distinct vertices x, y ∈ K, define Sx,y to be
the set of vertices v which are not adjacent to either x or y. Observe that G[Sx,y] contains no
induced matching of size t − 1, as otherwise such a matching together with xy would give an
induced matching of size t in G. As such, we inductively have that χ(G[Sx,y]) ≤ ft−1(ω(G)),

and thus letting S :=
⋃
Sx,y we find that χ(G[S]) ≤

(
ω(G)
2

)
ft−1(ω(G)).

It remains then to color the vertices v /∈ S. We claim that every such vertex has exactly one
vertex x ∈ K which it is non-adjacent to. Indeed, a vertex v /∈ S has at most one non-neighbor
in K by definition of S, and if v were adjacent to every vertex in K then K ∪ {v} would be
a larger clique in G, a contradiction to K having maximum size. Let Sx be the set of vertices
which are adjacent to every vertex in K \{x}. Note that Sx must be an independent set, as any
edge yz together with K \ {x} would give a larger independent set. As such, we can partition
the vertices of V (G)\S into |K| = ω(G) independent sets Sx, which combined with our analysis
above implies that

χ(G) ≤
(
ω(G)

2

)
ft−1(ω(G)) + ω(G) = ft(ω(G)),

giving the result.

These claims together with (28) gives the desired result.

28.1 Further Results around VC-Dimension

We close this chapter by collecting a number of important auxiliary results regarding VC-
dimensions. We will not need any of these results for our future applications, and as such we
will be somewhat terse with our proofs. We begin by noting several operations on set systems
which preserve the property of having bounded VC-dimension.

Proposition 28.8. Let F ,F ′ be two set systems on the same ground set V such that each set
system has VC-dimension at most d.

(a) The complement F := {V \ F : F ∈ F} has VC-dimension at most d.

(b) Any subfamily F̃ ⊆ F has VC-dimension at most d.

(c) The intersection set system IF ,F ′ := {F ∩ F ′ : F ∈ F , F ′ ∈ F ′} has VC-dimension at
most O(d).

(d) The dual set system F∗ defined to have ground set F together with |V | edges of the form
F ∗
v := {F : v ∈ F} for each v ∈ V has VC-dimension at most 2d+1 − 1.
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(e) For each v ∈ V , the v-shifted family Fv obtained by replacing each edge F ∈ F with v ∈ F
and F \ {v} /∈ F by the new edge F \ {v} has VC-dimension at most d.

Here we emphasize that the dual set system is what one gets by interchanging the roles of
vertices and edges, and it can also be thought of as the set system whose incidence matrix
is the transpose of F . We also note that we implicitly used shifted families in our proof of
Lemma 28.1, in the sense that F1 ∪ F2 is precisely the n-shifted family of F .

Proof. Parts (a) and (b) follow from the definition of shattering. For (c), we make the crucial
observation that for any set X, we have

|TrIF,F′ (X)| ≤ |TrF(X)| · |TrF ′(X)|.

Indeed, the number of distinct ways sets of the form F ∩ F ′ with F ∈ F , F ′ ∈ F ′ can intersect
X in is certainly at most the number of distinct ways that F ∈ F can intersect with X times
the number of ways for F ′ ∈ F ′ to intersect X. As such, if IF ,F ′ shatters some non-empty set
X, then the inequality above together with Lemma 28.3 implies

2|X| = |TrIF,F′ (X)| ≤ 4|X|2d,

and hence |X|/ log(|X|) ≤ 2d − 2. This is only possible if |X| = O(d), proving that IF ,F ′ can
shatter sets of at most this size.

For (d), we prove the counterpositive statement that if F∗ has VC-dimension at least 2d then F
has VC-dimension at least d. To this end, assume {F1, . . . , F2d} ⊆ F are a set of distinct edges

of F which are shattered in F∗. Equivalently, this says that for each binary vector b⃗ ∈ {0, 1}2d ,

there exists a vertex xb⃗ ∈ V such that xb⃗ ∈ Fi if and only if b⃗i = 1. Let B be any d × 2d

binary matrix such that each of its 2d columns are distinct and let b⃗1, . . . , b⃗d be the rows of this
matrix. We claim that the set of vertices xb⃗1 , . . . , xb⃗d is shattered by F . And indeed, the edge
Fi intersects this set exactly according to the ith column of B by construction, showing that
every intersection is indeed achieved.

For (e), we prove the contrapositive statement that if Fv has VC-dimension at least d then so
does F . In fact, we will prove the stronger fact that every set shattered by Fv is also shattered
by F . We implicitly proved this for sets X not containing v in our proof of Lemma 28.1.
Consider then some set X containing v which is shattered by Fv. For each X ′ ⊆ X containing
v, the edge FX′ ∈ Fv with FX′ ∩X = X ′ must have FX′ , FX′ \ {v} ∈ F by definition of Fv, and
by using these sets we find that X continues to be shattered by F .

We note that Proposition 28.8(a) and (c) can be combined to show a number of other set systems
built from F ,F ′ have VC-dimension O(d). For example, the union set system consisting of the
edges {F∪F ′ : F ∈ F , F ′ ∈ F ′} can be expressed as IF ,F ′ , and hence this too has VC-dimension

at most O(d) by Proposition 28.8(a) and (c).

We next turn to some additional properties enjoyed by set systems with small VC-dimension.
To begin, we note that the Haussler-Welzl Theorem has an equivalent formulation in terms of
fractional transversals. For a set system F with ground set V , we say that a map f : V → R≥0 is
a fractional transversal if

∑
v∈F f(v) ≥ 1 for all F ∈ F , and we define the fractional transversal
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number τ ∗(F) to be the smallest value of
∑

v f(v) amongst all fractional transversals f . Observe
that we always have τ ∗(F) ≤ τ(F), as given any transversal T of F one can define a fractional
transveral f via f(v) = 1 if v ∈ T and f(v) = 0 otherwise. In general τ can be substantially
larger than τ ∗, but the following shows that these two quantities are close in size whenever F
has bounded VC-dimension.

Theorem 28.9 (Haussler-Welzl II [102]). If F is a set system which has VC-dimension at most
d, then

τ(F) ≤ O (dτ ∗(F) log τ ∗(F)) .

This result implies Theorem 28.4, since the hypothesis min |F | ≥ δ|V | means that the map
f(v) = (δ|V |)−1 for all v is a fractional transversal and hence that τ ∗(F) ≤ δ−1. Moreover, we
will show now that Theorem 28.4 implies this a priori stronger result.

Sketch of Proof. Let f be a fractional transversal of F with
∑
f(v) as small as possible. Take

a “blowup” set system F ′ of F by taking a large integer N and replacing each v ∈ V with
approximately f(v) · N copies of itself, and then replacing each edge F ∈ F with an edge F ′

containing all of the copies of each vertex originally in F . Observe that this new set system
still has VC-diemnsion at most d, as no set containing two copies of a given vertex from V
can ever be shattered. Also observe that if F ′ ∈ F ′ is a blow up of some F ∈ F , then
|F ′| =

∑
v∈F f(v)N ≥ N by definition of f being a fractional transversal. Since the groundset

of F ′ has size
∑
f(v)N = τ ∗(F)N , we conclude that minF ′∈F |F | is at least a δ := τ ∗(F)−1

fraction of the size of the groundset of F ′, so by Theorem 28.4 F ′ has a transversal of size at
most O (dτ ∗(F) log τ ∗(F)). It is not difficult to see that this translates to a transversal of the
size for the original system F , giving the result.

In addition to Haussler-Welzl, another key fact about set systems with small VC-dimension is
the following result of Haussler [101]

Theorem 28.10 (Packing Lemma [101]). If δ > 0 and if F is a set system with ground set
V and VC-dimension at most d such that every pair of distinct sets F, F ′ ∈ F has symmetric
difference |F∆F ′| ≥ δ|V |, then

|F| = O(δ−d).

We will not prove this result here and instead refer the reader to the excellent online notes by
Mustafa for a full proof. We will however work out an important corollary of this result.

Corollary 28.11. If F is a set system with ground set V and VC-dimension at most d, then
for all δ > 0 there exists a partition F1 ∪ · · · ∪ Fm with m = O(δ−d) such that for all i and
distinct F, F ′ ∈ Fi, we have |F∆F ′| ≤ δ|V |.

That is, one can always partition the elements of a set system of of bounded VC-dimension into
a bounded number of parts such that any two sets in a given part behave almost identically to
one another.
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Proof. Let F ′ = {F1, . . . , Fm} be a maximal subset of F with the property that any distinct
F, F ′ ∈ F satisfy |F∆F ′| ≥ 1

2
δ|V |. Note that F ′ (being a subset of F) also has VC-dimension

at most d, so the Packing Lemma implies m = |F ′| = O(δ−d).

By the maximality of F ′, for each F ∈ F \F ′ there exists some (smallest) integer iF such that
|F∆FiF | ≤ 1

2
δ|V |. By letting Fi := {Fi} ∪ {F : iF = i}, we observe by the triangle inequality

that any distinct F, F ′ ∈ Fi satisfy |F∆F ′| ≤ δ|V |, proving the desired result.

Maybe mention ultra-strong regularity lemmas; see “Erdos-Hajnal conjecture for
graphs with bounded VC-dimension”
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29 VC-Dimension II: Graphs

In the previous chapter we studied a set system associated to a graph G, namely the set system
of its maximum independent sets. While there are many different sorts of set systems that one
can associate to a given graph, the following is the most standard example of such a system
within the context of VC dimensions.

Definition 6. Given a graph G, we define the neighborhood set system

FG := {N(v) : v ∈ V (G)}.

We say that a graph has VC dimension d if FG has VC-dimension d.

One possible reason one might be motivated to study this particular kind of set system is due
to its transverals. Indeed, one can check here that a set T is a transversal for FG if and only
if is a set of vertices such that

⋃
v∈T N(v) = V (G). Haussler-Welzl then implies that if G is

a graph with small VC-dimension linear minimum degree, then it contains a small covering of
V (G) by neighborhoods.

The observation above might remind the reader of proper colorings, as such colorings can be
thought of as covering of V (G) by independent sets. Although having small VC-dimension
and large minimum degree is not enough to ensure small chromatic number due to Kn, this
conclusion does hold if we put some additional hypothesis on G.

Lemma 29.1. If G is a graph which has VC dimension at most d, minimum degree at least
δ|V (G)|, and contains no Cℓ for some ℓ, then ’

χ(G) = O(ℓ · dδ−1 log(δ−1)).

Proof. By Haussler-Welzl there exists a set T ⊆ V (G) of size O(dδ−1 log(δ−1)) such that V (G) =⋃
v∈T N(v). As such, it remains to show that G[N(v)] has chromatic number at most O(ℓ) for

each v ∈ T . And indeed, since G is Cℓ-free, the graph G[N(v)] can not contain a path on ℓ− 1
vertices. Such graphs can easily be shown to have chromatic number at most O(ℓ) (by showing
that they have degeneracy at most this, for example), proving the result.

Lemma 29.1 gives a strong conclusion about the graph G whenever G has small VC-dimension.
While such results can be interesting on their own, we will primarily be interested in such results
as a first step towards proving similar statements without the need of imposing any hypothesis
on the VC-dimension. In particular, the above motivates studying the following parameter.

Definition 7. Given a graph F , we define the chromatic threshold δχ(F ) to be the infimum
over all δ ≥ 0 such that every F -free graph G with δ(G) ≥ δ|V (G)| has χ(G) = Oδ(1).

That is, what’s the smallest minimum degree δ|V (G)| which forces an F -free graph to have
bounded chromatic number? Lemma 29.1 naively suggests that F = Cℓ might have δχ(Cℓ) = 0
since this is true if we restrict only to graphs with bounded VC-dimension. This is in fact
immediately seen to be true if ℓ is even simply because Cℓ-free graphs have at most O(|V (G)|3/2)
edges, and a nice result of Thomasson [177] further shows that δχ(Cℓ) = 0 for all ℓ ̸= 3. However,
the behavior of δχ is surprisingly quite different for triangles.
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Theorem 29.2. We have δχ(C3) = 1/3.

The lower bound δχ(C3) ≥ 1/3 was originally proven by Hajnal (see [71]). The upper bound
δχ(C3) ≤ 1/3 is originally due to Thomassen [176]. Here we give an alternative proof of this
upper bound due to  Luczak and Thomassé [136] based in the framework of VC-dimension.
They key result we need for this is the following.

Theorem 29.3. If G is a maximal triangle-free graph with δ(G) > |V (G)|/3, then G has
VC-dimension at most 3.

Proof. The only place we will use our minimum degree condition is through the following
observation.

Claim 29.4. For any set K ⊆ V (G) of 3k vertices, there exists a vertex z with at least k + 1
neighbors in K.

Indeed, by hypothesis we have
∑

v∈K deg(v) > k|V (G)|, so by the pigeonhole principle there
exist some vertex z incident to at least k + 1 edges incident to K. This in turn implies the
following result of Brandt [33].

Claim 29.5. The graph G does not contain an induced cube, i.e. a K4,4 minus a perfect match-
ing.

Proof. Assume for contradiction thatG contained an induced cube, say with x1, . . . , x4, y1, . . . , y4
its vertices such that xiyj ∈ E(G) if and only if i ̸= j. Because G is maximal triangle-free, for
each i there must exist a vertex zi adjacent to the non-adjacent vertices xi, yi. Note that we
must have zi ̸= zj for i ̸= j, as otherwise xi, yj, zi = zj would form a triangle. Let K denote
the set of these 12 vertices.

By Claim 29.4, there exists a vertex z′ adjacent to at least 5 vertices of K. A little case
analysis shows that up to relabeling the vertices, the neighbors of z′1 in K must be of the
form x1, y1, z2, z3, z4. Similarly if we look at the 9 vertices K − {x1, y1, z1} we conclude from
Claim 29.4 that there exists some z′4 adjacent to at least 4 vertices of K − {x1, y1, z1}, which
again up to relabeling must be x4, y4, z2, z3. Observe that z′1 ̸= z′4 since they have distinct
neighborhoods into K.

Consider now the set of 12 vertices K ′ := (K \ {z1, z4}) ∪ {z′1, z′4}. One can check that the
graph induced by K ′ has no independent set of size 5, but Claim 29.4 implies that there exists
a vertex adjacent to at least 5 vertices of K ′, contradicting that G is triangle-free. We conclude
that G contains no induced cube, proving the result.

Now assume for contradiction that G shatters some set of four vertices X = {x1, . . . , x4}. By
definition of shattering there exists some vertex z adjacent to all of these vertices, and since G
is triangle-free this implies X is an independent set. Again by definition of shattering we have
for each i that there exists a vertex yi such that yi ∼ xj if and only if i ̸= j. Note that yi /∈ X
for any i since X is an independent set and yi has neighbors in X, and also observe that the
yi vertices form an independent set since they pairwise have common neighbors. We conclude
that X together with the yi vertices induce a cube in G, contradicting our claim. We conclude
that G has VC-dimension at most 3 as desired.

181



This now quickly gives the upper bound of Theorem 29.2.

Proof of δχ(C3) ≤ 1/3. Let G be a triangle-free graph with δ(G) > |V (G)|/3 and let G′ be any
maximal triangle-free graph containing G. By Theorem 29.3 G′ has VC-dimension at most 3,
which by Lemma 29.1 implies that

χ(G) ≤ χ(G′) = O(1),

proving the result.

Our proof above not only shows that δχ(C3) ≤ 1/3 but in fact shows the stronger fact that
any triangle-free graph with δ(G) > |V (G)|/3 has bounded chromatic number. One can push
this argument further to show that triangle-free graphs with δ(G) ≥ |V (G)|/3 − O(1) have
bounded chromatic number, which was first done by  Luczak and Thomassé [136] using this
VC-dimension based approach. In this same work, [136] introduced a variant of the classical
notion of VC-dimension which was utilized by Allen, Böttcher, Griffiths, Kohayakawa, and
Morris [2] to fully determine δχ(F ) for every graph F . We will not describe this VC variant in
detail here, though we will discuss a spiritually similar variant in the following subsection.

Before moving on, we briefly consider a variant of the chromatic threshold motivated by The-
orem 29.3 originally introduced by Huang, Liu, Rong, and Xu [109].

Definition 8. Given a graph F , we define the VC threshold δV C(F ) to be the infimum over the
set of all δ ≥ 0 such that every maximal F -free graph G with δ(G) ≥ δ|V (G)| has VC-dimension
at most Oδ(1).

We emphasize that this definition requires G to be maximal, which is needed to rule out G
being a dense random bipartite graph. Note that Lemma 29.1 implies δV C(F ) ≥ δχ(F ) and
that Theorem 29.3 implies δV C(C3) ≤ 1/3. Again one trivially has δV C(F ) = 0 whenever F is
bipartite, and it is known that δV C(Kr) = 2r−5

2r−3
for all r [109]. An argument spiritually similar

to that of Theorem 29.3 was made by [109] to show δV C(Cℓ) ≤ 1
ℓ

for all (odd) ℓ, with the
authors using this result to prove tight bounds on another variant of the chromatic threshold.
It remains open as to whether or not this upper bound on δV C(Cℓ) is tight for odd cycles in
general.

29.1 VC-Dimensions of Generalized Set Systems

While Theorem 29.3 is effective at reducing the complexity of studying certain triangle-free
graphs, it fundamentally fails to say anything about triangle-free graphs which are either non-
maximal or which have minimum degree significantly less than n/3. For such graphs, it is
generally impossible to conclude that the VC-dimensions of our graphs are bounded. However,
we will be able to reach conclusions like this if we work with a more flexible variant of the
usual VC-dimension introduced by Bourneuf, Charbit, and Thomassé [32] (also independently
in earlier work by Alon, Hanneke, Holzman, and Moran [8]) for a more general object than set
systems.
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To motivate our definitions, we observe that each subset F ⊆ V of a ground set V is equivalent
to a partition of V , namely the partition (F, V \ F ). Such a partition is rather rigid, in that
each element is either in F or not in F with no other possibility in between. The key idea for
us will be to work with a more “flexible” partition into three sets (F, F ′, V \ (F ∪ F ′)) with F ′

being thought of as the elements of V \F which are “almost” in F or which are “maybe” in F ;
with this same analogy implying that the elements of V \ (F ∪ F ′) can be thought of as those
that are “far” from being in F or which are “clearly” not in F . This motivates the following.

Definition 9. A tri-system T on a ground set V is a collection of ordered partitions of V of
the form (I,M,O) which we refer to as tri-edges. We say that a set X ⊆ V is shattered by a
tri-hypergraph T if for all X ′ ⊆ X, there exists some tri-edge (I,M,O) ∈ T with I ∩X = X ′

and M ∩X = ∅. We define the VC-dimension of a tri-hypergraph to be the size of a largest set
X ⊆ V which is shattered by T .

Let us pause for a moment to justify why we defined our notion of VC-dimension for tri-systems
in this way. The motivating idea comes from the prospective that each tri-system T corresponds
to some “true” set system F which underlies it, in the sense that for each (I,M,O) ∈ T there
exists some edge F ∈ F for which I is definitely inside of F , O is definitely outside of F , and
the vertices of M may or may not be in F . From this perspective, a set X is shattered by T
only if we can guarantee for sure that X is shattered by the “true” underlying set system F ,
which is equivalent to saying that X is shattered by tri-edges (I,M,O) which do not intersect
M .

We next want to define an analog of Haussler-Welzl for tri-hypergraphs, i.e. a statement saying
that if a tri-system T has small VC-dimension then it has small “transversals,” and this requires
us to define what transversal are in this new setting. Perhaps the most natural definition
is as above to say that a set T is a transversal for T only if we can guarantee that it is
a transversal of its “true” underlying set system. Unfortunately with such a definition it
would be impossible to have an analog of Haussler-Welzl, in the sense that the tri-hypergraph
T = {(x, V \ {x}, ∅) : x ∈ V } has VC-dimension 1 but the only transversal is V itself. As such,
we will need to work with the following alternative definition for transversals.

Definition 10. A set T ⊆ V is a transversal of a tri-hypergraph T if T ∩ (I ∪M) ̸= ∅ for all
(I,M,O) ∈ T . We let τ(T ) denote the smallest size of a transversal of T .

In other words, T being a transversal of T does not guarantee that it intersects every edge of
its “true” underlying set system, but it is at least “close to” intersecting every such edge since
again the M vertices can be thought of as the vertices which are “close to” being in the true
edge of F . With this definition we can prove the following analog of Haussler-Welzl.

Theorem 29.6. If T is a tri-system with ground set V and VC-dimension at most d satisfying
|B| ≥ δ|V | for all (I,M,O) ∈ T , then

τ(T ) ≤ O

(
d

δ
log

1

δ

)
.

