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1 What is this?

This is a (very informal) collection of problems that are of personal interest to me, most of which
are lesser known problems. Feel free to reach out to me if you have any questions regarding
these questions and/or if you spot any glaring typos. I also recommend reaching out to me if
you start seriously working on any of these problems so that I don’t accidentally work on it at
the same time (which has happened before!).

Organization. I have split these problems into three tiers based on my level of interest in
these problems. The Triple diamond problems in Section 2 are the one’s that keep me up at
night, followed by the double diamonds in Section 3 and the single diamonds in Section 4.
Some problem writeups have subproblems which might be of a different rank, which will be
indicated in the problem statement. Section 5 contains the “Hall of Fame” list of solvers to
past problems.

The problems appear is roughly reverse chronological order. Note that problems can jump
between different tiers of interest depending on my mood, and I may remove problems from
the list if I start actively working on them again.

Acknowledgments. We thank Zachary Chase and Zach Hunter for pointing out some small
typos.

2 ♦♦♦ Problems

2.1 Small Quasikernels

Let D be a digraph. Given a set S, we define N+(S) =
⋃
v∈S N

+(v), where N+(v) is the
out-neighborhood of v. We say that a set K ⊆ V (D) is a kernel of D if (1) N+(K) ∩K = ∅
(that is, K is an independent set of the underlying graph of D), and (2) N+(K) ∪ S = V (D)
(that is, every vertex is either in K or can be reached by a vertex in K in one step).

Not every digraph has a kernel (take any directed cycle of odd length), but it is not too hard to
prove that every digraph has a quasikernel. This is a set Q ⊆ V (D) such that (1) N+(Q)∩Q = ∅
and such that (2) N+(N+(Q)) ∪ N+(Q) ∪ Q = V (D). That is, it is an independent set such
that every vertex can be reached from Q in at most two steps.

Given that every digraph has a quasikernel, it is natural to ask how small of a quasikernel one
can find. One quickly realizes that it can be quite large: any source of D must belong to a
quasikernel of D. Thus the most natural setting to consider is when D has no sources, and in
this case the following was conjectured by P.L. Erdős and Székely.

Conjecture 2.1. Every digraph D with no sources has a quasikernel of size at most |V (D)|/2.

Overall very little is known here. There are a few special classes of digraphs for which this is
known (see this survey [15] for more), and a very weak bound of |V (D)|−b|V (D)|1/2c is known
in general [22], but outside of this we know basically nothing. One obstacle to this conjecture
is the following problem.
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Conjecture 2.2. There exists some ε > 0 such that every digraph D contains a quasikernel Q
with

|N+[Q]| ≥ ε|V (D)|,

where N+[Q] := Q ∪N+(Q).

It’s shown in [22] that the conjecture above is a weaker conjecture than proving any non-
trivial linear upper bound (1− ε)|V (D)| for the size of the smallest quasikernel in a source-free
digraph. At the moment only the bound |N+[Q]| ≥ |V (D)|1/3 is known, though this can likely
be improved to |V (D)|1/2. Many more open problems around this topic that I care about can
be found in [22].

2.2 C4-free Subgraphs of Random Hypergraphs

Given a hypergraph H and a family of hypergrpahs F , we define ex(H,F) to be the maximum
number of edges in an F -free subgraph of H. We’re particularly interested in the case when H =
Gr
n,p, the random r-uniform hypergraph obtained by keeping each edge of Kr

n independently
and with probability p and when F is a family of r-partite r-graphs.

Perhaps the simplest non-trivial case of this problem is when we consider C4-free subgraphs of
the random graph Gn,p. This problem was essentially solved by Füredi [11], and later two more
solutions were given by Morris and Saxton [16] (who essentially solved the problem for both
graph cycles and complete bipartite graphs). The problem in this section is concerned about
extending these results to hypergraphs C4’s; which remains an elusive problem despite having
multiple proofs in the graph setting. There are many ways one can define what it means for a
hypergraph to be a “C4”, below we consider two common notions.

Let C3
4 be the 3-uniform loose 4-cycle, which can be defined by having edges

{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 1}.

That is, it’s obtained from the graph C4 by inserting an extra vertex into each edge. A standard
deletion argument shows that, for example,

E[ex(G3
n,n−2/3 , C

3
4)] = Ω(n4/3),

and work of Nie [18] shows1

E[ex(G3
n,n−2/3 , C

3
4)] ≤ n4/3+1/30+o(1).

Problem 2.3. Improve either of these bounds for E[ex(G3
n,n−2/3 , C

3
4)].