Sketch of Proof. For a tri-system T and a set of vertices S, define the set system TrT (S) to
consist of all sets of the form B ∩ S such that (I,M,O) ∈ T satisfies M ∩ S = ∅. Exactly
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the same proof of Lemma 28.3 (using the Sauer-Shelah Lemma for the set system TrT (S))
implies that |TrT (S)| ≤ 2|S|d for non-empty S. From here the exact same argument as in
Theorem 28.4 goes through after considering pairs (X0, X1) such that there exist (I,M,W ) ∈ T
with I ∩ (X0 ∪X1) = X1 and M ∩ (X0 ∩X1) = ∅.

Let us move away from this more abstract theory for a moment to consider a more concrete
problem, notably by trying to use VC-dimension tools for triangle-free graphs which are not
necessarily maximal. Our first task will be to define some appropriate tri-system for triangle-
free graphs, and here we recall that the usual set system we associated to graphs was the set
system of neighborhoods N(v). We want to transform each of these sets N(v) into a tripartition
of V (G) which includes a set of vertices which are “close to” being in N(v), i.e. we need to define
what it means for a vertex to “almost” be a neighbor of v. Since we care about triangle-free
graphs where truly adjacent vertices have no common neighbors, it perhaps makes sense to say
that two vertices are “almost” adjacent if they have few common neighbors. This leads to the
following.

Definition 11. Given a graph G and a real number ϵ > 0, we define the tri-system TG,ϵ to
consist of all partitions (Iv,Mv, Ov) where Iv = N(v), Mv = {u /∈ Iv : |N(u)∩N(v)| ≤ ϵ|V (G)|},
and Ov = V (G) \ (Iv ∪Mv).

We note here that v ∈ Mv if and only if |N(v)| ≤ ϵ|V (G)|, which will never hold for the
graphs of large minimum degree that we consider below. With this definition we can obtain the
following, which we emphasize holds even if G is not maximal nor has large minimum degree.

Proposition 29.7. For any triangle-free graph G and 0 < ϵ < 1, the tri-system TG,ϵ has
VC-dimension at most ϵ−1.

Proof. At a high-level, the proof idea goes as follows. We start with X a large shattered set
and Y its set of shattering vertices. By definition of shattering under our tri-system, we have
My ∩X = ∅ for all y ∈ Y . In other words, for every x ∈ X and y ∈ Y , either x, y are adjacent
in G (meaning they have 0 common neighbors because G is triangle-free) or x, y have at least
ϵ|V (G)| common neighbors. We then exploit the fact that there is a strong separation between
the two possible values 0 and ϵ|V (G)| by using dependent random choice-type arguments to
randomly construct large subsets X̃ ⊆ X, Ỹ ⊆ Y such that every pair of vertices x ∈ X̃, y ∈ Ỹ
have more than ϵ|V (G)| common neighbors. On the other hand, we will deterministically show
that two such subsets X̃, Ỹ of large size can not exist, essentially because Y shattering X
implies that the bipartite graph between these two sets is pseudo-random and hence should not
have such large structures. This gives the desired contradiction, proving the result. We now
move on to the formal details.

Assume for contradiction that there exists a set X ⊆ V (G) with |X| > ϵ−1 which is shattered
by TG,ϵ. By definition this means that for each X ′ ⊆ X there exists some vertex yX′ such that
N(yX′) ∩ X = X ′ and such that |N(x) ∩ N(yX′)| > ϵ|V (G)| for each x ∈ X \ X ′. For each
vertex u ∈ V (G), define

P(u) = {(x, y) : x ∈ N(u) ∩X, yX′ ∈ N(u) ∩ Y, |N(x) ∩N(y)| > ϵ|V (G)|.

We first observe the following deterministic fact.
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Claim 29.8. We have |P(u)| ≤ 2|X|−1 for all u.

Proof. Let X̃ = N(u)∩X and Ỹ = N(u)∩Y . We first claim that |N(x)∩N(y)| > ϵ|V (G)| for
each x ∈ X̃ and y ∈ Ỹ . Indeed, such a pair of vertices x, y can never be adjacent to each other
as otherwise x, y, u would form a triangle. Thus as mentioned above, the only other possibility
is that |N(x) ∩N(y)| > ϵ|V (G)|.

We next observe that Ỹ ⊆ YX̃ := {yX′ : X ′ ∩ X̃ = ∅}. Indeed, if there were some yX′ ∈ Ỹ and
some x ∈ X ′ ∩ X̃, then by definition of yX′ this would imply that x ∈ X ′ is adjacent to yX′ in
G, a contradiction to the subclaim we have above and G being triangle-free. With this, we see
that

|P(u)| ≤ |X̃| · |Ỹ | ≤ |X̃| · |YX̃ | = |X̃| · 2|X|−|X̃| ≤ 2|X|−1,

where here the equality used that the number of sets X ′ ⊆ X disjoint from X̃ is exactly
2|X|−|X̃|.

We will now show that if u is chosen uniformly at random, then E[|P(u)|] > 2|X|−1, giving a
contradiction to the claim above. To this end, we let

P = {(x, y) : x ∈ X, y ∈ Y, |N(x) ∩N(y)| > ϵ|V (G)|},

and we observe that if u is chosen uniformly at random then

E[|P(u)|] =
∑

(x,y)∈P

Pr[(x, y) ∈ P(u)] =
∑

(x,y)∈P

Pr[x, y ∈ N(u)] > ϵ|P|,

where here the second equality used that if (x, y) ∈ P then they are also in P(u) precisely if
x, y ∈ N(u), and similarly the inequality used that if (x, y) ∈ P then by definition a uniform
random vertex has a more than ϵ probability of being a common neighbor of x, y. On the other
hand, it is straightforward to see that |P| = |X|2|X|−1 since P is exactly the set of pairs (x, yX′)
with x /∈ X ′, and as such each x ∈ X belongs to exactly 2|X|−1 pairs. In total we conclude that

E[|P(u)|] ≥ ϵ|X|2|X|−1 > 2|X|−1,

with this last step using our hypothesis of |X| > ϵ−1.

From this we can get a new proof of the upper bound from Theorem 29.2.

Proposition 29.9. If G is a triangle-free graph with δ(G) ≥ (1/3 + ϵ)|V (G)|, then χ(G) =
O(ϵ−1).

Proof. Consider the tri-system TG,ϵ. By Proposition 29.7, this tri-system has VC-dimension
at most ϵ−1, which by Theorem 29.6 and the hypothesis of the proposition implies TG,ϵ has a
transversal of size at most O(ϵ−1), i.e. a set T of vertices such that

⋃
v∈T Iv ∪Mv = V (G). We

aim to show that each Iv ∪Mv set is an independent set, from which the result will follow.

To this end, assume for contradiction that there exist x, y ∈ Iv ∪ Mv which are adjacent,
meaning N(x) ∩ N(y) = ∅ since G is triangle-free. Note that by definition of x ∈ Iv ∪Mv we
have |N(x) ∩N(v)| ≤ ϵ|V (G)| (with this being automatic if x ∈Mv and with this intersection
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being empty if x ∈ Iv = N(v) since the graph is triangle-free). We similarly conclude that
|N(y) ∩N(v)| ≤ ϵ|V (G)|. Putting this all together implies

|N(x) ∪N(y) ∪N(v)| ≥ 3δ(G) − 2ϵ|V (G)| ≥ (1 + ϵ)|V (G)|,

a contradiction to this set of vertices trivially having size at most |V (G)|, from which we
conclude the result.

Our next application of this machinery requires an analog of the corollary to Haussler’s Packing
Lemma introduced in Corollary 28.11. It is currently unknown whether such a corollary holds
for general tri-systems of bounded VC-dimension, but it is known that such a result holds for
the tri-systems we care about.

Lemma 29.10 ([32]). If TG,ϵ is the neighborhood tri-system of a graph G, then there exists
a partition V1 ∪ · · · ∪ Vm of G with m = Oϵ(1) such that for all distinct x, y ∈ Vi we have
|Ix \ (Iy ∪My)| ≤ ϵ|V (G)|.

Note that if we had My = ∅ for all y then this clustering result would in particular imply
|Ix∆Iy| ≤ 2ϵ|V (G)|, essentially recovering the conclusion of Corollary 28.11 for the neighbor-
hood set system. We omit the proof of Lemma 29.10 as it is a little technical and instead
showcase how to use it to obtain the following result about regular triangle-free graphs. We
emphasize that such a result would have been impossible for us to achieve using the usual
notions of VC-dimensions since these regular triangle-free graphs are rarely maximal and have
too low of a minimum degree to guarantee bounded VC-dimension. This result was originally
proven by O’Rourke [151] with the following short proof using tri-systems due to [32].

Theorem 29.11. If G is a regular triangle-free graph of degree (1/4+ ϵ)|V (G)| for some ϵ > 0,
then χ(G) = Oϵ(1).

Proof. Consider the tri-system TG,ϵ/2 and let V1, . . . , Vm be the partition guaranteed in Lemma 29.10.
We aim to show that each Vi is an independent set, from which the result will follow.

Assume for contradiction that there exist distinct vertices x, y ∈ Vi which are adjacent. By the
lemma and the fact that N(x) = Ix, we have that

|N(x) ∩ (Iy ∪My)| ≥ |N(x)| − ϵ

2
|V (G)| ≥ (1/4 + ϵ/2)|V (G)|,

and using that N(x) ∩N(y) = ∅ since the vertices are adjacent we have that

|[N(x) ∩ (Iy ∪My)] ∪ [N(y) ∩ (Ix ∪Mx)| ≥ 2(1/4 + ϵ/2)|V (G)| > 1

2
|V (G)|.

Crucially, because G is a regular graph, it is elementary to prove that G does not have an
independent set larger than 1

2
|V (G)|. As such, the inequality above implies that there exist

distinct vertices z, w ∈ [N(x)∩ (Iy ∪My)]∪ [N(y)∩ (Ix∪Mx)| which are adjacent to each other.

Observe that |N(x) ∩ N(y)| = |N(z) ∩ N(w)| = 0 since G is triangle-free. If, z ∈ N(x) then
again we have |N(x) ∩ N(z)| = 0. Otherwise z ∈ N(y) ∩ (N(x) ∪Mx), which by assumption
z /∈ N(x) implies z ∈ Mx, i.e. that |N(x) ∩ N(z)| ≤ ϵ

2
|V (G)|. We similarly conclude that all
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6 of the pairwise intersections between N(x), N(y), N(z), N(w) is at most ϵ
2
|V (G)|, in total

implying that

|N(x) ∪N(y) ∪N(z) ∪N(w)| ≥ 4(1/4 + ϵ)|V (G)| − 3ϵ|V (G)| > |V (G)|,

which is impossible. We conclude the desired result.

We note that the value of 1/4 in this theorem is best possible. Moreover, this same proof
approach was used in [32] to obtain similar tight bounds regarding regular Kr-free graphs which
were previously unknown. Many more results using the notion of tri-systems were obtained in
[32], and we refer the interested reader to this paper for more.
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Part VIII

Other Methods
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30 Absorption

Roughly speaking, extremal combinatorics studies how “large” a combinatorial object can be
before it is guaranteed to satisfy a given property. Some properties are “local,” in that they
can be verified by looking at a small subset of our object (e.g. verifying that a graph has a
triangle only requires looking at the edges between three particular vertices). Other properties
are “global” in that they can only be verified by looking at the entire combinatorial object (e.g.
verifying that a graph contains a Hamiltonian cycle requires looking at all of the vertices).

In this chapter we will look at what has been perhaps the biggest development in the study
of global extremal problems: the absorption method. This method (along with its numerous
variants) has served as a key component in many of the most recent breakthroughs in (global)
extremal combinatorics, such as the existence of designs [93, 121], the resolution of the Erdős-
Farber-Lovász Conjecture regarding the edge-chromatic number of hypergraphs [117], the near
resolution of the Ryser-Brualdi-Stein Conjecture regarding trasnversals in Latin squares [145],
and many more. We will only be able to scratch the surface of this method, and we encourage
the reader to look somewhere else for a more comprehensive treatment.

For our purposes, we will begin our study of absorption by looking at the very basic application
to finding perfect matchings in hypergraphs, which will provide much of the motivation for how
one might come up with the main ideas of the method in the first place. After this, we will give
a more general discussion in Section 30.2 on how the absorption method works in more general
contexts, with a particular emphasis being made on the problem of F -factors in graphs. Our
presentation is largely based on a series of lectures given by DeBiasio, Molla, and Treglown at
the conference EXCILL IV.

30.1 A First Example: Perfect Matchings in Hypergraphs

In the setting of graphs and hypergraphs, many global extremal problems ask how “large1”
does a hypergraph H need to be before it contains a given spanning subgraph F .

Perhaps the simplest non-trivial case is when F is a perfect matching. In the setting of graphs,
a classical result of Dirac implies that every n-vertex graph G with n even and minimum
degree δ(G) ≥ n/2 contains a perfect matching, with this bound on δ(G) being best possible
by considering G to either be Kn/2−1,n/2+1 or the disjoint union of two cliques of size n/2. The
analogous problem for hypergraphs, on the other hand, turns out to be substantially harder.

The first obstacle in addressing the hypergraph problem is the need for us to choose what we
mean by the “minimum degree” of a hypergraph. Indeed, given an r-graph H and an integer
1 ≤ i < r, we can define the minimum i-degree δi(H) of H by δi(H) = min

S⊆(V (H)
i ) degH(S),

and for each possible value of i, r, one can consider the question of how large δi(H) needs to be

1Because F is a spanning subgraph, it does not make much sense to measure H as being “large” in terms
of its average degree like we did for Turán problems, since in this setting a clique of size n − 1 together with
an isolated vertex almost always serves as an asymptotic extremal construction. As such, we will need to use
a notion of being “large” which precludes the existence of isolated vertices in order to avoid such degenerate
solutions, and this will typically be done by measuring “large” in terms of some variant of the minimum degree
of a hypergraph.
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to guarantee a perfect matching in H. Here we will focus only on the case of i = r − 1, which
turns out to be the easiest (though by no means easy!) case to solve. For convenience we will
refer to δr−1(H) as the minimum codegree of H.

Given that a bound of n/2 is the threshold for the minimum codegree of graphs (i.e. for the
case r = 2), it is perhaps natural to guess that the right answer in general should be something
like n/r. Further evidence of this guess comes from the following result, which gives an almost
full solution to this problem using a very simple proof, and which in particular recovers Dirac’s
result for r = 2.

Proposition 30.1. For all r ≥ 2, if H is an n-vertex r-graph with n divisible by r and
δr−1(H) ≥ n/r, then H contains a matching of size at least n/r − r + 2.

Proof. Let M be a largest matching in H and assume for contradiction that |M | ≤ n/r− r+ 1.
This means that there are at least r(r− 1) vertices not in any edge of M , and we let U1, . . . , Ur

denote a collection of disjoint sets of uncovered vertices of size r − 1.

Let U denote the set of edges of H which contain a Ui set. Observe that the minimum degree
condition implies |U| ≥ r · n/r = n, and also that the edges of U must all intersect an edge of
M , as otherwise this edge of U together with M would form a larger perfect matching. In fact,
each edge of U must intersect exactly one edge of M since each edge of U contains some set
Ui of size r − 1 which is disjoint from the edges of M and since the edges of M are pairwise
disjoint. The pigeonhole principle then implies that there exists some e ∈ M such that the
number of edges Ue ⊆ U intersecting e is at least⌈

|U|
|M |

⌉
≥
⌈

n

n/r − 1

⌉
≥ r + 1,

where here the first inequality used that |M | < n/r by assumption.

We claim that Ue contains two disjoint edges. Indeed, define an auxiliary bipartite graph G
between the r disjoint Ui sets and the r vertices of e by having Ui ∼ v if Ui ∪ {v} ∈ Ue. Since
this bipartite graph has |Ue| ≥ r + 1 edges and since each part of G has size r, it must have
a matching of size 2, which exactly corresponds to two disjoint edges of Ue. Adding these two
edges to M \ {e} gives a strictly larger matching than M , contradicting our hypothesis.

At this point it feels like we’re close to done. Indeed, given how easy the result above was to
prove, it is perhaps natural to expect that with a little more work one could show that, say, a
minimum codegree of the form δr−1(H) ≥ n/r+Or(1) is enough to guarantee the existence of a
perfect matching covering all of the vertices. Surprisingly, it turns out that this intuition is very
far from true. In particular, the following exact result of Rödl, Ruciński, and Szemerédi [162]
shows that despite Proposition 30.1 suggesting a bound of n/r, the true codegree bound is
much closer to n/2.

Theorem 30.2 ([162]). For all r ≥ 2, if H is an n-vertex r-graph with n sufficiently large and
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divisible by r and with

δr−1(H) ≥


n/2 + 3 − r r ≡ 0 mod 4, n/k ≡ 1 mod 2,

n/2 + 5/2 − r r ≡ 1 mod 2, n ≡ 3 mod 4,

n/2 + 3/2 − r r ≡ 1 mod 2, n ≡ 1 mod 4,

n/2 + 2 − r otherwise,

then H contains a perfect matching. Moreover, all of these bounds are sharp.

Roughly speaking, the constructions showing that these bounds are best possible are obtained
by splitting the vertex set of H into two parts U, V with |U | ≈ n/2 an odd integer and then
considering all edges that intersect U in an even number of vertices. It is not difficult to see
that such an H can not have a matching covering all of U , and moreover that the minimum
codegree is around n/2 − r (since any given (r − 1)-set S is either in an edge with all of U \ S
or all of V \ S).

The two results Theorem 30.2 and Proposition 30.1 illustrate a common and annoying phe-
nomenon in the study of finding spanning subgraphs of (hyper)graphs: finding an “almost”
spanning structure (e.g. a matching covering almost all of the vertices) is often much easier
to do (both in terms of its proofs, as well as in the necessary degree hypothesis needed in its
statement) than finding an “exact” spanning structure1.

While this disparity in difficulty can be frustrating at first, it is in fact a key element needed for
the absorption method to work. In particular, because the codegree bound of n/2 is so much
larger than what we need in order to cover almost all the vertices, one might consider a vague
strategy for trying to solve the “exact” spanning problem of perfect matchings as follows:

(i) Start with a hypergraph H of minimum codegree n/2.

(ii) Choose a “small” set of vertices A which is “nice” and then delete these vertices from H.

(iii) Because A is “small”, the minimum degree of H will still be at least n/r, and hence
Proposition 30.1 guarantees that we can find a matching M in H − A covering all but a
“very small” set of leftover vertices L.

(iv) Because A is “nice” and because L is “very small”, we can find a prefect matching on
H[A ∪ L], which together with M forms a perfect matching of H.

Indeed, we will use exactly this approach to solve a somewhat weaker version of Theorem 30.2.
For this, we need to make this last step (iv) and the definition of “nice” more precise. To this
end, we make the following (non-standard) definition.

Definition 12. Given an r-graph H and reals a, ℓ, we say that a set of vertices A ⊆ V (H) is
an (a, ℓ)-absorber if |A| ≤ a is a multiple of r and if for every L ⊆ V (H) \ A with |L| ≤ ℓ a
multiple of r, the induced subgraph H[A ∪ L] contains a perfect matching.

1Another example of this phenomenon that we have seen already is with Rödl’s Theorem 23.2 showing the
existence of asymptotically large partial Steiner systems, with it only being much later that genuine Steiner
systems were constructed by [93, 121].
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Our proof strategy above indicates that we will solve our problem if we can show that every r-
graph H with minimum codegree at least n/2 has an (a, ℓ)-absorber with, say, a ≤ (1/2−1/r)n
and ℓ ≤ r(r − 2). Of course, it is not at all clear at this point how we might construct such an
A or what it might look like, so we will have to think more about this.

As a motivating example, consider the simplest non-trivial case that our leftover set L is just a
single r-set which is not an edge. In this case we can ask ourselves: what is the simplest possible
choice of A that will absorb L, i.e. such that H[A] and H[A∪L] both have perfect matchings?
In this very simplified problem, one easy solution is to use the following construction, where
here the sets R,B play the roles of L,A in the discussion above.

Definition 13. Given an r-set R = {x1, . . . , xr}, we call a set B = {x′1, . . . , x′r} ⊆ V (H)\R an
(absorbing) building block for R if B is an edge of H and if {x1, x′2, . . . , x′r} and {x′1, x2, . . . , xr}
are both edges of H.

A picture would be great here.

Indeed, one can easily check that these sets have the following properties that we need.

Lemma 30.3. If B is a building block for R in a hypergraph H, then H[B] and H[B ∪R] both
have perfect matchings.

Of course, we can only hope to use such building blocks if they actually exist in H. And indeed,
provided our minimum codegree is sufficiently large, such sets will not only exist, but in fact
make up a constant proportion of all possible r-sets of H.

Lemma 30.4. Let H be an n-vertex r-graph with n ≥ 4r and δr−1(H) ≥ (1/2 + ϵ)n for some
ϵ > rn−1. If R ⊆ V (H) is an r-set, then there exist at least ϵ(2r)−rnr distinct building blocks
for R.

Proof. We will construct building blocks as follows: let x′1 ∈ V (H) \ {x1} be any vertex which
is contained in an edge with {x2, . . . , xr}, the number of which is at least (1/2 + ϵ)n− 1 ≥ 1

2
n.

Next, choose x′2, . . . , x
′
r−1 to be arbitrary distinct vertices outside of the set {x′1} ∪ R, which

can be done in at least (n−2r)r−2 ≥ 22−rnr−2 ways. Finally, choose x′r /∈ R to be a vertex such
that both {x′1, x′2, . . . , x′r} and {x1, x′2, . . . , x′r} are edges of H, noting by our minimum codegree
condition for both {x′1, x′2, . . . , x′r−1} and {x1, x′2, . . . , x′r−1}, that the number of such choices for
x′r is at least

2(1/2 + δ)n− n− r ≥ ϵn.

In total, the number of (not necessarily distinct) building blocks produced from this procedure
is at least 1

2
n · 22−rnr−2 · ϵn ≥ ϵ2−rnr, and since each block can be produced in at most r! ≤ rr

ways from this procedure we conclude the desired result.

With this lemma in mind, our vague plan now will be as follows: we will try to construct our
absorber A by taking a (carefully chosen) union of disjoint building blocks B. We then wish
to say that for any (small) leftover set L, we can partition L into r-sets Ri such that for each
i there exists an absorbing block Bi ⊆ A for Ri, and moreover that we have Bi ̸= Bj for any
i ̸= j, at which point we would be done since we can find matchings in the Bi ∪Ri sets as well
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as in any Bj which is not matched to any Ri. Again, it is not at all obvious that we can find
an A such that this pairing of the Ri and Bi sets always exists regardless of what L is given to
us, but the previous lemma gives some hope that this might work out if we choose our blocks
B of A in a “random way.” And indeed, this idea together with a little grit gives the following.

Proposition 30.5. Let H be an n-vertex r-graph with r ≥ 2 and β > 0 a real such that
for every r-set R ⊆ V (H), there exist at least βnr absorption building blocks B for R. If
α ≤ β is a real number and if n is sufficiently large in terms of α, β, r, then there exists an
(αn, 2−4αβn)-absorber A of H.

We emphasize that this proof basically boils down to taking A to be a random subset of
building blocks together with a deletion argument, and as such the reader may wish to postpone
the somewhat detailed proof and continue on to see how this result is used to complete our
absorption argument.

I need to check the details, but I think the proof might hold for α ≈ C log n/n, which
would recover the original RRS result with their additive error term of log n.

Proof. A little thought shows that the pairing between Ri sets and Bi mentioned above is
essentially asking for a suitable matching in an appropriately defined graph. To this end, define
G to be the bipartite graph whose parts B,R are disjoint copies of

(
V (H)

r

)
and where we have

B ∼ R in G whenever B is a building block of R.

Claim 30.6. To prove the result, it suffices to find a subset B′ ⊆ B such that (1) |B′| ≤ r−1αn,
(2) any two distinct vertices B,B′ ∈ B′ have B ∩ B′ = ∅, and (3) for any R′ ⊆ R with
|R′| ≤ 2−4r−1αβn, there exists a matching in G[B′∪R′] such that every vertex of R′ is covered.

Proof. Assume that such a B′ exists. Note that we may assume without loss of generality that
B′ contains no isolated vertices in G, as otherwise we could remove such vertices from B′ while
maintaining all of the other properties. In particular, this implies that each B ∈ B′ is a building
block for some R, and in particular that H[B] has a perfect matching (i.e. that B is an edge).
We aim to show then that A :=

⋃
B∈B′ B is an (αn, 2−4αβn)-absorber.

Note that |A| ≤ αn by (1) and this set has size a multiple of r by (2). Let L ⊆ V (H) \ A
be an arbitrary set of size |L| ≤ 2−4αβn a multiple of r, and let R′ = {R1, R2, . . . , Rt} be an
arbitrary partition of L into sets of size R, which has size at most 2−4r−1αβn by definition.
By (3), we can order the elements of B′ = {B1, . . . , } such that Bi ∼ Ri in G for all i ≤ t, i.e.
such that Bi is a building block for Ri, which by Lemma 30.3 implies that H[Bi ∪ Ri] has a
perfect matching. This implies that H[A ∪ L] has a perfect matching, namely by taking the
matchings from each H[Bi∪Ri] for i ≤ t together with the matchings from each H[Bi] for i > t
guaranteed by our assumption at the start of the proof (noting that this is indeed a matching
since the Bi sets are disjont from both the Rj ⊆ L ⊆ V (H) \A sets as well as the other Bj sets
by (2)). Since L was an arbitrary set of size |L| ≤ 2−4αβn a multiple of r, we conclude that A
is indeed an (αn, 2−4αβn)-absorber.

It thus remains to find a subset B′ as in the claim. To this end, we note that our hypothesis
on H implies that every R ∈ R has degree at least βnr in G, which means that the graph is
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quite dense. Outside of this we have no real knowledge of what G looks like, so it is perhaps
reasonable to try looking at a random subset of B.

To this end, let Bp ⊆ B be defined by including each vertex B in Bp independently with
probability

p :=
1

4
r−1αn1−r,

and let Gp = G[Bp ∪ R]. Note that we will not be able to take Bp = B′ directly, as there is a
small chance that Bp contains B ̸= B′ which are not disjoint. To this end, we let X denote the
set of pairs (B,B′) with B,B′ ∈ Bp distinct intersecting sets, and we let B′ ⊆ Bp be defined by
taking Bp and deleting one element from each pair of X.

Claim 30.7. Let E1 denote the event that |Bp|−|B′| ≥ 2−4r−1αβn, let E2 denote the event that
|Bp| ≥ αn, and let E3 denote the event that there exists an R ∈ R with degGp

(R) ≤ 2−3r−1αβn.
If Pr[E1 ∪ E2 ∪ E3] < 1, then the result holds.

Proof. If Pr[E1 ∪E2 ∪E3] < 1, then there exists some instance of Bp and B′ such that none of
these three events occur. In this case, |B′| ≤ |Bp| ≤ αn by E2 not holding, so (1) of Claim 30.6
holds, and we automatically have (2) holding by definition of B′. For (3), let G′ = G[B′ ∪ R].
Observe that because E3 and E1 do not hold, for all R ∈ R we have

degG′(R) ≥ degGp
(R) − (|Bp| − |B′|) ≥ 2−4r−1αβn.

Thus for any R′ ⊆ R of size at most 2−4r−1αβn, we can greedily find a matching in G′ covering
all of R′ by iteratively choosing for each R ∈ R′ an arbitrary neighbor in G′ which has not
already been selected, with the bound above implying that this process always terminates
successfully. This verifies (3), proving the claim.

It thus remains to show that these three events are unlikely. For E1, we observe that

E[|X|] =
∑
B∈B

∑
B′ ̸=B,
B′∩B ̸=∅

p2 ≤
(
n

r

)
· r
(

n

r − 1

)
· p2 ≤ p2n2r−1 = 2−4r−2α2n,

and hence by Markov’s inequality and the observation 2−4r−1αβn ≥ 2−3r−2α2n by our hypoth-
esis r ≥ 2 and β ≥ α, we find that

Pr[|Bp| − |B′| ≥ 2−4r−1αβn] ≤ Pr[|X| ≥ 2−3r−2α2n] ≤ 1

2
.

For E2, we note that |Bp| is a binomial random variable with mean p|B| = p
(
n
r

)
, so the Chernoff

bound and n being sufficiently large implies that

Pr[|Bp| ≥ αn] ≤ Pr[|Bp| ≥ 2p|B|] < 1

4
.

Similarly, the degree of each R ∈ R in Gp is a binomial random variable, so the Chernoff bound
implies

Pr[degGp
(R) ≤ 2−3r−1αβn] ≤ Pr[degGp

(R) ≤ 1

2
p degG(R)] <

1

4n
,

and taking a union bound shows that Pr[E3] < 1/4. Combining this with the bounds above
gives the desired result.
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With all this we can prove an asymptotically tight version of Theorem 30.2 which was originally
proven by Rödl, Ruciński, and Szemerédi [161] prior to their exact solution from [162].

Theorem 30.8 ([161]). For all r ≥ 2 and ϵ > 0, if H is an n-vertex r-graph with n sufficiently
large and divisible by r and with δr−1(H) ≥ (1/2 + ϵ)n, then H contains a perfect matching.

Proof. Taking α := (2r)−rϵ, we have by Lemma 30.4 and Proposition 30.5 that H has an
(αn, 2−4α2n)-absorber A. Letting H ′ = H − A, we see that

δr−1(H
′) ≥ δ(H) − |A| ≥ n/2 ≥ v(H ′)/2,

with this second inequality using α ≤ ϵ. By Proposition 30.1 there exists a matching M ′ of
H ′ which covers all but a set L of at most r2 vertices. Because A is an (αn, 2−4α2n)-absorber
and r2 ≤ 2−4α2n for n sufficiently large, we have by definition of an absorber that H[A ∪ L]
contains a perfect matching M ′′, which combined with M ′ gives a perfect matching of H.

30.2 A General Framework and Clique Factors

Most basic applications of the absorption method follow the same structure that we used in
our proof of Theorem 30.8. In particular, if we are trying to show that a spanning structure F
exists in “large” hypergraphs, then we will usually apply some variant of the following broad
framework (with applications in other settings usually following analogous procedures):

(i) Start with a “large” hypergraph H.

(ii) Carefully choose a “small” set of vertices A which is an “absorber” and then delete these
vertices from H.

(iii) Prove that H − A (which is “reasonably large” because A is “small”) has a subgraph F ′

of our spanning structure F which covers all but a “very small” set of leftover vertices L.

(iv) Because A is an “absorber” and because L is “very small”, we can find a subgraph of
H[A ∪ L] which together with F ′ forms our desired F .

The two main non-trivial steps of this approach are proving the approximate spanning result
in (iii) and in defining an appropriate notion of what it means for A to be an absorber, which
is typically the hardest and more creative part of figuring out the proof.

While the way to define an absorber can vary from problem to problem, our work on perfect
matchings suggests one possible general strategy to try for the problem of finding F -factors in
hypergrap. Here we recall that for a hypergraph F , a partial F -factor (also called an F -tiling
or F -packing) of a hypergraph H is a collection F of vertex disjoint copies of F in H, and
we call this an F -factor if every vertex of H lies in some copy of F in F , or equivalently if
|F| = v(H)/v(F ). For example, when F = Kr

r , a partial F -factor is just a matching and an
F -factor is just a perfect matching.

Exactly mimicing our proof for perfect matchings, we consider the following approach for prov-
ing the existence of F -factors. Again our notation is non-standard.

195



Definition 14. Let F,H be r-graphs. For reals a, ℓ > 0, we say that a set A ⊆ V (H) is an
(F, a, ℓ)-absorber if |A| ≤ a is a multiple of v(F ) and if for every L ⊆ V (H) \ A of size |L| ≤ ℓ
a multiple of v(F ), the hypergraph H[A∪L] has an F -factor. For integers b, c ≥ r, we say that
a set B ⊆ V (H) is an (F, b, c)-building block for a set C ⊆ V (H) if |B| = b, |C| = c, and if
H[B] and H[B ∪ C] both have F -factors.

Proposition 30.9. Let F be an r-graph with r ≥ 2 and let H be an n-vertex r-graph and let
b, c, β > 0 be such that for every c-set C ⊆ V (H), there exist at least βnb (F, b, c)-building blocks
B for C. If α ≤ β and if n is sufficiently large in terms of α, β, b, c, F , then there exists an
(F, αn, 2−4b−1cαβn)-absorber A of H.

Proof Sketch. Define G to be the bipartite graph whose parts B and C are disjoint copies of(
V (H)

b

)
and

(
V (H)

c

)
respectively and where we have B ∼ C in G whenever B is a building block

of C. Just as in the proof of Proposition 30.5, we will be done if we can find a subset B′ ⊆ B
such that (1) |B′| ≤ b−1αn, (2) the vertices B ∈ B′ are disjoint from each other, and (3) for any
C ′ ⊆ C with |C ′| ≤ 2−4b−1αβn, we can find a matching in G[B′ ∪ C ′] such that every vertex of
C ′ is covered.

Let Bp ⊆ B be defined by including each vertex B in Bp independently with probability

p :=
1

4
b−1αn1−b,

and let Gp = G[Bp ∪ R]. Let X denote the set of pairs (B,B′) with B,B′ ∈ Bp distinct
intersecting sets, and we let B′ ⊆ Bp be defined by taking Bp and deleting one element from
each pair of X.

By our same analysis as before, we have E[|X|] ≤ p2n2b−1 = 2−4b−2α2n. Since 2−4b−1αβn ≥
2−3b−2α2n, Markov’s inequality implies that

Pr[|Bp| − |B′| ≥ 2−4b−1αβn] ≤ 1

2
.

We also have that Pr[|Bp| ≥ αn] < 1
4

by the Chernoff bound, and that the probability that there
exists some C ∈ C with degree at most 1

2
pβnb ≥ 2−3b−1αβn in Gp is at most 1

4
. In total there

exists some B′ such that none of these bad events occur, at which point the result follows.

To illustrate this general approach, we will apply Proposition 30.9 to the problem of finding
Kr-factors in graphs. Note that the r = 2 case corresponds to finding perfect matchings, so
this is another natural direction to try and generalize Dirac’s Theorem. Similar to the r = 2
case, there exist graphs with δ(G) < (r− 1)n/r which do not have a Kr-factor, such as slightly
unbalanced complete r-partite graphs. A famous result of Hajnal and Szemerédi [100] shows
that this is exactly the threshold for containing such a factor.

Theorem 30.10 (Hajnal-Szemerédi Theorem I [100]). For all r ≥ 2, if G is an n-vertex graph
with n a multiple of r and δ(G) ≥ (r − 1)n/r, then G has a Kr-factor.
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An essentially equivalent1 version of the Hajnal-Szemerédi Theorem can be phrased in terms
of colorings, giving a substantial improvement to the trivial fact that χ(G) ≤ ∆(G) + 1 for all
graphs G.

Theorem 30.11 (Hajnal-Szemerédi Theorem II [100]). For every integer t ≥ 1, any graph G
with ∆(G) ≤ t has a proper (t+ 1)-coloring where every color class differs in size by at most 1.

The original proofs for the Hajnal-Szemerédi Theorem were quite involved, though there is now
a short (but still somewhat complex) proof by Kierstead and Kostochka [123].

As we did before, we will only prove a weak asymptotic version. We begin by establishing an
almost spanning result.

Proposition 30.12. If G is an n-vertex graph with n a multiple of r and δ(G) ≥ (r − 1)n/r,
then there exists a partial Kr-factor covering all but (r − 1)2r vertices.

Proof. For this proof, the most straightforward approach that we used in Proposition 30.1 of
choosing a largest factor and then extending it will not work directly, but it can be remedied
by adding some additional constraints to this largest factor.

To this end, let S1, . . . , Sn/r be a partition of V (G) into sets of size r such that G[Si] contains
a Kr for as many i as possible, and conditional on this, we choose this partition so that G[Si]
contains a Kr−1 for as many i as possible; and so on. Let Ci ⊆ Si denote a largest clique in
G[Si] and assume for contradiction that G[Ci] ̸= Kr for at least (r − 1)2 + 1 values of i. By
the Pigeonhole principle, this implies there is some ℓ ∈ [r − 1] such that |Ci| = ℓ for at least r
values of i, say for all i ∈ [r] without loss of generality. Let N(Ci) denote the set of common
neighbors of Ci, i.e. the vertices adjacent to every vertex of Ci.

Claim 30.13. We have |N(Ci)| ≥ (r − ℓ)n/r and N(Ci) ∩ Cj = ∅ for all i, j ∈ [r].

Proof. The lower bound |N(Ci)| ≥ (r − ℓ)n/r follows from the fact that each of the ℓ vertices
of Ci have minimum degree at least (r − 1)n/r, i.e. are non-adjacent to at most n/r vertices.
For the second part, assume for contradiction that there exists some v ∈ N(Ci) ∩ Cj and let
w ∈ Sj \Cj be arbitrary (which exists since |Cj| < r = |Sj|). In this case, we could change our
partition by replacing Si, Sj with Si ∪ {v} \ {w} and Sj \ {v} ∪ {w}, which would increase the
number of sets in the partition which contain a Kℓ+1 while not decreasing the number of sets
containing any larger clique, contradicting how we chose our partition. We conclude that no
such v exists.

In total this claim implies
∑r

i=1 |N(Ci)∩
⋃

j>r Cj| ≥ (r−ℓ)n, which by the Pigeonhole principle
implies there is some j > r such that

r∑
i=1

|N(Ci) ∩ Cj| ≥
⌈

(r − ℓ)n

n/r − r

⌉
≥ r(r − ℓ) + 1.

1Given a graph G as in Theorem I, a Kr-factor is equivalent to an (n/r)-coloring in G where the color
classes all have size r, and this exists by Theorem II since ∆(G) = n− 1− δ(G). Similarly given a graph as in
Theorem II we can add to G a clique of size at most t to ensure that v(G) is divisible by t+ 1, at which point
G is guaranteed to have a Kr-factor by Theorem I, and deleting these possible extra vertices gives the desired
coloring.
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Claim 30.14. There exists some distinct i′, i′′ ∈ [r] and disjoint C ′
j, C

′′
j ⊆ Cj of sizes 1 and

r − ℓ such that C ′
j ⊆ N(Ci′) ∩ Cj and C ′′

j ⊆ N(Ci′′) ∩ Cj.

Proof. By the inequality above and the Pigeonhole principle, there exists i′ ∈ [r] such that
|N(Ci′) ∩ Cj| ≥ r − ℓ+ 1, and since |N(Ci′) ∩ Cj| ≤ r we have∑

i∈[r]\{i′}

|N(Ci) ∩ Cj| ≥ r(r − ℓ− 1) + 1,

so again by the Pigeonhole principle there exists i′′ ̸= i′ such that |N(Ci′′) ∩ Cj| ≥ r − ℓ. Let
C ′′

j ⊆ N(Ci′′)∩Cj be an arbitrary subset of size r− ℓ and let C ′
j ⊆ N(Ci′)∩Cj be an arbitrary

vertex disjoint from C ′
j, giving the result.

Let w ∈ Si′ \ Ci′ be arbitrary. If we consider modifying the partition by replacing Si′ , Si′′ , Sj

(whose largest cliques have sizes ℓ, ℓ, r) with the r-sets Si′ ∪C ′
j \ {w}, Ci′′ ∪C ′′

j , and Sj ∪ {w} \
(C ′

j ∪C ′′
j ) (whose largest cliques have sizes at least ℓ+ 1, r, 1), we see that this strictly increases

the number of sets in our partition containing a Kℓ+1 while maintaining the sizes of all larger
cliques, a contradiction to how we chose our partition.

We next establish the existence of building blocks.

Lemma 30.15. Let G be a graph of minimum degree (1−1/r+ϵ)n with ϵn ≥ 2r2. If R ⊆ V (G)
is a set of size r, then there exist at least (ϵ/2r2)(r−1)rn(r−1)r sets B ⊆ V (G) \R of size (r− 1)r
such that G[B] and G[B ∪R] both contain Kr-factors.

We note as an aside that this result does not hold if we replace (r−1)r with any smaller number
whenever R is an independent set, since in this case any factor in G[B ∪ R] must use at least
r − 1 vertices of B for each vertex of R. As such, the B from this lemma are the “simplest”
blocks we could possibly consider.

Proof. For ease of notation we prove this only for r = 3, though a similar proof works for all r.
Let R = {x, y, z}. Our goal will be to construct building blocks B = {x′, x′′, y′, y′′, z′, z′′} such
that B ∪ R contains the triangles {x, x′, x′′}, {y, y′, y′′}, {z, z′, z′′}, {x′, x′′, z′}, and {y′, y′′, z′′},
from which we can conclude that G[B] and G[B∪R] both contain triangle factors. We will show
that we can construct many such blocks one vertex at a time. For our analysis of this process,
we will always pessimistically subtract 9 from our count to ensure that all of the vertices we
choose are distinct from one another.

To this end, choose z′ ∈ V (G) \R to be any neighbor of z in at least (2/3 + ϵ)n− 9 ways, then
z′′ ∈ V (G)\R a common neighbor of z, z′ in at least (1/3+ϵ)n−9 ways, then x′ a new common
neighbor of x, z′ in at least (1/3 + ϵ)n− 9 ways, then x′′ a new common neighbor of x, x′, z′ in
at least ϵn− 9 ways, and analogously choose y′, y′′ in at least (1/3 + ϵ)n− 9 and ϵn− 9 ways,
respectively. The total number of ways of going through this algorithm is at least (ϵn/2)6, and
since each building block can be constructed in at most 6! ≤ 96 ways from this procedure, we
conclude that there exist at least this many distinct building blocks for R.

With this we can now prove our weak version of the Hajnal-Szemerédi Theorem.
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Theorem 30.16. For all r ≥ 2 and ϵ > 0, if G is an n-vertex graph with n sufficiently large
and divisible by r and with δ(G) ≥ (1 − 1/r + ϵ)n, then G contains a Kr-factor.