Mubayi and Yepremyan [17] conjecture that the lower bound from the deletion argument is
essentially best possible, which is known to be true if one looks at the analogous problem for
uniformity at least 4 [17, 18].

1They proved bounds in a much larger range, but this is the point where the gap between the bounds is
largest.
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In another direction, we say that a 3-uniform hypergraph F is a Berge C4 if it has four edges
e1, e2, e3, e4 and if there exist four distinct vertices v1, v2, v3, v4 with vi ∈ ei ∩ ei+1 for all i (with
the indices written cyclically). We let B3

4 denote the set of 3-uniform Berge C4’s. It is known
[18, 24] that

p1/4n3/2−o(1) ≤ E[ex(G3
n,p,B3

4)] ≤ p1/5n3/2+o(1) for p� n−2/3.

Problem 2.4. Improve either of these bounds for E[ex(G3
n,p,B3

4)].

We note that improving the lower bound of Problem 2.3 is strictly easier than improving the
lower bound of Problem 2.3, and if the lower bound of Problem 2.3 is tight (as conjectured by
[17]), then it would be easier (in principle) to show that the lower bound for Problem 2.3 is
tight.

3 ♦♦ Problems

3.1 Clique Supersaturation

Classic graph supersaturation problems ask: given an n-vertex graph with a given number of
edges, how many copies of some other graph F is G guaranteed to have? Here we ask the same
question but replace “number of edges” with “number of triangles”. Our main question is the
following.

Conjecture 3.1. There exists t0 such that for all t ≥ t0 and 1 ≤ k ≤ n1/2t, there exists an
n-vertex graph G with Ω(kn3/2) triangles and which has at most ktn3/2+o(1) copies of K2,t.

It is known [7] that this bound would be best possible and that such graphs would exist if one
could construct dense C8-free subgraphs of Km,n, but this is likely the wrong way to go about
the problem. For K3,t we conjecture the following.

Conjecture 3.2. For all t ≥ 3 there exists a constant k0 such that if G is an n-vertex graph
with kn2 triangles and k ≥ k0 then G contains at least ktn3−o(1) copies of K3,t.

This bound would be best possible by considering Gn,p for an appropriate value of p.

3.2 Squares of Eigenvalues

Given a graph G, let λ1, . . . , λn denote the eigenvalue of its adjacency matrix and define

s+(G) =
∑
i:λi>0

λ2i , s
−(G) =

∑
i:λi<0

λ2i .

The following curious conjecture was made by Elphick, Farber, Goldberg, and Wocjan [8]

Conjecture 3.3. If G is a connected n-vertex graph, then s+(G) ≥ n− 1 and s−(G) ≥ n− 1.
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Part of the motivation for this conjecture is that it’s true (and tight) at the two “extremes” of
connected graphs. Notably if G is a tree then s+(G) = s−(G) = n− 1, and if G is a complete
graph then s+(G) > s−(G) = n − 1. The conjecture is notably known to be true for regular
graphs [8], which excludes many plausible approaches for counterexamples.

One can also consider various varients of this conjecture where you replace λ2i with λri , or by
replacing the adjacency matrix A with a “weighted” adjacency matrix. I have some notes on
this and can share them upon request.

3.3 Eulerian Polynomials for Digraphs

Given a digraph D and a bijection σ : V (D)→ [n], we say that an arc u→ v of D is a descent
of σ if σ(u) > σ(v). We let des(σ) denote the number of descents of σ and define the generating
function AD(t) =

∑
σ t

des(σ).

Given a graph G, we define ν(G) = |AD(−1)| where D is any orientation of the edges of G (and
it turns out this is the same quantity regardless of how the edges are oriented).

Problem 3.4. Give a combinatorial interpretation for ν(G) for all graphs G.

For example, when G is a path of order n, then AD(t) is (essentially) the well-studied Eulerian
polynomial, and it is known here that |AD(−1)| is the number of alternating permutations of
order n.

Somewhat more generally, in [4] we showed that for bipartite graphs, ν(G) is equal to the
number of “even sequences” of G, i.e. the number of permutations v1, . . . , vn of its vertices so
that the induced subgraphs G[v1, . . . , vi] all have an even number of edges. While there are
examples of graphs where ν(G) is not equal to the number of even sequences (e.g. an odd cycle
with a leaf), the number of even sequences always serves as an upper bound to ν(G), so perhaps
ν(G) counts some subset of even sequences which have some special property.