Proof. By Lemma 30.15, we can apply Proposition 30.9 with F = Kr, b = (r − 1)r, c = r,
and α = β = (ϵ/2r2)(r−1)r to conclude that G contains an (F, αn, 2−4r−1α2n)-absorber A. By
Proposition 30.12 and the fact that αn ≤ ϵn, we can find a partial Kr-factor in G−A covering
all but a set of at most (r − 1)2r vertices L. Since (r − 1)2r ≤ 2−4r−1α2n for n sufficiently
large, we conclude that G[A∪L] contains a partial Kr-factor, which combined with the partial
Kr-factor covering G− A− L gives the desired result.

Possibly discuss what’s known about tillings in general.

Possibly talk about space and divisibility barriers, eg that these provide easy cri-
teria for seeing some spanning structure doesn’t exist and tend to be the main
obstacles in general.
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31 Trees in Expanders

This section introduces variants of the “extendability method”, which are techniques aimed at
finding trees in graphs with certain expansion properties. We begin with two relatively simple
approaches based on work of Friedman and Pippenger, after which we informally discuss more
advanced versions of these ideas before closing with some very brief sketches of how these
methods are used in practice.

Throughout this chapter, we let NG(X) denote the set of vertices in a graph G which have
a neighbor in the set X ⊆ V (G). For notational convenience, we will sometimes denote the
vertex set of a graph S simply by S rather than V (S) whenever this is clear from context.

31.1 The Friedman-Pippenger Theorem

We say that a graph G is (d,m)-expanding if |V (G)| > 0 and if every X ⊆ V (G) with |X| ≤ m
has |NG(X)| ≥ d|X|. We begin by proving the following nice result of Friedman and Pippenger.

Theorem 31.1 ([81]). If G is (d + 1, 2m)-expanding, then G contains a copy of every tree T
with m+ 1 vertices and maximum degree at most d.

The idea of the proof is to start with a subgraph S ⊆ G consisting of a single vertex of G, and
then to iteratively add leaves to S until we build a copy of T . It is not difficult to convince
oneself that one has to be careful with how one adds these leaves to S, as otherwise we might
find ourselves with some S which we are not able to extend with a new leaf. As such, we will
want to maintain that the S subgraphs are “nice” in some suitable sense so that we never end
up stuck.

The formal definition of what it means for S to be “nice” is a little technical, so we will start by
trying to develop some intuition for this definition. Eager readers are welcome to skip straight
to the formal definition statement at the start of Section 31.1.2.

31.1.1 Intuition

As noted above, we want to prove the Friedman-Pippenger theorem by constructing subgraphs
S ⊆ G such that, whenever S is sufficiently small, we can add a new leaf to every vertex x ∈ S.
However, this may not always be possible. In particular, to add a leaf to some x ∈ S, we must
in particular have |NG(x) \ S| > 0, which may not hold if we’ve chosen S poorly.

With the above in mind, we see that we must build our S with the property that NG(x) \ S
is sufficiently large. In particular, since we eventually want to turn S into a copy of T which
contains vertices of degree at most d, we should be safe if we impose the condition |NG(x)\S| ≥
d− degS(x) (since in particular, the latter quantity is the maximum number of leaves we’ll try
adding to x). Somewhat more generally, we will want to ensure that for any X ⊆ V (S), we
have that |NG(X) \ S| ≥

∑
x∈X d− degS(x), since again we may need to add this many leaves

to the set X at some point.

The above only concerns neighborhood conditions for vertices in S, but this is too weak of a
condition to impose. Indeed, even if we know some x ∈ S is such that x has many neighbors in
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G\S, we may not actually be able to use some of these neighbors y ∈ NG(x)\S in any extension
of S if adding y would violate the neighborhood condition above. As such, it is essential that
we not only guarantee that |NG(X) \ S| is large for any subset X ⊆ V (S), but more generally
that this is large for any subset X ⊆ V (G) which could plausibly be used in any extension of
S. In particular, we will want to ensure that

|NG(X) \ S| ≥ d|X| −
∑

x∈X∩V (S)

degS(x)

for all “small” sets X. The question now is: what do we mean by small here?

Naively, the correct notion of what it means for a set X to be small should be that |X| ≤ m+1
(since our target subgraph T only has m+ 1 vertices). However, during our proof we will need
to have some additional control over the unions X ∪Y where |X|, |Y | ≤ m. As such, our notion
of small sets will encompass all sets of size at most 2m.

31.1.2 Proof of Theorem 31.1

With the intuition above in mind, we make the following key definition.

Definition 15. Given a graph G, we say that a subgraph S ⊆ G is (d,m)-good if S has at
most m+ 1 vertices and maximum degree at most d, and if for all X ⊆ V (G) with |X| ≤ 2m,
we have

C(X;S) := |NG(X) \ S| − d|X| +
∑

x∈X∩V (S)

degS(x) ≥ 0.

For example, we claim that if G is (d+ 1, 2m)-expanding for some d,m ≥ 1, then every vertex
x ∈ V (G) is a (d,m)-good subgraph. Indeed, the size and degree condition for S = {x} is
automatically satisfied. On the other hand, because G is (d + 1, 2m)-expanding, we have that
|NG(X) \ S| ≥ (d+ 1)|X| − 1 for all non-empty X with |X| ≤ 2m. From this it quickly follows
that all such X have C(X;S) ≥ 0, proving the claim.

The key property we need to show regarding (d,m)-good subgraphs is the following.

Lemma 31.2. If G is a (d+ 1, 2m)-expanding graph and S ⊆ G is a (d,m)-good subgraph such
that |V (S)| ≤ m and such that there exists some v ∈ S with degS(v) ≤ d− 1, then there exists
a (d,m)-good subgraph S ⊆ S ′ ⊆ G obtained by adding a leaf to v.

Observe that this result, together with induction and the claim above showing that every vertex
of G is (d,m)-good, will suffice to prove Theorem 31.1. As such, it remains to prove this lemma.
For this, it will be useful to get a better understanding of sets X which have C(X;S) = 0 (i.e.
which are very close to showing that S is not good). This is accomplished by the following
technical result, the proof of which the reader may wish to postpone in order to see how it is
used to prove Lemma 31.2.

Proposition 31.3. Let G,S be as in Lemma 31.2. If X, Y are sets with C(X;S), C(Y ;S) = 0
and |X|, |Y | ≤ 2m, then we in fact have |X|, |Y | ≤ m and C(X ∪ Y ;S) = 0.
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Proof. We first establish the size condition.

Claim 31.4. We have |X|, |Y | ≤ m.

Proof. Observe that

0 = C(X;S) = |NG(X) \ S| − d|X| +
∑

x∈X∩V (S)

degS(x)

≥ |NG(X)| − |V (S)| − d|X|
≥ (d+ 1)|X| −m− d|X|,

where the second inequality used that |V (S)| ≤ m, and that G is (d + 1, 2m)-expanding and
|X| ≤ 2m. Rearranging gives the desired result for |X|, with an identical result giving the
bound for |Y |.

We next establish that C behaves nicely with respect to unions (and intersections).

Claim 31.5. The function C(·;S) is submodular, i.e. for any sets A,B we have C(A∩B;S) +
C(A ∪B;S) ≤ C(A;S) + C(B;S).

Proof. It is straightforward to check that the last two terms −d| · | +
∑

x∈·∩V (S) degS(x) in the

definition of C(·;S) form a modular function (i.e. the desired inequality holds with equality).
Similarly one can check that |NG(·) \ S| is submodular due to the relations NG(X ∪ Y ) =
NG(X)∪NG(Y ) and NG(X∩Y ) ⊆ NG(X)∩NG(Y ), so combining these two gives a submodular
function.

Because S is (d,m)-good, we have that C(X ∩ Y ;S) ≥ 0, and hence the previous claim implies
that

C(X ∪ Y ;S) ≤ C(X ∩ Y ;S) + C(X ∪ Y ;S) ≤ C(X;S) + C(Y ;S) = 0.

On the other hand, Claim 31.4 implies that |X ∪ Y | ≤ 2m, so S being (d,m)-good implies
C(X ∪ Y ;S) ≥ 0, finishing the proof.

We now prove our main lemma.

Proof of Lemma 31.2. Let G,S, v be as in the lemma statement. Let L := NG(v) \ S, and for
each ℓ ∈ L, define Sℓ to be the subgraph of G obtained by adding the edge vℓ to S. The result
will follow if Sℓ is (d,m)-good for some ℓ ∈ L, so we may assume for contradiction that this
is not the case. As each Sℓ has at most m + 1 vertices and maximum degree at most d by
hypothesis, these can only fail to be (d,m)-good if for each ℓ ∈ L there exists some set Xℓ of
size at most 2m satisfying C(Xℓ;Sℓ) < 0.

Because S was (d,m)-good, we have C(Xℓ;S) ≥ 0 for all ℓ ∈ L, and we aim to use this
together with C(Xℓ;Sℓ) < 0 to derive some structural information about Xℓ. Specifically,
letting 1[a ∈ A] = 1 if a ∈ A and 1[a ∈ A] = 0 otherwise, it is not difficult to check that

C(Xℓ;Sℓ) = C(Xℓ;S) − 1[ℓ ∈ NG(Xℓ)] + 1[v ∈ Xℓ] + 1[ℓ ∈ Xℓ],
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since having ℓ ∈ NG(Xℓ) would cause the |NG(Xℓ) \ S| term to decrease by 1 as we add ℓ to
S, and similarly either v ∈ Xℓ or ℓ ∈ Xℓ would cause the

∑
degS(x) term to increase by 1 as

we go to Sℓ. The only way then that we can have C(Xℓ;Sℓ) < 0 and C(Xℓ;S) ≥ 0 is is if (1)
ℓ ∈ NG(Xℓ), (2) v /∈ Xℓ, (3) ℓ /∈ Xℓ, and (4) C(Xℓ;S) = 0.

Let X ′ denote the union of all of the Xℓ sets. By (4) and Proposition 31.3, we see that
C(X ′;Sℓ) = 0 and hence |X ′| ≤ s− 1. Let X ′′ = X ′ ∪ {v}. Using X ′ ⊆ X ′′, the definition of L,
and (1), we find that

(NG(X ′)\S) ⊆ (NG(X ′′)\S) = (NG(X ′)\S)∪ (NG(v)\S) = (NG(X ′)\S)∪L = (NG(X ′)\S),

where we emphasize this last step used that (1) implies L ⊆ NG(X ′) \ S. We thus conclude
that NG(X ′′) \ S = NG(X ′) \ S.

Using C(X ′;S) = 0 together with the definition of C, the observation above, and (2) which
implies v /∈ X ′; we find

C(X ′′;S) = C(X ′′;S) − C(X ′;S) = −d+ degS(v) < 0.

However, we have |X ′′| ≤ m+ 1 ≤ 2m, so C(X ′′;S) ≥ 0 since S is (d,m)-good, a contradiction
to the inequality above. We conclude the result.

31.2 Variants of the Method

31.2.1 Sharpening Friedman-Pippenger

While the proof above is nice and clean, there is some slack that can be tightened to give
stronger conclusions. For example, a slight aesthetically displeasing feature of Theorem 31.1
is that it requires our graph G to be (d+ 1, 2m)-expanding in order to find trees of maximum
degree d, and it heuristically feels like one should be able to reduce the d + 1 down to just d
since, for example, this is all that is needed to find stars K1,d.

By reexamining the proof above, we see that the only place we used the d+ 1 property was in
Claim 31.4 to show that critical sets always have size at most m. However, a quick inspection
shows that we don’t need the full power of (d+ 1, 2m)-expanding for this proof to go through;
all we really need is something slightly stronger than (d, 2m)-expansion for sets of size at least
m + 1. With this observation in mind, an essentially identical proof can be used to prove the
following strengthened version of the Friedman-Pippenger Theorem.

Theorem 31.6 ([16],[103]). Let d,m,M be positive integers and G a graph such that the fol-
lowing holds:

� Every X ⊆ V (G) with 0 < |X| ≤ m has |NG(X)| ≥ d|X| + 1,

� Every X ⊆ V (G) with m < |X| ≤ 2m has |XG(X)| ≥ d|X| +M .

Then G contains every tree with M vertices.
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Theorem 31.6 was first explicitly stated by Balogh, Csaba, Pei, and Samotij [16] who realized
that it was an easy consequence of a substantial extension of Theorem 31.1 due to Haxell [103]
which will be discussed in the following subsection.

Observe that G being (d+ 1, 2m)-expanding implies it satisfies the hypothesis of Theorem 31.6
with M = m+ 1, so Theorem 31.6 does indeed recover Theorem 31.1. In fact, it is quite a bit
stronger: observe that with Theorem 31.1 alone, one can’t hope to embed trees of size larger
than |V (G)|/2(d + 1) (since sets of size more than |V (G)|/(d + 1) can’t expand by a factor of
at least (d+ 1)). In contrast, Theorem 31.6 can be used to embed trees of size (1− o(1))|V (G)|
provided G has sufficiently strong expansion properties.

Theorem 31.7. Let Td,N denote the set of trees of maximum degree d on at most N vertices.
For all d, ϵ > 0, there exists some C > 0 such that Gn,p with p = C/n contains every member
of Td,(1−ϵ)n with high probability.

This result was originally proven by Alon, Krieleveich, and Sudakov [10] through a direct
application of the Friedman-Pippenger Theorem. This result was reproven by Balogh, Csaba,
Pei, and Samotij [16] using Theorem 31.6 to give a shorter proof with a better dependency on
C. We present a short argument in the spirit of [16] that can be found in notes of Liu (which
also discuss many other techniques for finding structures in pseudo-random graphs).

Before we get into the proof, we observe that there is no hope in applying Friedman-Pippenger
or any of its variants to Gn,p with p = C/n. Indeed, in this range Gn,p will contain a linear
number of isolated vertices in expectation, and any subset of these vertices will fail to have
the necessary expansion properties. Given this, our only hope of using Friedman-Pippenger
type results is to restrict to an induced subgraph of Gn,p after removing a linear set of vertices
which have bad expansion properties. And indeed, the following says that if a graph G has a
given amount of expansion for sets of a given size m, then one can delete a small set from G
to achieve a comparable level of expansion for all sets of size at most m. For technical reasons
this result will require us to work with a subset of N(X) instead of N(X) itself.

Lemma 31.8. Let G be a graph and define N ′
G(X) := NG(X) \X for all X ⊆ V (G). If D > 0

and m is an integer such that every X ⊆ V (G) of size m satisfies |N ′
G(X)| ≥ D|X|, then

there exists a set B ⊆ V (G) of size less than m such that |N ′
G−B(X)| ≥

(
D
2
− 1
)
|X| for all

X ⊆ V (G−B) of size at most m.

Proof. LetB be a maximal set of size at most 2m with the property that |N ′
G(B)| <

(
D
2
− 1
)
|B|.

We claim that |B| < m. Otherwise, there would exist some B′ ⊆ B of size exactly m, and the
hypothesis of the lemma implies

|N ′
G(B)| ≥ |N ′

G(B′)| − |B| ≥M |B′| − |B| ≥ D

2
|B| − |B| =

(
D

2
− 1

)
|B|,

where this last inequality used |B| ≤ 2m = 2|B′|. This gives a contradiction to how we defined
B.

Now assume for contradiction that there exists some X ⊆ V (G − B)of size at most m with
|N ′

G−B(X)| <
(
D
2
− 1
)
|X|. In this case we observe that X ∪B is a set of size at most 2m such
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that

|N ′
G(X ∪B)| ≤ |N ′

G−B(X)| + |N ′
G(B)| <

(
D

2
− 1

)
|X| +

(
D

2
− 1

)
|B| =

(
D

2
− 1

)
|X ∪B|.

We now use this to prove random graphs contain nearly spanning trees.

Proof. Theorem 31.7 Let C be sufficiently large in terms of ϵ, d and take m := 100 log(1/ϵ)
C

n.
It is striaghtforward to show using the Chernoff bound that with high probability we have
|N ′

Gn,p
(X)| ≥ (1 − ϵ/2)n for all X of size exactly m. By applying Lemma 31.8 with D =

(1 − ϵ/2)n/m ≥ 2d + 3 (this inequality using C sufficiently large in terms of ϵ, d), there exists
some B ⊆ V (Gn,p) such that after deleting B, we have for all sets X of size at most m that

|NGn,p−B(X)| ≥ |N ′
Gn,p−B(X)| ≥ (d+ 1)|X| ≥ d|X| + 1.

On the other hand, if X has size between m + 1 and 2m then we can take X ′ ⊆ X to be a
subset of size exactly m and conclude

|NGn,p−B(X)| ≥ |N ′
Gn,p

(X ′)| − |B| ≥ (1 − ϵ/2)n−m = (
ϵ

2
n−m) + (1 − ϵ)n ≥ d|X| + (1 − ϵ)n,

where this last step used |X| ≤ 2m and that C is sufficiently large in terms of ϵ, d. By
Theorem 31.6 we conclude that Gn,p − B contains a copy of every T ∈ Td,(1−ϵ)n, proving the
result.

31.2.2 Haxell’s Method

As mentioned above, Theorem 31.6 is a corollary of a more involved result of Haxell’s. We
will not state her result in full here, but we will briefly discuss her key innovation of building
trees T through a series of intermediate “stages.” The rough idea is that we begin by building
S = K1, then we go and build S = T1 for some tree T1 obtained from K1 by adding leaves,
then we build S = T2 in a similar way and so on. Crucially, if some tree Ti for i ≥ 1 contains
every vertex of T which has degree d, then from this point onward no vertex we add on to S
will ever need more than d− 1 leaves added to it. As such, we can replace the −d|X| term in
the definition of C(X;S) by something like −(d − 1)|X|, making it easier to find S for which
C(X;S) is sufficiently large.

As far as we are aware, Haxell’s full technical result is not used much in the literature, with most
papers either using the simplified Theorem 31.6 or the extendability method discussed below.
That being said, we note that her full result is the only version of Friedman and Pippenger’s
approach that we are aware of which gives the following nice variant of the Erdős-Sós conjecture
for hosts which avoid K2,r’s.

Theorem 31.9 ([103]). If t is a positive integer and r = ⌈t/18⌉, then every graph with average
degree greater than t− 1 which is K2,r-free contains every tree with t edges as a subgraph.
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31.2.3 The Extendability Method: Intuition

Perhaps the most used variant of the Friedman-Pippenger Theorem is an approach known as the
extendability method. We begin with an entirely optional subsection discussing the intuition
behind how one might come across this approach given the proof of Friedman and Pippenger,
after which we have a more formal subsection discussing of the relevant definitions and lemmas
of the method together with a very brief survey of what this method can be used for.

With an eye towards trying to sharpen the proof of Theorem 31.1, one might come to the
realization that the same proof goes through if we replace the function

C(X;S) := |NG(X) \ S| − d|X| +
∑

x∈X∩V (S)

degS(x)

with the function

D(X;S) := |NG(X) \ S| − (d− 1)|X| − |X ∩ S| +
∑

x∈X∩V (S)

degS(x)

= |NG(X) \ S| − (d− 1)|X| +
∑

x∈X∩V (S)

(degS(x) − 1).

As to why exactly you might come up with this, we recall in the proof of Theorem 31.1 that
we obtained the structural fact (3) of having ℓ /∈ Xℓ for all ℓ ∈ L, which followed from the fact
that C(X;S) increases if we add in a new term with deg(ℓ) = 1 to its sum. That being said,
we never actually used this structural fact in our proof.

As such, the same proof would almost go through if we subtracted from C(X;S) the additional
term |X ∩S| (since doing so would only change that we can no longer guarantee (3), but again
this was not used in the proof). However, a careful inspection shows that this change would
make the proof of Claim 31.4 fail to go through in the very particular case where S ⊆ X
and |S| = m. This problem in turn can be patched by replacing the −d|X| term in C(X;S)
with −(d − 1)|X|. Note crucially that the only place we used the exact coefficient in front
of the −|X| term was at the very end when we computed C(X ′′;S) − C(X ′;S). However,
because we are also now subtracting the term |X ∩ S| in our function D, this difference will be
(d− 1) − (degS(v) − 1) = d− degS(v) exactly as before, giving the result as before.

Offhand there doesn’t appear to be any advantage in working with D(X;S) over our original
C(X;S). However, its exact formulation (and in particular the subtraction of |X ∩ S|) will be
crucial in several of the key lemmas of the extendability method discussed below.

31.2.4 The Extendability Method: Formal Definitions

Motivated by our discussion above, the key idea will be to change our definition of “good”
subgraphs to be with respect to a new cost function D(X;S) which was originally introduced
by Glebov, Johannsen and Krivelevich [91].

Definition 16. For positive integers d,m with d ≥ 3, we say that a subgraph S of a graph G
is (d,m)-extendable if S has maximum degree at most d and if for every set X ⊆ V (G) with
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|X| ≤ 2m we have

D(X;S) := |NG(X) \ S| − (d− 1)|X| +
∑

x∈X∩S

(degS(x) − 1) ≥ 0.

It’s not clear to me why d ≥ 3 is used here, but that’s how it’s typically defined.

In order to use the notion of extendability, we will need lemmas analogous to Lemma 31.2
saying that we can build new extendable subgraphs from old ones. We highlight a few such
lemmas here whose names come from [91]. We begin with an analog of Lemma 31.2 whose
proof is nearly word for word the same.

Lemma 31.10 (Vertex Extension Lemma). Let d,m be positive integers with d ≥ 3 and let S
be a (d,m)-extendable subgraph of G. If every subset X ⊆ V (G) with m ≤ |X| ≤ 2m has

|NG(X)| ≥ |S| + 2dm+ 1,

then for every v ∈ S with dS(v) ≤ d − 1 there exists ℓ ∈ NG(s) \ S such that S + vℓ is
(d,m)-extendable.

The previous lemma allows us to add leaves to extendable subgraphs. The next lemma allows
us to “rollback” this process, which (despite perhaps looking inconsequential at first glance)
is to a large extent the main strengthening of the extendability method over Friedman and
Pippenger’s original approach.

Lemma 31.11 (Removal Lemma). Let d,m be positive integers with d ≥ 3 and let S be a
subgraph of G. If there exist vertices v ∈ S and ℓ ∈ NG(S) \ S adjacent in G such that the
subgraph S + vℓ is (d,m)-extendable, then S is (d,m)-extendable as well.

Here we emphasize that because ℓ /∈ S that ℓ is necessarily a leaf of S + vℓ.

Proof. For any X we observe that

D(X;S) −D(X;S + vℓ) = 1[ℓ ∈ NG(X)] − 1[v ∈ X].

Since vℓ ∈ E(G) by hypothesis, having v ∈ X implies ℓ ∈ NG(X), and hence this difference is
always non-negative, showing D(X;S) ≥ 0 whenever we have D(X;S + vℓ) ≥ 0, proving the
result.

We emphasize that the argument above would not work if we were using C(X;S) instead of
D(X;S), as in this case the difference would have an additional −1[ℓ ∈ X] term which we
wouldn’t be able to control.

We next consider two lemmas that allow us to create extendable structures which contain cycles.

Lemma 31.12 (Edge Insertion Lemma). Let d,m be positive integers with d ≥ 3 and let S
be a (d,m)-extendable subgraph of G. If u, v ∈ S are such that degS(u), degS(v) ≤ d − 1 and
uv ∈ E(G), then S + uv is a (d,m)-extendable subgraph of G.
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Indeed, this just follows from observing that D(X;S) can never decease if we add an edge
between two vertices of S.

Lemma 31.13 (Weak Connection Lemma). Let d,m be positive integers with d ≥ 3 and let G
be an n-vertex graph such that eG(X, Y ) ≥ 2 for all disjoint X, y ⊆ V (G) with |X|, |Y | ≥ m
and let S be a (d,m)-extendable subgraph on at most n− 10dm vertices.

Let k = ⌈log(2m)/ log(d−1)⌉. Let a, b be two vertices in S which have degree at most d/2 in S.
Then there exists a path P of length 2k + 1 in G with endpoints a and b such that all vertices
of P except the two endpoints do not belong to S and such that S + P is (d,m)-extendable.

The actual Connection Lemma used in practice further allows one to replace the vertices a, b
with sets of vertices A,B and then guarantees that we can find a path between some vertex of
A to some vertex of B, but for ease of presentation we only consider this weaker version.

Sketch of Proof. By using the Vertex Extension lemma, we can attach to a ⌈(d − 1)/2⌉ edges
axi and then build from each xi a (d − 1)-ary tree of length k − 1 while maintaining that our
subgraph is extendable (we can do this both because we assume degS(a) ≤ d/2 and because we
assume G has a suitable expansion property).

We perform the exact same procedure on b. Since the total number of leaves for the trees
attached to each of a, b is at least m by definition of k, the expansion property of G guarantees
there is an edge between two leaves, and we can add this and maintain extendability due to the
Edge Insertion Lemma. Finally, the Removal Lemma allows us to strip away the leaves until
we are only left with S + P as desired.

31.3 Applications

While the extendability method and its variants are used in a number of important applications,
most of these applications require quite a bit of technical analysis. Because of this, we will only
briefly survey some of the results that are possible with these methods and refer the interested
reader to the individual papers for more details on how the methods are used.

Historically, the original motivation of the Friedman-Pippenger theorem was for a problem in
size Ramsey theory. To motivate this area, given two graphs F,G, we write G→ F if every 2-
coloring of the edges of G contains a monochromatic copy of F , and we then define the Ramsey
number

r(F ) := min{|V (G)| : G→ F}.

Note that we could have equivalently defined r(F ) to be the smallest n such that Kn → F ,
but this definition allowing for more general hosts other than just Kn motivates interesting
generalizations. In particular, we define the size-Ramsey number

r̂(F ) := min{|E(G)| : G→ F}.

Note that we trivially have r̂(F ) ≤
(
r(F )
2

)
by taking G to be a complete graph on r(F ) vertices. A

remarkable argument by Chvátal [67] shows that this bound is tight for cliques F = Kr (despite
the fact that we have no idea what r(Kr) is!). However, for other F there can be a substantial
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gap between r̂(F ) and
(
r(F )
2

)
. Notably, Friedman and Pippenger proved the following, extending

a previous result of Beck for paths [21].

Theorem 31.14 ([81]). If F is an n-vertex tree with maximum degree d, then r̂(F ) = Od(n).

Proof Sketch. For this, it suffices to show that there exists a graph G with Od(n) edges such
that any 2-coloring of its edges contains a monochromatic copy of T . In fact we will prove the
stronger fact that any subgraph G′ ⊆ G containing at least half of the edges of G contains a
copy of T .

With the above goal in mind, we let G be a “sparse optimally pseudorandom graph”, i.e. a
regular graph of bounded degree whose eigenvalues besides λ1 are all small. Such graphs are
known to exist and have effective expansion properties. Friedman and Pippenger further prove
that if you restrict to some subgraph G′ ⊆ G which contains only, say, half the edges of G, then
one can find an induced subgraph of G′ which is (d + 1, 2n)-expanding and hence contains a
copy of T by Theorem 31.1, proving the result.

This result was further refined by Dellamonica [57] who (together with a lower bound from
Beck [21]) showed that r̂(T ) = Θ(β(T )) for every tree T , where β(T ) is some slightly compli-
cated invariant introduced by Beck.

The construction of Dellamonica is rather simple: he just takes G to be a p-random subgraph
of an unbalanced complete bipartite graph and then argues that with high probability any con-
stant proportion of the edges of G will contain a copy of T . There are two main improvements
of his analysis over that of Friedman and Pippenger. First, he tailors his argument specifically
to random-like graphs (rather than just graphs satisfying some relatively weak expansion prop-
erty). Second, he adds algorithmic component to the proof by (roughly speaking) taking each
vertex x with relatively few neighbors and constructing some subset Rx ⊆ V (G) of “reserved”
vertices which may only be used as neighbors of x in the embedding (if x gets chosen). However,
the full details of his argument are quite involved.

In addition to size-Ramsey numbers, another major area of application for Friedman-Pippenger
type theorems come from finding structures is random and pseudo-random graphs. We already
saw one example in Theorem 31.7 where we gave an easy proof showing that Gn,p with p = C/n
contains every bounded-degree tree on (1−ϵ)n vertices with high probability. With substantially
more work, Montgomery [144] managed to show that Gn,p at p = C log n/n contains every
bounded-degree spanning tree with high probability. While the paper is very long and involves
many ideas, one of the central tools of the argument is in using the extendability method,
and in particular a variant of the Connection Lemma. It is also worth noting that, although
the original proof of Montgomery is quite difficult, his result is now essentially a one page
consequence of the more modern Spreadness Theorem Theorem 8.1.

Possibly include a longer list of references for people to look at for examples.
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32 Counting Homomorphisms

Many problems in Extremal combinatorics center around showing the existence of a structure
F in a large object, and for this it is often useful to establish a counting result for substructures
related to F . For example, the standard proof of the Kővári-Sós-Turán relies on counting pairs
(v, S) where S ⊆ N(v) is a set of size s and then uses that the number of such pairs is large in
dense graphs but not too large if the graph is Ks,t-free.

In this chapter we focus on utilizing counting results for graph homomorphisms, which typically
involves two steps. For the first and generally easier step, we show that if G is a dense graph,
then there are many homomorphisms from F to G, e.g. by showing that F is Sidorenko. Second,
we show that the number of “degenerate” (i.e. non-injective) homomorphisms is strictly smaller
than the number of homomorphisms guaranteed in the first part. This implies that there exists
an injective homomorphism from F to G, and hence a copy of F in G as desired. This strategy
outlined above was largely pioneered by Janzer [110] in the context of studying rainbow Turán
problems, and we will be using these problems as the guiding examples throughout this chapter.

32.1 Rainbow Turán Numbers

Given a set of graphs F and an integer n, we define the rainbow Turán number ex∗(n, F ) to
be the maximum number of edges that a properly colored n-vertex graph G can have without
containing any rainbow copy of F (i.e. a copy of F where every edge has a distinct color in
G), and we similarly define ex∗(n,F) for a family of graphs F . For example, we always have
ex(n, F ) ≤ ex∗(n, F ) since taking any proper coloring of an F -free graph G with ex(n, F ) edges
gives a graph which is rainbow F -free. This simple inequality implies that for any given F ,
proving lower bounds is (potentially) easier for ex∗(n, F ) compared to the classic Turán problem
and that upper bounds are (potentially) harder.

The rainbow Turán problem was originally introduced by Keevash, Mubayi, Sudakov, and
Verstraëte [122] where much of their focus was on studying cycles. In the classic Turán setting,
a result of Bondy and Simonovits [30] shows ex(n,C2k) = O(n1+1/k). This bound is only known
to be tight only for k ∈ {2, 3, 5} despite a large amount of work being done on trying to show
this bound holds for k in general. This lower bound problem becomes significantly easier in the
rainbow setting, and in particular it was shown in [122] that ex∗(n,C2k) = Ω(n1+1/k) holds for
all k.

While this lower bound for even cycles becomes significantly easier in the rainbow setting, its
corresponding upper bound becomes significantly harder. Indeed, the authors of [122] were only
being able to show the matching upper bound of ex∗(n,C2k) = O(n1+1/k) for the cases k = 2, 3.
In particular, the fact that the original proof of Bondy and Simonovits can not be adapted to
prove this result shows that the method of the original proof is not “robust” enough to handle
the extra constraints imposed by being in the rainbow setting. This barrier was eventually
overcome by Janzer [110] (see Theorem 32.4) who showed ex∗(n,C2k) = O(n1+1/k) for all k
through the use of his homomorphism counting method.

Another frustrating simple case of the rainbow Turán problem is that of the set of all cycles C. Of
course, in the classical Turán setting it is easy to show ex(n, C) = n−1, but this problem becomes

210



surprisingly difficult in the rainbow setting. It was shown in [122] that ex∗(n, C) = Ω(n log n)
by taking G to be a hypercube whose edges xy are colored by the bit for which x, y differ on and
they conjectured that this bound is best possible. The first big progress towards this conjecture
was done by Das, Lee, and Sudakov [55] who showed an upper bound of roughly ne

√
logn. This

was then substantially improved by Janzer [110] who showed an upper bound of O(n(log n)4)
using his homomorphism counting argument. Other homomorphism based approaches were
later used independently by Janzer and Sudakov [?] and by Kim, Lee, Liu, and Tran [124]
to give an upper bound of O(n(log n)2). Finally, this problem was essentially solved (through
non-homomorphic means) by Alon, Bucić, Sauermann, Zakharov, and Zamir [5] who showed
an upper bound of n(log n)1+o(1).

In what follows we look at two different homomorphism based proofs of the upper bound
ex∗(n,C2k). We will begin by going through Janzer’s original short proof of the result, after
which we will sketch out a later proof found by [124] whose approach is longer but perhaps
more intuitive.

32.2 The First Proof

As noted at the start of the chapter, the key step in Janzer’s homomorphism counting method
is to upper bound the number of “degenerate” homomorphisms. In the classic Turán setting
“degenerate” typically just means non-injective, but in e.g. the rainbow Turán setting we will
need to additionally say that any cycle which has repeated colors is also degenerate. More
broadly, we will prove the following lemma which works for a fairly abstract notion of “degen-
eracy” defined in terms of a binary relation ∼. Here and throughout we abuse notation slightly
and write hom(C2, G) := hom(K2, G) and hom(C0, G) := hom(K1, G). For convenience we will
often denote homomorphisms of C2k to G by sequences (x1, . . . , x2k) such that xixi+1 ∈ E(G)
for all 1 ≤ i ≤ 2k with indices written cyclically.

Lemma 32.1. Let G be a graph with maximum degree ∆ and let ∼ be a symmetric binary
relation on the vertices of G such that for every (u, v) ∈ V (G)2 and w ∈ V (G), the vertex w
has at most s neighbors z satisfying (u, v) ∼ (z, w).

Let homdeg(C2k, G) denote the number of homomorphisms (x1, . . . , x2k) from C2k to G with
(xi, xi+1) ∼ (xj, xj+1) for some i ̸= j. Then for all k ≥ 2 we have

homdeg(C2k, G) ≤ 16k(ks∆ hom(C2k−2, G) hom(C2k, G))1/2.

For example, in the setting of finding rainbow C2k’s in a properly edged colored graph G, we
will define (x, y) ∼ (z, w) whenever xy, zw are edges which either have the same color or x = z,
as in this case a rainbow cycle is exactly a non-degenerate homomorphism from C2k.

Proof. The main idea for this proof is to partition the set of degenerate cycle homomorphisms
(x1, . . . , x2k) based on how many walks there are from, say, x1 to xk+2, and then use different
types of arguments depending on how large these quantities are. To this end, for each ℓ ≥ 1 and
u, v ∈ V (G), we define wℓ(u, v) to be the number of walks of length ℓ from u to v (equivalently,
this is the number of homomorphisms of a path of length ℓ which has u, v as its endpoints). For
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all r, t ≥ 1, let γr,t denote the number of degenerate cycle homomorphisms (x1, . . . , x2k) which
have:

(a) 2r−1 ≤ wk−1(x1, xk+2) < 2r,

(b) 2t−1 ≤ wk(x2, xk+1) < 2t, and

(c) (x1, x2) ∼ (xi, xi+1) for some 2 ≤ i ≤ k + 1.

Observe that every degenerate cycle homomorphisms (y1, . . . , y2k) can be cyclically shifted to
some (x1, . . . , x2k) with (x1, x2) ∼ (xi, xi+1) for some 2 ≤ i ≤ k+ 1 which is necessarily counted
by some γr,t, from which we see that

homdeg(C2k, G) ≤ 2k
∑
r,t

γr,t, (29)

so it suffices to bound this sum.

We introduce two related parameters to help bound the γr,t terms: let αr denote the number
of walks (y1, . . . , yk) such that 2r−1 ≤ wk−1(y1, yk) < 2r, and similarly let βt denote the number
of walks (z1, . . . , zk+1) such that 2t−1 ≤ (z1, zk+1) < 2t. Since each C2ℓ homomorphism consists
of choosing a walk of length ℓ followed by another walk of length ℓ between its two endpoints,
we see that

hom(C2k−2, G) ≥
∑
r

αr2
r−1,

hom(C2k, G) ≥
∑
t

βt2
t−1.

Claim 32.2. For all r, t, we have
γr,t ≤ αr · ∆ · 2t,

γr,t ≤ βt · ks · 2r.

Proof. Each cycle homomorphism (x1, . . . , x2k) counted by γr,t can be identified as follows:
choose the walk (x1, x2k, x2k−1, . . . , xk+2), then the neighbor x2 of x1, then the walk (x2, . . . , xk+2).
Note that the number of choices for the first walk is αr by definition of αr and γr,t, the number
of choices for x2 is trivially at most ∆, and the number of choices for the last walk is at most
2t again by definition of γr,t. This gives the first bound.

One can alternatively identify the homomorphisms as follows: choose the walk (x2, . . . , xk+2),
then x1, then the walk (x1, x2k, x2k−1, . . . , xk+2). As before there are βt choices for the first
walk. Crucially, because we must choose x1 so that (x1, x2) ∼ (xi, xi+1) for some 2 ≤ i ≤ k + 1
(with these (xi, xi+1) edges fixed because of the order in which we specified our walks), the total
number of choices for x1 is at most ks by hypothesis of ∼. Finally, the last walk is chosen in
at most 2r ways by definition of γr,t, giving the result.

We will choose which bound in Claim 32.2 to use for a given γr,t depending on the relative
size of r and t. To this end, we fix some cutoff value q to be determined later and observe by
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Claim 32.2 that ∑
r,t

γr,t =
∑

r,t:t<r+q

γr,t +
∑

r,t:t≥r+q

γr,t

≤ ∆
∑

r,t:t<r+q

2tαr + ks
∑

r,t:t≥r+q

2rβt

≤ 2q∆
∑
r≥1

2rαr + ks2−q+1
∑

r,t:t≥r+q

2tβt

≤ 2q+1∆ hom(C2k−2, G) + ks2−q+2 hom(C2k, G), (30)

where the third line used that, for example, we have for any fixed r that
∑

t:t<r+q 2t ≤ 2r+q;
and the last line used the inequalities just before Claim 32.2. We can optimize (30) by choosing
q so that these two terms are close to equal; say by taking q to be the unique integer with(

ks · hom(C2k, G)

∆ hom(C2k−2, G)

)1/2

≤ 2q < 2

(
ks · hom(C2k, G)

∆ hom(C2k−2, G)

)1/2

.

In this case each of the two terms (30) can be bounded by 4(ks∆ hom(C2k−2, G) hom(C2k, G))1/2,
which combined with (29) gives

homdeg(C2k, G) ≤ 2k · 8(ks∆ hom(C2k−2, G) hom(C2k, G))1/2,

completing the proof.

As an aside, it might seem more natural in the proof to define e.g. αr to count the number of
walks with wk−1(y1, yk) = r rather than define it in terms of a dyadic partition. If one makes
this change, then most of the present proof will go through (with slightly different notation)
until one tries to bound the term ∑

r,t:t<qr

tαr.

In this case, upon fixing any value of r the sum over the t term becomes something like r2,
which ends up killing the proof.

We want to use Lemma 32.1 to show that if G has many edges, then it contains a non-degenerate
C2k. For this, we need to show that (a) hom(C2k−2, G) is not too large in terms of hom(C2k, G)
and (b) hom(C2k, G) is large whenever G has many edges (and in particular, larger than our
upper bound for the number of degenerate homomorphisms). This will be accomplished through
the following.

Proposition 32.3. Let G be an n-vertex graph and k ≥ 2 an integer.

(a) We have
hom(C2k−2, G) ≤ n1/k hom(C2k, G)1−1/k.

(b) We have

hom(C2k, G) ≥
(

2e(G)

n

)2k

.
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Note that (b) is equivalent to saying that C2k satisfies Sidorenko’s conjecture, which is a typical
prerequisite for being able to apply this method in practice. We will postpone the proof of
Proposition 32.3 for the moment and show how it implies our main result for this subsection.

Theorem 32.4. For all k ≥ 2, we have ex∗(n,C2k) = O(n1+1/k).

Proof. For ease of presentation we only prove the following weaker version of the theorem: if G
is an n-vertex graph whose edges are properly colored such that G does not contain a rainbow
C2k and is such that G is regular, then e(G) = O(n1+1/k). We note that one can drop the extra
regularity condition by using standard results that let one pass to “almost regular” subgraphs
of G (see for example [113, Proposition 2.7]), but we restrict ourselves to this slightly restricted
setting in order to make our arguments involving the main ideas as clear as possible.

Let ∆ denote the (maximum) degree of G and define a symmetric binary relation ∼ on V (G)2

by having (x, y) ∼ (z, w) if xy, zw are both edges in G and either (a) xy, zw have the same
color in G or (b) x = z. Observe that for any given (u, v) and w, there are at most 2 neighbors
z of w such that (u, v) ∼ (z, w) because G is properly colored. As such, Lemma 32.1 applies
and shows that

homdeg(C2k, G) ≤ 16k(2k∆ hom(C2k−2, G) hom(C2k, G))1/2 ≤ 32k3/2∆1/2n1/2k hom(C2k, G)1−1/2k,

where this last inequality used Proposition 32.3(b). On the other hand, Proposition 32.3(a)
together with G being ∆-regular implies hom(C2k, G) ≥ ∆2k, i.e. that hom(C2k, G)1/2k ≥ ∆.
Using this in the expression above gives

homdeg(C2k, G) ≤ 32k3/2∆−1/2n1/2k hom(C2k, G).