Further questions related to AD(t) can be found in [4]. Here we present one more problem
which isn’t posted there. For any integer n, let s2(n) denote the number of 1’s in the binary
expansion of n. We showed that for any n-vertex digraph D, the multiplicity of −1 as a root
in AD(t) is always at most n − s2(n) and we found a number of examples which show that
this bound is tight. Curiously, we later found these same extremal examples showing up in a
completely different context!

To this end, we say that a digraph D is impartial is any two tournaments T, T ′ on the same
number of vertices has the same number of copies of D. A simple characterization of such
digraphs was given by Zhao and Zhou [26], and in particular it is implicitly shown in [4] that
every connected2 impartial digraph achieves this n− s2(n) bound. We wonder if these are the
only such examples.

Conjecture 3.5. If D is a connected n-vertex digraph such that AD(t) has −1 as a root with
multiplicity n− s2(n), then D is an impartial digraph.

2Disjoint unions of impartial digraphs will also sometimes achieve this bound, but it’s a little annoying to
state this precisely.
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To emphasize, there is no apriori reason to suspect that this is true just from the definition of
things, and we would be very interested to know if there’s some sort of deep connection going
on here between these unrelated problems or if this is all just a mere coincidence.

3.4 Maximal Independent Sets of Clique-free Graphs

We say that a set of vertices I ⊆ V (G) of a graph G is a maximal independent set, or simply
an MIS, if I is an independent set but I ∪ {v} is not an independent set for any v /∈ I. Let
mt(n, k) denote the maximum number of MIS’s of size k that an n-vertex Kt-free graph can
have.

We initiated the study of mt(n, k) together with He and Nie [12] (and we refer the reader to
our paper for motivation of this particular problem). We stated a lot of open problems about
this function in our paper, any of which I would be thrilled to see solved. Here we emphasize
two of these problems.

Our first problem concerns upper bounding the number of MIS’s in triangle-free graphs.

Problem 3.6. Prove that there exists an integer k ≥ 5 and real number ε > 0 such that

m3(n, k) = O(nk−2−ε).

We conjectured that in fact m3(n, k) = Θ(nbk/2c) for all k ≥ 5, and we implicitly proved
m3(n, k) = O(nk−2) for k ≥ 5. Thus this problem asks to improve our upper bound, which our
conjectured lower bound suggests should be very far from tight as is.

The next problem concerns K4-free graphs. In this setting we proved m4(n, 3) ≥ n2−o(1) and
that m4(n, 3) = O(n2).

Problem 3.7. Determine whether the o(1) term in the lower bound for m4(n, 3) mentioned
above is necessary or not.

I believe that this o(1) should be necessary. In fact, I believe that m4(n, 3) should be equal (up
to constants) to the maximum number of edges of an n-vertex graph which is such that every
edge is contained in a unique triangle (determining this quantity is often referred to as the
Ruzsa-Szemerédi problem). One approach that would give this stronger result is the following.

Problem 3.8. Show that if G is an n-vertex K4-free graph with “many” (e.g. n2−ε) MIS’s of
size 3 such that every vertex is contained in at least one 3-MIS, then χ(G) = O(1).

If this were true then one could essentially convert the problem of working with K4-free graphs
to working with tripartite graphs, and in this case we proved that the maximum number of
3-MIS’s is essentially the solution to the Ruzsa-Szemerédi problem. We note that it’s easy
to prove that if G is an n-vertex triangle-free graphs with at least one MIS of size k that
χ(G) ≤ k + 1, and in particular for K4-free graphs one may need much fewer than n2−ε MIS’s
to guarantee a bounded chromatic number.

Update: I had previously asked Problem 3.8 without the assumption that every vertex be
contained a 3-MIS, but a counterexample to this was found by Ramon I. Garcia. Specifically,

6



one starts with an n/2 vertex tripartite graph G1 with n2−o(1) 3-MIS’s (e.g. by taking G1 to
be the complement of the Ruzsa-Szemerédi construction), then unions this with an n/2 vertex
graph G2 with high girth and chromatic number, then connects every vertex of the first part of
G1 with all of G2.

4 ♦ Problems

4.1 Coloring mod p

Given a graph G and an integer p, we say that I ⊆ G is an independent set mod p if every
vertex in the induced graph G[I] has degree 0 mod p. For example, independent sets are always
independent sets mod p. We define the mod p independence number αp(G) to be the size of a
largest independent set mod p. Similarly we define the mod p chromatic number χp(G) to be
the smallest integer k such that there exists a partition V1 ∪ · · · ∪ Vk of V (G) such that Vi is an
independent set mod p for all i.