Note that if ∆ > 212k3n1/k then this implies hom(C2k, G) > homdeg(C2k, G), i.e. that G
contains a C2k homomorphism (x1, . . . , x2k) such that (xi, xi+1) ̸∼ (xj, xj+1) for any i ̸= j. By
definition of ∼ this would imply G contains a rainbow cycle, a contradiction. We thus must
have ∆ = O(n1/k), i.e. e(G) = O(n1+1/k) as desired.

The contradiction coming from ∆ ≫ k3n1/k at the end of this proof implies that if G is
a properly-colored regular graph with at least Ω(n(log n)3) edges, then G contains a rainbow
cycle, namely one of length Θ(log n), and Janzer was able to get around this regularity condition
at the cost of a log n to prove his upper bound ex∗(n, C) = O(n(log n)4) mentioned previously.

It remains to prove Proposition 32.3, which we will do through the following basic spectral
graph theory result.

Lemma 32.5. If G is an n-vertex graph and λ1, . . . , λn are the eigenvalues of its adjacency
matrix A, then hom(C2ℓ, G) =

∑
λ2ℓi for all ℓ ≥ 0.

Proof. It is easy to check that entrywise we have At
u,v = wt(u, v) for all u, v ∈ G and t ∈ N. In

particular, the total number of closed walks of length 2ℓ equals
∑

uA
2ℓ
u,u = Tr(A2ℓ). The result

follows since the eigenvalues for A2ℓ are λ2ℓ1 , . . . , λ
2ℓ
n .

We now move onto prove our technical homomorphism inequalities.
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Proof of Proposition 32.3. We begin by proving (b). By the lemma above, we in particular
have hom(C2k, G) ≥ λ2k1 where λ1 is the largest eigenvalue of the adjacency matrix A, so it will

suffice to show λ1 ≥ 2e(G)
n

. To this end, we observe by the Raleigh quotient that

λ1 = max
v

vTAv

vTv
,

and taking v to be the all 1 vector exactly gives λ1 ≥ 2e(G)
n

, proving the result.

For (a), we first claim that for any ℓ ≥ 2 we have

hom(C2ℓ−2, G)

hom(C2ℓ−4, G)
≤ hom(C2ℓ, G)

hom(C2ℓ−2, G)
. (31)

Indeed, this is equivalent to claiming hom(C2ℓ, G) hom(C2ℓ−4, G) ≥ hom(C2ℓ−2, G)2, and by the
lemma above this is equivalent to showing(∑

i

λ2ℓi

)(∑
i

λ2ℓ−4
i

)
≥

(∑
i

λ2ℓ−2
i

)2

,

which follows from the Cauchy-Schwartz inequality (applied with xi = λℓi and yi = λℓ−2
i ),

proving the claim.

By iteratively applying (31), we find that

hom(C2k, G)

hom(C0, G)
=

hom(C2k, G)

hom(C2k−2, G)
· · · hom(C2, G)

hom(C0, G)
≤
(

hom(C2k, G)

hom(C2k−2, G)

)k

.

Rearranging this inequality and using hom(C0, G) = n gives the desired result.

32.3 An Alternative Approach

Here we discuss an alternative way to prove ex∗(n,C2k) = O(n1+1/k) due to [124] whose general
approach is perhaps more intuitive than Janzer’s original proof. Roughly speaking, their main
result shows that if a large proportion of the homorphisms from C2k are degenerate, then in
fact a large proportion of them are “extremely” degenerate, i.e. come from mapping all of the
vertices of even index in C2k to the same vertex in G, which is the same as a homomorphism from
K1,k. At a high level, they prove this result by considering a sequence of graphs F0, . . . , Fk−1 of
increasing “degeneracy” starting with F0 = C2k and ending with Fk−1 = K1,k, and then from
here iteratively show that hom(Fs+1, G) ≈ hom(Fs, G) for all s, concluding with hom(K1,k, G) ≈
hom(C2k, G) ≈ homdeg(C2k, G) since we assumed a large proportion of homomorphisms are
degenerate.

More precisely, the key homomorphism inequality proved in [124] is the following1, where here
we again denote homomorphisms of C2k to G by sequences (x1, . . . , x2k) such that xixi+1 ∈ E(G)
for all 1 ≤ i ≤ 2k.

1Strictly speaking they prove this bound only under the hypothesis that G has no rainbow C2k, i.e. when
D = 1, but it is easy to derive our formulation from their proof.
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Lemma 32.6. Given a graph G with a proper edge coloring, let homdeg(C2k, G) denote the
number of C2k homomorphisms (x1, . . . , x2k) where some vertex or edge color is repeated. If
there exists D > 0 such that hom(C2k, G) ≤ D · homdeg(C2k, G), then

homdeg(C2k, G) ≤ (4k2D)k−1 hom(K1,k, G).

Note that we trivially have hom(K1,k, G) ≤ homdeg(C2k, G) since each K1,k homomorphism can
be viewed as a homomorphism of C2k where each vertex of even index gets mapped to the
same vertex in G, so this lemma says that this trivial bound is close to tight whenever a large
proportion of the C2k homomorphisms are degenerate. This bound is particularly useful since
hom(K1,k, G) depends only on the degree sequence of G and hence is easy to bound.

Sketch of Proof. While the high level ideas of this proof are rather clean, the exact computations
are somewhat lengthy. As such, we will omit most of the computations here and focus mostly
on the core ideas running through the argument.

As noted above, we can essentially think of K1,k as counting the homomorphisms of C2k where
all the vertices of even index map to the same vertex in G, and ultimately we want to show that
such “very degenerate” homomorphisms are close to counting the total number of degenerate
homomorphisms. We will do this by “improving” the degeneracy of these “very degenerate”
homomorphisms one step at a time while making sure that the total count does not change
much as we do this.

More precisely, for 0 ≤ s ≤ k−1 we let Os denote the set of cycle homomorphisms (x1, . . . , x2k)
such that x1 = x3 = · · · = x2s+1. Essentially then, Os corresponds to the homomorphisms of
the graph which is defined by taking a K1,s and attaching a C2k−2s to its center vertex. In
particular, |O0| = hom(C2k, G) and |Ok−1| = hom(K1,k, G).

Note that we trivially have |Os| ≤ |Os−1| for all s, and we would like to show that this is close

to an equality. As a first step, we show that the successive ratios |Os−1|
|Os| are decreasing in s,

from which we will only need to bound the first ratio to get an effective bound. More precisely,
we show the following.

Claim 32.7. For all 1 ≤ s ≤ k − 2, we have |Os|2 ≤ |Os−1||Os+1|.

Proof. We prove only the case when s is odd, the s even case being similar but requiring a bit
more care. Define a star walk of length 2ℓ to be a walk of the form (u1, . . . , u2ℓ+1) such that
u1 = u3 = · · · = u2ℓ+1, and let σ2ℓ(x) denote the number of such walks with u1 = x.

Observe that each homomorphism in Os can be counted as follows: (1) fix x := x1 = x3 = · · · =
x2s+1 and z = xk+s+2, (2) choose a walk (xk+s+2, xk+s+3, . . . , x2k, x1) of length k − s− 1 from z
to x, (3) choose a star walk (x1, x2, . . . , xs+2) of length s+ 2 from x back to itself, (4) choose a
walk (xk+s+2, xk+s+1, . . . , x2s+1) from z to x, (5) choose a star-walk (x2s+1, x2s, . . . , xs+2) from
x to itself. In total then, this implies

|Os| =
∑
x,z

wk−s−1(z, x)σs+1(x)wk−s+1(z, x)σs−1(x),

216



so by the Cauchy-Schwartz inequality we have

|Os|2 ≤

(∑
x,z

wk−s−1(z, x)2σs+1(s)
2

)(∑
x,z

wk−s+1(z, x)2σs−1(s)
2

)
= |Os+1||Os−1|,

where the last inequality follows a similar logic as above.

Note that this claim implies

hom(C2k, G)

hom(K1,k, G)
=

|O0|
|Ok−1|

=
k−2∏
s=0

|Os|
|Os+1|

≤
(

hom(C2k, G)

|O1|

)k−1

, (32)

and since hom(C2k, G) and homdeg(C2k, G) differ by a constant factor, it will suffice to show
homdeg(C2k, G) differs by a constant factor from |O1|, i.e. those C2k homomorphisms with
x1 = x3.

Note that |O1| is a lower bound for homdeg(C2k, G), but there exist many more homomorphisms,
e.g. those with x1 = xi for some i > 3, and we might think of such homomorphisms as being
“more degenerate” the larger i is. As we did for the Os sets, we will be able to make small
moves to show that these “more degenerate” homomorphisms behave similarly to O1. To this
end, we define Us to be the set of homomorphisms (x1, . . . , x2k) with x1 = xs+2, noting that
U1 = O1.

Claim 32.8. For all 1 ≤ s ≤ k − 1, we have |Us|2 ≤ |U1| · |U2s−1|. In particular, we have
|Us| ≤ |U1| for all 1 ≤ s ≤ 2k − 3.

The first half of the claim is proved similarly to the previous claim by decomposing the ho-
momorphism into certain walks and then using Cauchy-Schwartz; we omit the details. The
second half follows after observing that |Us| = |U2k−2−s| by symmetry to utilize e.g. |Uk−1|2 ≤
|U1| · |U2k−3| = |U1|2.

Observe that if a homomorphism (x1, . . . , x2k) has xi = xj for some i ̸= j, then we can cyclically
rotate this so that i = 1 and 3 ≤ j ≤ k + 1. As such, the claim above implies that the number
of degenerate homomrphisms with xi = xj for some i ̸= j is at most

2k
k−1∑
s=1

|Us| ≤ 2k2|U1| = 2k2|O1|.

The degenerate homomorphisms with xixi+1 colored the same as xjxj+1 can be dealt with in
a similar way: here we define Fs to be those homomorphisms with x1x2 colored the same as
xs+1xs+2 (noting F1 = U1 = Os). The exact same claim and bounds for Us continue to hold for
Fs with similar proofs, in total giving the bound

homdeg(C2k, G) ≤ 4k2|O1|,

or equivalently
hom(C2k, G) ≤ 4k2D|O1|

by the hypothesis of the lemma. This combined with (32) gives the desired result.
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This lemma quickly gives another proof of Theorem 32.4 showing that ex∗(n,C2k) = O(n1+1/k).

Alternative Proof of Theorem 32.4. As in our first proof, we will for simplicity work with a
properly colored n-vertex graph G which is regular, say of degree ∆, and which contains no rain-
bow C2k. In the language of Lemma 32.6, not containing a rainbow C2k means homdeg(C2k, G) =
hom(C2k, G). This implies D = 1 in Lemma 32.6, so we conclude that

hom(C2k, G) = homdeg(C2k, G) ≤ (4k2)k−1 hom(K1,k, G) = (4k2)k−1∆kn.

On the other hand, we have from Proposition 32.3(b) that hom(C2k, G) ≥ ∆2k, so in total we
find ∆ ≤ 4k2n1/k as desired.

Similar to our comment after the original proof of Theorem 32.4, this proof shows that if G
is a properly colored regular graph without any rainbow cycle then e(G) = O(n(log n)2), and
by utilizing a more careful regularization argument than that of Janzer they were able to show
ex∗(n, C) = O(n(log n)2). This same upper bound ex∗(n, C) = O(n(log n)2) was also obtained
independently by Janzer and Sudakov [111] who developed a spiritually similar argument for
the purpose of bounding Turán numbers of certain bipartite graphs F such as hypercubes.
As in the present writeup, their guiding principle was to show that if a large proportion of a
graphs F homomorphisms are degenerate, then most degenerate homomorphisms are in fact
“very degenerate” in the sense that they can bounded by the number of star homomorphisms
(i.e. by those F homomorphisms which map one of the parts of F to a single vertex).
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33 Expansion and α-maximality

This needs to be heavily rewritten to incorporate improvements to the bounds
and the claimed simplification mentioned at the end of “Towards the Erdős-Gallai
Cycle Decomposition conjecture”

One of the nice features of random graphs is that they have good expansion properties; e.g.
any set of vertices B ⊆ V (Gn,p) is likely to have about pn|B| edges leaving B provided B is not
too small. It is too much to ask that a graph has such strong expansion properties in general,
but it is often the case that one can find subgraphs of arbitrary graphs which have reasonable
expansion properties. There are many techniques in the field that achieve this end. The focus
on this chapter will be an approached introduced by Tomon [178] which has the advantage of
being both simple to state and powerful in applications.

Definition 17. Given a real number α, we say that a graph G is α-maximal if e(G)/v(G)1+α =
maxH⊆G e(H)/v(H)1+α. Equivalently, this says that if e(G) = γ · v(G)1+α, then e(H) ≤ γ ·
v(H)1+α for all H ⊆ G.

Observe that every graph has an α-maximal subgraph.

The motivation for this definition is that often in extremal graph theory, one wants to prove that
graphs with e(G) ≥ γv(G)1+α contain some desired structure. If such a result were true, then
in particular any α-maximal subgraph of G must contain this structure, so being α-maximal
is essentially the hardest case that one can consider. Moreover, it turns out that by reducing
to α-maximal graphs, one gains a lot of nice expansion properties. Here and throughout this
section we let N(B) be the set of vertices y /∈ N(B) which are adjacent to a vertex in B, and
we let d(G) denote the average degree of G.

Proposition 33.1. Let G be an n-vertex α-maximal graph with α ∈ (0, 1] and d(G) = γnα,
and let B ⊆ V (G) be such that |B| ≤ n/2.

(i) If G is non-empty, then γ ≥ 1
2
.

(ii) The minimum degree of G is at least 1
2
d(G) = 1

2
γnα.

(iii) We have e(B,N(B)) ≥ 1
4
γnα|B|(1 + α− (2|B|/n)α).

(iv) We have |N(B)| > |B|((1 + 1
2
α)( n

2|B|)
α/(1+α) − 1).

The main benefit of (i) is that the bound is an absolute constant independent of α. Condition (ii)
is obviously convenient to have. Note that in Gn,p with p = γnα/n, we have E[[e(B,N(B))] ≈
γnα|B| as long as |B| ≤ n/2, so the level of expansion in (iii) is about as much as we could hope
for. The bound for (iv) is roughly (nα|B|)1/(1+α), which is best possible when |B| ≈ n Though
beyond this I don’t have much intuition for why this is a reasonable condition to
shoot for.

Proof. For (i), taking H ⊆ G to be a single edge implies d(H)/v(H)α = 2−α ≥ 1
2
, so the same

bound holds for G.
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For (ii), let v be a vertex of minimum degree δ and let H = G − v. We have d(H)/v(H)α ≤
d(G)/v(G)α by definition of α-maximality, which is equivalent to

d(G)n− 2δ

(n− 1)1+α
≤ d(G)

nα
.

This implies
1

2
d(G)(n− (n− 1)1+α

nα
) ≤ δ,

showing δ ≥ 1
2
d(G).

For (iii) and (iv), let C = V (G) \B. With this we have

e(B,N(B)) = e(G[B ∪ C]) − e(G[B]) − e(G[C]) =
1

2
γ(|B| + |C|)1+α − e(G[B]) − e(G[C])

≥ 1

2
γ|C|1+α((1 + |B|/|C|)1+α − 1

2
γ|B|1+α − 1

2
γ|C|1+α.

Using (1 + |B|/|C|)1+α ≥ 1 + (1 + α)|B|/|C| and that |C| ≥ (n/2)α ≥ 1
2
nα, we find that this is

at least
1

2
γ(1 + α)|B||C|α − 1

2
γ|B|1+α ≥ 1

2
γ|B|(1

2
(1 + α)nα − |B|α),

giving (iii).

Similarly for (iv) we observe

e(G[B ∪N(B)]) ≥ e(G[B ∪C])− e(G[C]) ≥ 1

2
γ(|B|+ |C|)1+α − 1

2
γ|C|1+α ≥ 1

2
γ(1 +α)|B||C|α.

However, by α-maximality we have e(G[B ∪N(B)]) ≤ 1
2
γ(|B| + |N(B)|)1+α. Combining these

inequalities gives
|N(B)| ≥ ((1 + α)|B||C|α)1/(1+α) − |B|,

giving the result.

Our main application of α-maximal graphs will be to something called rainbow Turán numbers,
which were first introduced by Keevash, Mubayi, Sudakov, and Verstraëte [122]. We say that
a colored graph F is rainbow if all of the colors of its edges are distinct. Given a set of graphs
F , we define ex∗(n,F) to be the maximum number of edges a properly colored n-vertex graph
G can have without containing a rainbow copy of any F ∈ F .

Note that ex(n,F) ≤ ex∗(n,F) for all F (since we can take any extremal F -free graph and
give each edge a distinct color), and in general these two quantities can be somewhat far from
each other. Indeed, let C denote the set of all cycles, which means ex(n, C) = n − 1. On the
other hand, we have ex∗(n, C) ≥ n log2 n when n is a power of 2. This is because one can take
G to be an n-vertex hypercube where an edge uv is colored i if u, v differ in the ith bit. It is
not difficult to see that this is a proper coloring which contains no rainbow cycles.

Even though the problem of determining ex(n, C) is easy, determining ex∗(n, C) is an open
and seemingly difficult problem. The first non-trivial upper bounds on ex∗(n, C) were estab-
lished by Das, Lee, and Sudakov [55], and later O. Janzer [110] managed to prove ex∗(n, C) =
O((log n)4n). Currently the best known upper bound is the following result due to Tomon [178].
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Theorem 33.2 ([178]). We have ex∗(n, C) = (log n)2+o(1)n.

The main lemma we need to prove this is the following. Here a Q-rainbow path refers to a
rainbow path which only uses colors in the set Q.

Lemma 33.3. Given pc ∈ (0, 1), there exists a constant C such that the following holds. Let
λ > C(log log n)10, and let G be an n-vertex α-maximal graph with proper coloring c : E(G) → R
and d(G) > Cλ2α−2nα. If Q ⊆ R is chosen by including each color independently and with

probability pc, then for every v ∈ V (G), with probability at least 1−O(α−1e−Ω(λ1/2)) at least n/3
vertices of G can be reached by a Q-rainbow path.

Before proving this lemma, let us first show how this implies the main result.

Proof of Theorem 33.2. Let G be an n-vertex graph with e(G) ≥ 2(log n)2+ϵn and c : E(G) →
R a proper coloring, and let α = 1/ log2(G) and λ = (log n)ϵ/10. Let H be a subgraph of
G maximizing d(H)/v(H)α and m = v(H). Note that H is α-maximal and d(H) ≥ d(G) ·
(v(H)/v(G))α ≥ 1

2
d(G) due to our choice of α, and this quantity is at least Cλ2α−2mα for n

sufficiently large.

Pick some v ∈ V (H). Partition R into four parts Q1, Q2, Q3, Q4 be independently and uniformly
at random assigning each color to one of these sets, and let Bi be the set of vertices that can
be reached by v with a Qi-path. By Lemma 33.3 with pc = 1/4, we see that with probability
at least 4/5 we have |Bi| ≥ n/3, so there exists some partition Q1, . . . , Q4 such that |Bi| ≥ n/3
holds for all i.

Note that Bi∩Bj ̸= ∅ for some i ̸= j, and let w ∈ Bi∩Bj. By definition this means there exist
rainbow paths Pi, Pj from v to w using colors in Qi, Qj. Thus the union of these two paths is
a rainbow graph which contains a cycle, proving the result.

It remains to prove Lemma 33.3. Given a graph G and a proper coloring c : E(G) → R, define
NQ,ϕ(v) with ϕ : V (G) → 2V (G)∪R to be the set of vertices w with vw ∈ E(G), c(vw) ∈ Q\ϕ(v),
and w /∈ ϕ(v). That is, the is the neighborhood if we restrict to colors in Q and forbid some set
of neighbors/colors for v to use. We define NQ,ϕ(B) =

⋃
v∈B NQ,ϕ(v)\B. To prove Lemma 33.3,

we show that α-maximal graphs have vertex expansion about as strong as in Proposition 33.1
even when forbidding some colors/vertices.

Lemma 33.4. Let pc, α ∈ (0, 1], let n be a positive integer and λ > 1010. Let G be an n-vertex
graph, c : E(G) → R a proper edge coloring, and B ⊆ V (G) such that the following hold:

� G is α-maximal

� d := d(G) ≥ λ(pc · α)−1,

� ϕ : V (G) → 2V (G)∪R is such that |ϕ(v)| ≤ dα/32 for all v ∈ V (G), and

� 2λ2p−1
c < |B| < n/2.
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Let Q ⊆ R be obtained by including each color independently and with probability pc. Then with
probability at least 1 − e−Ω(λ1/2) we have

|NQ,ϕ(B)| ≥ 1

4
|B|min

{
d · pc · α
64λ1/2

,

(
n

2|B|

)α/(1+α)

− 1

}

Proof. Let d = γnα, and let H be the bipartite (uncolored) graph on B ∪ N(B) such that
x ∈ B and y ∈ N(B) are adjacent if xy ∈ E(G), y /∈ ϕ(x) and c(xy) /∈ ϕ(x). Let HQ ⊆ H
be the (random) subgraph which only includes edges xy with c(xy) ∈ Q. Thus our problem is
equivalent to showing |NHQ

(B)| is large with high probability.

Since we’re aiming something comparable to that of Proposition 33.1 (namely, this is basically
what we get when the right term in the lemma achieves the minimum), one might try to just
naively replicate that proof. This almost works, but to get things to occur with high probability
we need the vertices of NH(B) to have large degrees. To this end, let S ⊆ NH(B) be the vertices
w such that |NH(w) ∩B| ≥ λ1/2p−1

c =: ∆, and let T = NG(B) \ S.

Claim 33.5. If eG(B, T ) ≤ dα|B|/16, then the result follows.

Note that the claim involves edges of the original graph G, not H.

Proof. Let C = V (G) \ B, noting that |C|α ≥ (1
2
n)α ≥ 1

2
nα, and since d ≥ 1

2
γnα by Proposi-

tion 33.1, we conclude

eG(B, T ) ≤ 1

8
αγ|B||C|α.

Note that
E(G) = E(G[B ∪ S]) ∪ E(G[C]) ∪ E(G[B, T ]),

where E(G[B′, T ]) denotes the set of edges of G with one end in B′ and the other in T . To see
this, we note that vertices of B can only be adjacent to vertices of B ∪ NG(B) = B ∪ S ∪ T .
With this we have

eG(B ∪ S) ≥ e(G)−e(G[C]) − eG(B, T )

≥ 1

2
γ(|B| + |C|)1+α−1

2
γ|C|1+α − 1

8
αγ|B||C|α,

where this inequality used e(G) = 1
2
γn1+α = 1

2
γ(|B′|+|C|)1+α, α-maximality, and the inequality

noted above. Note that

(|B| + |C|)1+α = |C|1+α(1 + |B|/|C|)1+α ≥ |C|1+α + (1 + α)|B||C|α.

Using this gives

eG(B ∪ S) ≥ 1

2
γ(1 + α)|B|C|α − 1

8
αγ|B||C|α ≥ 1

2
γ(1 +

1

2
α)|B||C|α.

By α-maximality we have eG(B ∪ S) ≤ 1
2
γ(|B| + |S|)1+α, so in total this implies

|S| ≥
(

(1 +
1

2
α)|B||C|α

)1/(1+α)

− |B|.
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For w ∈ S, let Xw be the indicator random variable for the event w /∈ NHQ
(B). Then

Pr[Xw = 1] = (1 − pc)
dHQ

(w) ≤ (1 − pc)
∆ ≤ e−λ1/2

.

Thus if X =
∑

w∈S Xw then E[X] ≤ |S|e−λ1/2
, and by Markov’s inequality this means Pr[X ≥

|S|/2] ≤ 2e−λ1/2
. This gives the result.

From now on we assume eG(B, T ) > dα|B|/16. For each w ∈ T , let Yw be the indicator random
variable for the event w ∈ NHQ

(B). Then by the inequality (1 − a)b ≥ 1 − 1
2
ab for ab < 1

2
,

E[Yw] = 1 − (1 − pc)
dH(w) ≥ 1

2
min{1, pc · dH(w)}.

We partition T into two sets based on which term prevails in this minimum. Namely, let
T1 = {w ∈ T : dH(w) ≤ p−1

c } and T2 = T \ T1. If Y =
∑

w∈T Yw, then

E[Y ] ≥
∑
w∈t1

1

2
pc · dH(w) +

1

2
|T2| =

1

2
pceH(B, T1) +

1

2
|T2| ≥

1

2
pceH(B, T1) +

1

2
λ−1/2pceH(B, T2),

where this last step used that each vertex of T2 ⊆ T has degree at most ∆ = λ1/2p−1
c in H.

Thus

E[Y ] ≥ 1

2
λ−1/2pceH(B, T ).

By hypothesis,

eH(B, T ) ≥ eG(B, T ) −
∑
v∈B

|ϕ(v)| ≥ 1

32
dα|B|.

This together with the hypothesis d ≥ λ1/2(pc · α)−1 implies E[Y ] ≥ 1
64
λ1/2|B|.

Note that Y is a function of which colors survive in Q. Each color appears at most |B|
times since G is properly colored, so changing Q by a single element changes Y by at most
|B|, i.e. Y is |B|-Lipschitz. By the multiplicative Azuma inequality (Lemma 4.8), we have
Pr[Y ≤ 1

2
E[Y ]] ≤ e−Ω(λ). Since Y = |NHQ

(B)|, we conclude the result.

Proof of Lemma 33.3. Similar to our proofs involving spread hypergraphs, we will iteratively
generate random sets Qi a total of ℓ = 100α−1 log log(n) times and take Q =

⋃
Qi, iteratively

arguing that each Qi is likely to have good properties.

Let qc be the unique solution to pc = 1− (1− qc)
ℓ; the main take away being that qc = Ω(pc/ℓ).

For 1 ≤ i ≤ ℓ, letQi be obtained by including each color ofR independently and with probability
qc (and independent of any other Qj set), noting that

⋃ℓ
i=1Qi has the same distribution as Q.

Let Bi be the set of vertices x that can be reached from v by some (Q1∪· · ·∪Qi)-rainbow path
Px of length at most i. Let ϕi : V (G) → 2V (G)∪R be the function which maps to the vertices
and colors of Px if x ∈ Bi, and otherwise ϕ(x) = ∅. Note that |ϕi(x)| ≤ 2i ≤ 2ℓ. We wish to
show that |Bi| is rapidly increasing with high probability.
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First note that B1 is just the set of neighbors of v with c(vx) ∈ Q1. By Proposition 33.1 we have
d(v) ≥ 1

2
d, so E[|B1|] ≥ 1

2
dqc. Thus by the Chernoff bound we will have |B1| ≥ 1

4
dqc > 2λ2q−1

c

with high probability, so from now on we assume this is the case..

Note that NQi,ϕi
(Bi ∩ Ui) ⊆ Bi+1. Since d ≥ λ2(α · qc)−1nα by hypothesis, and since |Bi| ≥

|B1| > 2λ2q−1
c , as long as |Bi| < n/3 we can apply Lemma 33.4 to get

NQi,ϕi
(Bi) ≥

1

4
|Bi|min

{
d · qc · α
64λ1/2

,

(
n

2|Bi|

)α/(1+α)

− 1

}
with probability at least 1− e−Ω(λ1/2). Note that the leftside of the minimum is always at least
nα, so the minimum is always achieved by the righthand side. Using this and α ≤ 1 gives

|NQi,ϕi
(Bi)| ≥

1

4
|Bi|((n/2|Bi|)α/2) − 1)

with probability at least 1 − e−Ω(λ1/2). Thus with probability at least 1 − ℓe−Ω(λ1/2) = 1 −
O(α−1e−Ω(λ1/2)) this holds for all i (note that the log log(n) gets absorbed by e−Ω(λ1/2)) since
λ ≥ (log log n)2). We claim that this implies |Bℓ−1| ≥ n/3. And indeed, using that |Bi+1| ≥
|Bi|+ |NQi,ϕi

(Bi)| (since Bi and N(Bi) ⊇ NQi,ϕi
(Bi) by definition), one can prove by induction

that |Bi| ≥ (n/2)1−(1−α/16)i provided |Bi−1| ≤ n/3. This gives the result.

Tomon [178] proved several other nice results using a result which extends Lemma 33.3 in two
ways. The first way is by enforcing short paths from v provided we don’t require v to reach
as many vertices (and it is easy to adapt our current proof to achieve this end). The other
extension is that it allows one to sample a random set of vertices U ⊆ V (G) in addition to a
random set of colors, and which guarantees short paths from v to a large set of vertices. To
state such a result, we say that a path is a (U,Q)-rainbow path if it is a rainbow path whose
internal vertices all lie in U and whose colors all lie in U .

Lemma 33.6. There exists a sufficiently large constant C such that the following holds. Let
p, pc, α ∈ (0, 1], n a positive integer, τ ∈ [1/ log3 n,

1
2
), and λ > C(log log n)10. Let G be an

n-vertex α-maximal graph with proper edge coloring c : E(G) → R with average degree d = d(G)
satisfying either d > Cλ2(α2 · p2c)−1nα if p = 1, and otherwise d > Cλ2(α3 · p · p2c)−1nα.

Let U ⊆ V (G) be obtained by including each vertex independently and with probability p, and

similarly define Q ⊆ R. For each v ∈ V (G), with probability at least 1−O(α−1e−Ω(λ1/2)), at least
n1−τ vertices of G can be reached from v by a (U,Q)-path of length at most O(α−1 log(1/τ)).

To prove this, one needs to extend Lemma 33.4 to say that the same conclusion holds for
NQ,ϕ(U) with U ⊆ B obtained by including each vertex independently and with probability p.
This isn’t too hard to prove if the vertices of B all have reasonable maximum degree, and one
extra case deals with the situation where this doesn’t happen.

With Lemma 33.6 it is possible to prove results about rainbow Turán numbers of subdivisions of
Kt. To this end, let Kt denote the set of subdivisions of Kt (i.e. the graphs which can be obtained
by subdividing each edge of Kt some number of times). Mader [137] showed ex(n,Kt) = Ot(n),
and again the hypercube shows ex∗(n,Kt) = Ω(n log n) for t ≥ 3. Jiang, Letzter, Methuku, and
Yepremyan [112] showed ex∗(n,Kt) = O((log n)60n). These bounds were improved significantly
by Tomon [178].
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Theorem 33.7 ([178]). For all fixed t we have ex∗(n,Kt) ≤ (log n)6+o(1)n.

Proof Sketch. Let G be an n-vertex graph with e(G) ≥ 2(log n)6+ϵn and c : E(G) → R a proper
coloring, and let α = 1/ log2(G), s = (log n)1+ϵ/10, p = pc = 1/s, and λ = (log n)ϵ/10. For some
slight ease of notation we assume G is α-maximal (though it’s easy for the rest of the proof to
go through by reducing to an α-maximal subgraph). Note that by our choice of parameters,
d(G) ≥ Cλ(α3p · p2c)−1nα.

Define an auxiliary graph H where two vertices v, w are adjacent if there exist at least s/6
internally disjoint paths from v to w such that no color is used more than once int he union of
the paths.

We claim that if H has minimum degree at least n/6, then G contains a rainbow Kt-subdivision.
Indeed, by Theorem 5.9, H (easily) contains a 1-subdivision ofKt. One can then greedily replace
each edge with a rainbow path which doesn’t use any vertices or colors that have already been
used.

To show that H has this minimum degree, we apply Lemma 33.6 with the stated parameters
and τ = 1/ log3(n) to any vertex v. By a similar argument to before, this implies there exist
partitions U1, . . . , Us and Q1, . . . , Qs such that the sets Bi of vertices we can reach from v with
a (Ui, Qi)-rainbow path all have size at least n/3. This implies that there exist at least n/6
vertices w in at least s of the Bi sets, proving that dH(v) ≥ n/6.
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34 The Linear Programming Method

Throughout this section we let bold letters x denote vectors and write xi to denote the ith
coordinate of x. For vectors x,y of the same dimension, we write x ≤ y to mean xi ≤ yi for all
i. Our writing throughout will be somewhat informal in order to convey the main ideas of the
method without getting too bogged down in technicalities. More precise writing can be found
in the book by Matoušek and Gärtner [141] dedicated to this topic.

34.1 Linear Programming Basics

Many problems in extremal combinatorics can be phrased in terms of integer programs, i.e. as
problems which aim to either maximize or minimize a linear function

∑
cixi (called the objective

function) where each xi is an integer-valued variable satisfying a set of linear inequalities and
equalities. An assignment of each of the xi variables to some value such that they satisfy these
constraints is called a feasible solution to the program, and the maximum value of the objective
function that is achieved by a feasible solution is called the optimal value or optimum value of
the program.

As a very basic example, consider the integer program (I) which has variables x1, x2 ∈ Z defined
by

maximize x1 + x2

subject to x1 ≤ 1.5,

x2 ≤ 1.5.

In this example, x1 + x2 is the objective function, x1, x2 ≤ 1.5 are our only constraints, and
x1 = 1, x2 = 1 is a feasible solution. This feasible solution shows the optimal value of the
program is at least 2, and it is not hard to see that it is exactly 2 since x1, x2 must be integers.

For a more interesting example, consider the integer program (M) which has variables xi,j ∈ Z
for all distinct i, j ∈ [n] and is defined by

maximize
∑

1≤i<j≤n

xi,j

subject to 0 ≤ xi,j ≤ 1 ∀i ̸= j

xi,j + xi,k + xj,k ≤ 2 ∀i ̸= j ̸= k.

This program seems arbitrary at first, until one realizes its connection to a classical extremal
combinatorics problem.

Lemma 34.1. The optimal value of (M) equals ex(n,K3).

Proof. Given a triangle-free graph G on [n] with ex(n,K3) edges, define xi,j by setting xi,j = 1
if ij ∈ G and xi,j = 0 otherwise. It is not difficult to see that this is a feasible solution to (M),
and in particular the constraint xi,j + xi,k + xj,k ≤ 2 is satisfied because G is triangle-free. The
optimal value of (M) is thus at least

∑
xi,j = e(G) = ex(n,K3).

226



On the other hand, say we have some assignment xi,j to (M) achieving its optimal value.
Observe that xi,j ∈ {0, 1} for all i, j since 0 ≤ xi,j ≤ 1 must be an integer. In this case we
define a graph G on [n] by setting ij ∈ G if and only if xi,j = 1, and reversing the logic above
shows that G is triangle-free with at least as many edges as the optimal value of (M), proving
the result.

The observation above shows that Mantel’s Theorem is equivalent to saying that the optimal
value of the integer program (M) is ⌊n2/4⌋. Using similar ideas, one can rephrase many problems
in extremal combinatorics in terms of finding the solution to some integer program (such as
computing ex(n, F ) for any graph F , for example). Given this, the question now becomes: how
do we find the optimal value of an integer program in general?

As in our first example, if we have an integer program (I) which aims to maximize some objective
function ϕ, then obtaining lower bounds is pretty easy: we just plug into ϕ some explicit feasible
solution x, at which point ϕ(x) becomes a valid lower bound for the optimal value. On the
other hand, proving upper bounds is quite difficult in general. Because of this, we will try and
make things easier for ourselves by removing the requirement that the variables xi be integers,
and instead allow them to be any real number. We will call such a relaxed problem a linear
program, and it will turn out that these programs are substantially easier to solve.

For example, the linear relaxation of our very first example (I) gives the linear program (L)
which has variables x1, x2 ∈ R and is defined by

maximize x1 + x2

subject to x1, x2 ≤ 1.5.

Because this is a linear program and not an integer program, x1 = x2 = 1.5 now becomes a
feasible solution for (L) and achieves the optimal value of 3 for this program.

In the setting of linear programs we again must ask: how do we determine their optimal values
in general? If our program aims to maximize an objective function, then as before lower bounds
simply require us to plug in an explicit set of values into the variables of our objective function.
Crucially (and non-obviously), it turns out upper bounds for linear programs can be achieved
in the exact same way.

Somewhat more precisely, it turns out that for every linear program (L) which tries to maximize
some objective function ϕ, there exists a corresponding “dual program” (D) which is another
linear program that aims to minimize an objective function ψ where, crucially, the optimal
minimal value of (D) is equal to the optimal maximum value of (L). This gives the following
framework for solving problems using linear programming:

1. Phrase your extremal problem in terms of an integer program (I) which tries to, say,
maximize some objective function ϕ.

2. Consider the linear relaxation (L) of (I) and then take its corresponding dual program
(D) which aims to minimize some objective function ψ.

3. Find an explicit feasible solution for (D) and plug this into ψ. This value we obtain is
an upper bound for the optimal value of (D) (since (D) aims to minimize some function),
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which is also an upper bound for the optimal value of (L), which is an upper bound for the
optimal value of our original program (I) corresponding to our given extremal problem.

While this approach can be used to give effective upper bounds for a wide variety of problems,
we must warn the reader that these bounds can sometimes be quite far from tight. For example,
in the triangle-free integer program (M) mentioned above, if we take its linear relaxation (M’),
then one can check that setting xi,j = 2/3 for all i, j is a feasible solution, which shows the
optimum value of this linear relaxation of (M’) is at least 2

3

(
n
2

)
. As this is is much larger than

the true optimal value of ⌊n2/4⌋ for (M), we see that this linear programming approach is not
particularly useful for the problem of upper bounding ex(n,K3). That being said, there are
many cases where the gap between the optimal value of an integer program and its corresponding
linear program is very small (sometimes even 0), in which case this approach can give relatively
simple proofs for fairly difficult results.

34.2 Weak Duality

Our discussion above about upper bounding linear programs was rather vague, so let us consider
a concrete example of what we are talking about. Perhaps the simplest non-trivial linear
program is the following:

maximize x1 + x2

subject to x1, x2 ≤ 1.

It is (hopefully) clear that this linear program has optimal value 2, but let us pause for a second
and formally show why this is the case.

First off, we have a lower bound of 2 for the optimal value simply because x1 = x2 = 1 is a
feasible solution which achieves the value of 2 in the objective function. For the upper bound,
we observe that adding the inequality x1 ≤ 1 to the inequality x2 ≤ 1 gives the new inequality
x1 + x2 ≤ 2, which is exactly the upper bound on the objective function we wanted to show.

One can generalize the idea above by considering arbitrary non-negative linear combination
of the constraints, which gives the following result. Here and throughout, we encode the
constraints of our linear program as an inequality involving vectors and matrices: specifically,
we write Ax ≤ b to encode the set of inequalities

∑
j Ai,jxj ≤ bi for all i.

Lemma 34.2. Let A be an m × n matrix and b, c vectors of dimensions m,n respectively. If
(P) is the linear program with variables x ∈ Rm defined by

maximize cTx

subject to Ax ≤ b,

and if there exists a non-negative vector y of dimension m such that yTA = cT , then (P) has
optimum value at most yTb.

For instance, our example above corresponds to A = I2 and b = c = y = (1, 1), giving the
desired upper bound of 2 in this case.
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Proof. By assumption we have the constraints
∑

j Ai,jxj ≤ bi for all i. Because each yi is
non-negative by assumption, we also have the constraints

∑
yiAi,jxj ≤ yibi for all i. Adding

all of these new constraints together gives∑
i,j

yiAi,jxj ≤
∑
i

yibi.

Observe that the lefthand side equals yTAx, which in turn equals cTx by hypothesis. Similarly
the righthand side equals yTb, so the inequality above is exactly the result we aimed to prove.

In general there may be many choices of y satisfying the hypothesis above, and we can get the
best possible upper bound for (P) by choosing the y which minimizes yTb. This idea quickly
gives the following.

Corollary 34.3 (Weak Duality Theorem I). Let A be an m × n matrix and b, c vectors of
dimensions m,n respectively. Let (P) denote the linear program with variables x ∈ Rm defined
by

maximize cTx

subject to Ax ≤ b.

Let (D) denote the linear program with variables y ∈ Rn defined by

minimize bTy

subject to ATy = c

y ≥ 0.

Then the optimum value of (D) is an upper bound for the optimum value of (P).

That is, for every linear program in the form of (P), which is typically called the “primal”
program, there exists an (easy to construct) linear program (D) called the “dual” program
whose optimum value upper bounds the optimal value of (P). Moreover, since the objective
function of (D) aims to be minimized, it is significantly easier to upper bound its optimum
value compared to (P) (since to upper bound (D) we just need to plug in some feasible solution
into its objective function).

The equality constraint ATy = c in the Weak Duality Theorem can be a little restrictive to work
with. One can weaken this condition into an inequality at the cost of requiring the variables x
to be non-negative (which often holds in practice). Doing this gives the following (ultimately
equivalent) version of weak duality which is more symmetric in (P) and (D).

Theorem 34.4 (Weak Duality Theorem II). Let A be an m × n matrix and b, c vectors of
dimensions m,n respectively. Let (P) denote the linear program with variables x ∈ Rm defined
by

maximize cTx

subject to Ax ≤ b

x ≥ 0,
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and let (D) denote the linear program with variables y ∈ Rn defined by

minimize bTy

subject to ATy ≥ c

y ≥ 0.

Then the optimum value of (D) is an upper bound for the optimum value of (P).

Sketch of Proof. Given any feasible solution y to (D), we take linear combinations of the con-
straints Ax ≤ b as in Lemma 34.2 to conclude that for any feasible solution x to (P),

yTb ≥ yTAx ≥ cTx,

where this last inequality used ATy ≥ c and x ≥ 0. Taking a minimum over all such y gives
the result.

In many applications, the most natural linear program we’d like to use won’t be of the exact
form as stated in Theorem 34.4. However, there exist a number of standard tricks that can be
used to reduce every linear program into the “standard” form written out in Theorem 34.4.

As a simple example, if we have a linear program (P) where we want to minimize some function
ϕ instead of maximizing it, then we can simply consider the linear program (P’) defined in the
same way as (P) except that it aims to maximize the function −ϕ. With this, the optimal value
of (P’) is just the negation of that of (P), so it suffices to work only with (P’).

As another example, say we are considering some linear program (P) which meets the hypothesis
of Theorem 34.4 except that it has one variable x which we do not want to assume is non-
negative. In this case, we can create a new program (P’) obtained by adding two new variables
y, z, replacing every instance of x in our objective function and constraints with the expression
y − z, and then adding the non-negativity constraints y, z ≥ 0. It is not difficult to see1 that
this new program (P’) has the same optimum value of (P).

While the ideas mentioned above can be used to translate any linear program into the form of
Theorem 34.4, in practice it is often simpler to consider more general versions of Theorem 34.4
which allow for more diverse sets of constraints. In particular, an easy adaptation of the proof of
Theorem 34.4 yields the following “Dualization Recipe” which is copied verbatim form Matoušek
and Gärtner [141] and which illustrates how to efficiently translates any primal program (P)
that aims to maximize some function into a corresponding dual program. Programs which aim
to minimize a function can be translated in the same way after either replacing their objective
function with its negation or their variables with their negations. While either of these two
fixes will fix the maximization problem, they may give different looking dual programs, and
one should play around with which one gives the cleaner problem to work with.

1Namely, if an optimal solution in (P) has x ≥ 0, then we get this same optimum value in (P’) by taking
y = x and z = 0, and if x ≤ 0 we can take y = 0 and z = −x
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.

34.3 Applications to Extremal Combinatorics

Here we look at two examples of using linear programs for extremal combiantorics. For both
of these applications, we will make use of our Weak Duality Theorem II after massaging our
initial linear programs into the appropriate form needed to apply this theorem. Ultimately this
approach will yield dual programs that are not as elegant as one would get by using some form
of the Dualization Recipe mentioned above, but we persist in using this crude approach in order
to emphasize the “mechanical” nature of how to use Weak Duality in practice.

34.3.1 Covering Grids

Our first example concerns covering grids with hyperplanes. The classic result in this area is the
Alon-Füredi Theorem 17.3, which we recall says that if h1, . . . , hm are a sequence of hyperplanes
in Rd which do not contain the origin and whose union contains every other point of {0, 1}d,
then m ≥ d. Here we look at a two-way generalization of this problem as follows.

Definition 18. Given an integer k ≥ 1 and sets S1, . . . , Sd ⊆ Rd all containing 0, we say that
a sequence of hyperplanes h1, . . . , hm is a k-punctured cover if no hyperplane hi contains the
origin 0⃗ and if every other point p ∈

∏
Si \ {⃗0} is contained in at least k hyperplanes. We

let covk(S1, . . . , Sd) denote the smallest value m such that there exists a k-punctured cover
h1, . . . , hm for S1, . . . , Sd.

For example, if k = 1 and Si = {0, 1} for all i then the Alon-Füredi Theorem exactly says
cov1(S1, . . . , Sn) = d. A straightforward trivial construction gives the general upper bound
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covk(S1, . . . , Sd) ≤ k
∑

i(|Si| − 1). The best known general lower bound uses a variant of the
Combinatorial Nullstellensatz due to Ball and Serra [14] and gives

covk(S1, . . . , Sd) ≥
∑
i

(|Si| − 1) + (k − 1) max
i

(|Si| − 1).

Both of these bounds are obviously tight when d = 1. The d = 2 case was systematically
studied by Bishnoi, Boyadzhiyska, Das, and den Bakker [27], who showed that the lower bound
of Ball and Serra is tight provided |S1| ≥ k|S2|. However, by adapting a linear programming
approach due to Clifton and Huang [47], they were able to greatly improve upon the Ball and
Serra bound whenever |S1| ≈ |S2|. For simplicity we will only prove the following, where here
we say that a point p ∈ S1 × S2 is an axis point if it lies on either the x-axis or y-axis, and we
say that p is a generic point otherwise.

Theorem 34.5 ([27]). If S1, S2 ⊆ R are such that 0 ∈ S1 ∩ S2 and |S1| = |S2| = n, then
covk(S1, S2) ≤ ⌈3k/2⌉(n − 1). Moreover, if every line in R2 which contains at least two axis
points of S1 × S2 contains no generic points, then

3

2
k(n− 1) ≤ covk(S1, S2) ≤

⌈
3

2
k

⌉
(n− 1).

Note that if S1, S2 are “random” sets of size n then this moreover condition applies with
probability 1, so this result solves the problem for “most” grids S1 × S2 of equal side lengths.

Proof. The result is trivial if n = 1, so we assume n ≥ 2 from now on. We omit the proof of the
upper which follows by constructing some (not too complicated) explicit cover, and we instead
focus on the lower bound which uses the linear programming method.

Let’s begin by informally talking out loud about how to derive an appropriate linear program to
work with. The objective function should ultimately measure how many lines (i.e. hyperplanes)
we use in our k-punctured cover. To this end, for each line ℓ we introduce a variable xℓ which
measures how many copies of ℓ we use in our cover and then take

∑
ℓ xℓ to be our objective

function. There is a snag in this approach, which is that naively we are summing over an
infinite set of lines ℓ, making our sum ill-defined. However, it is easy to reduce the sum down
to a finite set: take L to be the set of lines which contain at least two points of S1 × S2 and
which do not contain (0, 0), noting that this is a finite set. It is not difficult to see that there
exists a k-punctured cover of S1 × S2 of size covk(S1, S2) which only uses lines from L, since
any line ℓ /∈ L (which covers at most 1 point (a, b) ̸= (0, 0) of S1 ×S2 by definition) used in the
cover can be replaced by some ℓ′ ∈ L which also covers (a, b) while maintaining that this is a
k-punctured cover.

With the above in mind, we define a linear program (P) with variables xℓ for each ℓ ∈ L by

minimize
∑
ℓ∈L

xℓ

subject to
∑
ℓ∋p

xℓ ≥ k ∀p ∈ S1 × S2 \ {(0, 0)}

x ≥ 0.
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Observe that if (P) were an integer program then its optimal value would exactly equal
covk(S1, S2), and as a linear program its optimal value (which can only be smaller than that of
its corresponding integer program) serves as a lower bound for covk(S1, S2). In total this gives
the following.

Claim 34.6. To prove the result, it suffices to show the optimal value of (P) is at least 3
2
k(n−1).

At this point a real expert in using the linear programming method would immediately take
the appropriate dual of (P) and go from there, but we’ll take things a little slowly here. In
particular, we will first replace (P) with an equivalent linear program (P’) which is in the
format needed to apply our (stated version of) the Weak Duality Theorem, giving the following
equivalent version of the previous claim.

Claim 34.7. To prove the result, it suffices to show the optimal value of the linear program
(P’) with variables xℓ for ℓ ∈ L defined by

maximize
∑
ℓ∈L

−xℓ

subject to
∑
ℓ∋p

−xℓ ≤ −k ∀p ∈ S1 × S2 \ {(0, 0)}

x ≥ 0

has optimum value at most −3
2
k(n− 1).

In the language of Theorem 34.4, we have c = (−1,−1, . . .), b = (−k,−k, . . .), and A the matrix
with rows indexed by S1 × S2 \ {(0, 0)} and columns indexed by L such that Ap,ℓ = −1 if p ∈ ℓ
and Ap,ℓ = 0 otherwise. Applying Theorem 34.4 then gives the following.

Claim 34.8. To prove the result, it suffices to show the optimal value of the linear program
(D’) with variables yp for p ∈ S1 × S2 \ {(0, 0)} defined by

minimize
∑

p∈S1×S2\{(0,0)}

−kyp

subject to
∑
p∈ℓ

−yℓ ≥ −1 ∀ℓ ∈ L

y ≥ 0

has optimum value at most −3
2
k(n− 1).

All that remains now is to choose some specific weightings for the yp which satisfy the constraints
above and which have

∑
yp ≥ 3

2
k(n − 1) sufficiently large. Since our hypothesis on S1, S2

mirrors the case that these sets are random, there is not much structure for us to work with in
determining our weighting other than the fact that some points are axis-points while others are
generic. Because of this, we might first try the very naive strategy of choosing some α, γ ≥ 0
and assigning yp = α for every axis-point p and yp = γ for every generic-point. It remains to
check which (smallest) values of α, γ make this a feasible solution for (D’).

To this end, the only thing that we need to check is that every line ℓ ∈ L has
∑
yp ≤ 1. By

our hypothesis, any line ℓ ∈ L which contains at least two axis-points contains only these two
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axis-points (note that ℓ ∈ L can not be equal to either the x-axis or the y-axis because it must
avoid (0, 0) by definition of L), so all of these lines give the constraint

2α ≤ 1.

Otherwise, ℓ can contain at most one axis-point and at most n − 1 generic-points, giving the
constraint

α + (n− 1)γ ≤ 1.

Because there are (2n− 2) axis-points and (n− 1)2 generic points, these conditions imply that
our objective function satisfies

−k
∑
p

yp = −k((2n−2)α+ (n−1)2γ) = −k(n−1) · (α+α+ (n−1)γ) ≤ −k(n−1) · (1/2 + 1) .

Moreover, equality holds only if α = 1/2 and γ = 1
2(n−1)

. One can check that taking these

values for α, γ does indeed give a feasible solution to (D’) with the desired value for its objective
function, proving the result.

Many more results in the spirit of Theorem 34.5 are proven in [27]. For example, an essentially
identical proof gives the same asymptotic lower bound if we weaken the hypothesis of Theo-
rem 34.5 to allow a bounded number of generic-points on lines containing two axis-points. A
very similar argument can also be used to give essentially tight lower bounds even if we drop the
hypothesis |S1| = |S2|, though in this case one needs to use two different weights for axis-points
depending on if they lie on the shorter or the longer axis.

34.3.2 Average Sizes in Antichains

Our next result concerns antichains.

Theorem 34.9. If F ⊆ 2[n] is an antichain with |F| ≥
(
n
r

)
for some r ≤ n/2, then

|F|−1
∑
A∈F

|A| ≥ r.

Equivalently, this says that if |F| ≥
(
n
r

)
, then the average size of its elements is at least r,

which is best possible by considering F =
(
[n]
r

)
. This result was original proven by Kleitman

and Milner [128] in two ways, and also proven independently by Hochberg [107] with another
approach. Here we present the linear programming proof of Kleitman and Milner.

Proof. We will prove this result using the linear programming method. We note, however, that
it is not at all obvious that this should be a reasonable approach to try for this problem1.
Indeed, there does not seem to be any way of encoding the fact that F is an antichain through
linear constraints. The key insight is that, although there is no linear constraints that hold

1Other than the fact that we have put this result in a chapter about using linear programming, of course
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iff F is an antichain, there is an important linear constraint which every antichain satisfies,
namely the LYM inequality Corollary 2.5, which states that

∑
A∈F

(
n

|A|

)−1

≤ 1.

From this we can conclude the following.

Claim 34.10. To prove the result, it suffices to show that the linear program (P) with variables
x ∈ Rn defined by

minimize
∑
i

ixi

subject to
∑
i

xi ≥
(
n

r

)
∑
i

(
n

i

)−1

xi ≤ 1

x ≥ 0

has optimum value at least r
(
n
r

)
.

Proof. Assume that we could do this and let F be an antichain of size at least
(
n
r

)
. Let xi

denote the number of elements of F of size i, noting that this implies xi ≥ 0, that
∑
xi ≥

(
n
r

)
,

and that
∑(

n
i

)−1
xi ≤ 1 by the LYM inequality. It follows from our hypothesis on (P) that∑

ixi ≥ r
(
n
r

)
, which is exactly what we aimed to show.

Again, it is not too difficult to work with the program (P) directly, but we’ll instead translate
it into the form needed to apply our Weak Duality Theorem II.

Claim 34.11. To prove the result, it suffices to show that the linear program (P’) with variables
x ∈ Rn defined by

maximize
∑
i

−ixi

subject to
∑
i

−xi ≤ −
(
n

r

)
∑
i

(
n

i

)−1

xi ≤ 1

x ≥ 0

has optimum value at most −r
(
n
r

)
.

In the language of the Weak Duality Theorem Theorem 34.4, (P’) has A the matrix whose

first row is (−1,−1, . . . ,−1) and second row is (
(
n
1

)−1
, . . . ,

(
n
n

)−1
) with b = (−

(
n
r

)
, 1) and

c = (−1,−2, . . . ,−n). Weak Duality then immediately gives the following.
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Claim 34.12. To prove the result, it suffices to show that the linear program (D’) with variables
y1, y2 ∈ R defined by

minimize −
(
n

r

)
y1 + y2

subject to − y1 +

(
n

i

)−1

y2 ≥ −i ∀i

y1, y2 ≥ 0

has optimum value at most −r
(
n
r

)
.

To prove this, we now only need to find some specific choice of y1, y2 satisfying the constraints
of (D’) which gives the desired value for the objective function. The short answer is that this

will work out for y1 = r(n−2r+2)
n−2r+1

and y2 =
r(n

r)
n−2r+1

, as one can verify with some straightforward
computations, proving the result. As per usual, we will opt for a slower approach in order to
justify why we might consider looking at such a strange looking set of values.

To begin, it perhaps seems like amongst the constraints of the form −y1 +
(
n
i

)−1
y2 ≥ −i, the

i = r case might be the most relevant given the role r plays in the objective function. And
indeed, this i = r constraint is equivalent to saying −

(
n
r

)
y1+y2 ≥ −r

(
n
r

)
, and since our ultimate

goal is to find y1, y2 such that −
(
n
r

)
y1 + y2 ≤ −r

(
n
r

)
(as this proves the optimum value is at

most −r
(
n
r

)
), we see that to have any hope in succeeding we must choose y1, y2 such that

−
(
n
r

)
y1 + y2 = −r

(
n
r

)
. This allows us to write y1 as a function of y2, and plugging this into each

of the other constraints gives for all i the new constraint (1 −
(
n
i

)(
n
r

)−1
)y2 ≥ (r − i)

(
n
i

)
, which

after some rearranging is equivalent to having
(
n
r

)−1
y2 ≥ (r−i)

(n
r)(

n
i)

−1
−1

i < r,(
n
r

)−1
y2 ≤ (r−i)

(n
r)(

n
i)

−1
−1

i > r.

Heuristically the two extreme cases of these inequalities should be i = r ± 1, and indeed one
can show the following.

Claim 34.13. If n ≥ 2r, then for all 1 ≤ i < r we have

(r − i)(
n
r

)(
n
i

)−1 − 1
≤ 1(

n
r

)(
n

r−1

)−1 − 1
=

r

n− 2r + 1
,

and for all r < i ≤ n we have

(r − i)(
n
r

)(
n
i

)−1 − 1
≥ 1(

n
r

)(
n

r+1

)−1 − 1
=

n− r

n− 2r + 1
,

Proof. We prove only the i < r case, the other proof being analogous. Observe that for any
given i, the inequality (r−i)

(n
r)(

n
i)

−1
−1

≤ 1

(n
r)(

n
r−1)

−1
−1

is hardest to satisfy when n ≥ 2r is as small as

possible, so it suffices to prove this when n = 2r. If i = r − t, then it is easy to check that(
n

r

)(
n

i

)−1

− 1 =
(n− r + 1)(n− r + 2) · · · (n− r + t)

r(r − 1) · · · (r − t+ 1)
− 1 ≥ n− r + t

r − t+ 1
− 1 =

2t− 1

r − t+ 1
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with this inequality using n − r + 1 + s ≥ r − s for all 0 ≤ s < t and the last equality using
n = 2r. Since r − i = t, this implies

(r − i)(
n
r

)(
n
i

)−1 − 1
≤ t

2t− 1
· (r − t+ 1) ≤ 1 · r =

r

n− 2r + 1
,

completing the proof.

In total this claim implies that any choice of y2 with
r(n

r)
n−2r+1

≤ y2 ≤
(n−r)(n

r)
n−2r+1

together with y1 =(
n
r

)−1
y2 + r (both of which are easily checked to be non-negative) is a feasible solution to (D’)

that gives the value −r
(
n
r

)
to the objective function, completing the proof of the theorem.

Before moving on, we note that there exist several other results from extremal set theory that
can be proven using linear programming. For these problems, one can often take the variables
xi to correspond to the number of “objects” of “size i”, where the exact definitions of these
terms will depend on our problem. For example, in the proof above we took xi to be the number
of A ∈ F of size i. Another example due to Chowdhury [45] has the xi denoting the number of
pairs of elements of [n] which have degree i in F .

34.4 Strong Duality and Other Topics

Much more can be said about linear programming, and we again refer the reader to the book
by Matoušek and Gärtner [141] for a more thorough treatment. Here we briefly discuss a few
other topics of relevance to extremal combinatorics.

Strong Duality. Perhaps the most important concept about linear programming which has
been omitted upto this point is the Strong Duality Theorem. Informally, this says that the
optimal value of a dual program is not only an upper bound for the optimal value of the primal
(which is the content of our Weak Duality Theorem), but is in fact equal to the optimal value
of the primal.

Philosophically, this result says that every primal program has an “easy” proof of an optimal
upper bound (namely, one can always find such a bound by taking a suitable linear combination
of its constraints). On the practical side, strong duality says that for upper bounding primal
programs, we only ever have to care about upper bounding its dual (that is, we never have
to worry that our simple approach of using weak duality could give bounds that are far from
optimal for our original program).

Linear Programming in Practice. Strong Duality shows that linear programs can be effi-
ciently solved in theory. In fact, it turns out that linear programs can also be efficiently solved
in practice, meaning that there exist fast algorithms for solving relatively large linear programs.
Further, while general integer programs are difficult to solve in both theory and practice, there
do exist reasonably fast algorithms that can be used to solve moderately sized integer programs.

With this in mind, if one has an extremal problem that can be phrased in terms of either a linear
or integer program, then it might be possible to use these real-life efficient algorithms to find
good constructions for some moderately large cases of the problem. In particular, Wagner [180]
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used exactly this approach to disprove around a dozen sporadic conjectures that were made in
the field. Those interested in this direction of study might also enjoy Wagner’s later work on
using machine learning to come up with constructions in extremal combinatorics [181].

Other Types of Programs. After the statement of Theorem 34.4, we mentioned how one can
introduce additional variables to the linear program in order to get it into the form of our Weak
Duality Theorem, and in general the introduction of additional variables and constraints is a
common trick used throughout linear programming. For example, say one has a problem which
has linear constraint but one wants to minimize the objective function |x1−x2|. This objective
function doesn’t fit the definition of a linear program, but it can be turned into a linear program
by introducing a new variable y, adding the constraints y ≥ x1 − x2 and y ≥ x2 − x1, and then
using y as the objective function we wish to minimize. Further examples of this kind can be
found in [141].

While not every optimization problem can be transformed into a linear program, there are other
“non-linear programs” which can also be used in extremal combinatorics. Perhaps the most
common such programs are semidefinite programs, which very informally differs from linear
programming in that they replace the vector of constraints x with a matrix of constraints
X and replace the non-negativity condition x ≥ 0 with the hypothesis that X is positive
semidefinite. The theoretical usage of semidefinite programs has found a number of applications
in combinatorics (see e.g. [40]), but perhaps its most useful contribution to the field has been
in its practical usage through the implementation of the method of flag algebras introduced by
Razborov [157].

Very informally, the flag algebra method uses semidefinite programming to give systematic
approaches for finding Cauchy-Schwarz style proofs to extremal combinatorics problems. This
allows a computer to efficiently search for proofs which would normally be too long and compli-
cated for any human to come up with on their own, and these proofs have been used to give the
best known bounds for many problems in extremal combinatorics. Perhaps the most notable
example of this is that of the Turán number of the 3-uniform clique K

(3)
4 , which is famously

conjectured to be asymptotically equal to 5
9

(
n
3

)
≈ .555

(
n
3

)
. The best known upper bound of

roughly .5612
(
n
3

)
is due to Razborov [158] using the flag algebra method.
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lovász conjecture. Annals of Mathematics, 198(2):537–618, 2023.

[118] G. Katona. Intersection theorems for systems of finite sets. Acta Mathematica Academiae
Scientiarum Hungarica, 15:329–337, 1964.

[119] G. Katona. A theorem of finite sets. Classic Papers in Combinatorics, pages 381–401,
1987.

[120] P. Keevash. Hypergraph turan problems. Surveys in combinatorics, 392:83–140, 2011.

[121] P. Keevash. The existence of designs. arXiv preprint arXiv:1401.3665, 2014.

[122] P. Keevash, D. Mubayi, B. Sudakov, and J. Verstraëte. Rainbow turán problems. Com-
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[136] T.  Luczak and S. Thomassé. Coloring dense graphs via vc-dimension. arXiv preprint
arXiv:1007.1670, 2010.

[137] W. Mader. Homomorphieeigenschaften und mittlere kantendichte von graphen. Mathe-
matische Annalen, 174(4):265–268, 1967.

[138] T. C. Martinez. The slice rank polynomial method. 2021.
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