Conjecture 4.1. For all primes p, there exists a constant C = C(p) such that for all graphs
G, χp(G) ≤ C.

It’s quite plausible that the conjecture is true without having to restrict to primes, but focusing
on primes is probably a good place to start since one can most easily use algebraic techniques
in this case.

Gallai proved that Conjecture 4.1 is holds with C = 2 when p = 2, see [14] for a simple
proof, as well as [10] for two other proofs written in a different language 3 Caro, Krasikov, and
Roditty [3] proved a weaker version of Conjecture 4.1, showing that G can be partitioned into C
induced subgraphs G[V1], . . . , G[VC ] such that e(G[Vi]) ≡ 0 mod p for all i. Ferber, Hadiman
and Krivelevich [9] showed that there exists a C such that almost every graph has χp(G) ≤ C.

Overall Conjecture 4.1 seems pretty hard, and there are a couple of weaker versions of this
conjecture that might be provable.

Conjecture 4.2. For all primes p, there exists a constant C = C(p) such that for all graphs
G, αp(G) ≥ |V (G)|/C.

Conjecture 4.3. For all primes p, there exists a constant C = C(p) such that for all graphs
G, one can partition V (G) into C sets V1 ∪ · · · ∪ VC such that no G[Vi] contains a vertex of
degree 1 mod p.

It also natural to conjecture this for −1 mod p, since in both cases we know the result holds
for p = 2.

Lastly, we note that a trivial lower bound on the C(p) in Conjecture 4.1 is C(p) ≥ p by
considering G = Kp. However, for odd p one can prove that we must have C(p) ≥ p+ 1 (there
are many examples; the simplest is to take a circulant graph on 2p+ 2 vertices such that every

3This reference gives three proofs that there exists a solution to the “Lights Out!” game. It is relatively easy
to show that this implies the stated result by considering a graph G′ with a leaf attached to each vertex.
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vertex has degree p+ 1). It would be interesting to know if one could find constructions which
give significantly stronger bonds.

4.2 Zero Forcing Sets

Let G be a graph with vertex set V (G) initially colored either blue or white. If u is a blue
vertex of G and the neighborhood NG(u) of u contains exactly one white vertex v, then we may
change the color of v to blue. This iterated procedure of coloring a graph is called zero forcing.
A zero forcing set B is a subset of vertices of G such that if G initially has all of the vertices
of B colored blue, then the zero forcing process can eventually color all of V (G) blue. We let
zk(G) denote the number of zero forcing sets of size k of G.

It is easy to show that z1(G) > 0 if and only if G is a path graph. Partially motivated by this,
the following conjecture was made by Boyer et. al. [2].

Conjecture 4.4 ([2]). If G is an n-vertex graph, then for all 0 ≤ k ≤ n, we have

zk(G) ≤ zk(Pn),

where Pn is the n-vertex path.

Some small results towards this conjecture were given in [2] and [5], but overall almost nothing
is known. Update: this result has also been proven whenever G is an outerplaner graph by
Menon and Singh [15].

In [5] we made a weaker conjecture.

Conjecture 4.5 ([5]). If G is an n-vertex graph, then for all 0 ≤ p ≤ 1, we have

n∑
k=1

zk(G)pk(1− p)n−k ≤
n∑
k=1

zk(Pn)pk(1− p)n−k.

Equivalently, this says that if we form a random set Bp be including each vertex of G indepen-
dently with probability p, then the probability that Bp is a zero forcing set of G is at most that
of it being a zero forcing set of Pn.

4.3 Card Guessing with Adversarial Shuffling

Consider the following game. We start with a deck of mn cards consisting of n different card
types each appearing m times (e.g. m = 4, n = 13 corresponds to a standard deck of cards).
First, one of the players (Shuffler) shuffles the deck however they’d like. Then the other player
(Guesser) sequentially guesses what the top card of the deck is. After each guess, the Guesser
is told only whether their guess was correct or not, and then the top of the card is discarded.
This game is called the offline partial feedback model, and the score at the end of the game is
equal to the number of times Guesser correctly guesses a card type. One can also consider the
online partial feedback model where Shuffler is allowed to reshuffle the remaining cards in the
deck each time Guesser makes a guess.
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Question 4.6. Assuming n� m, can Guesser play in the offline partial feedback model so that
they get m+ ω(1) points in expectation? Can they play in the offline partial feedback model so
that they get m+ Ω(1) points in expectation?

Simple strategies that Guesser can use in either model are to either guess a single card type each
round, or to randomly guess a card type each round. Both strategies give Guesser m points in
expectation regardless of Shuffler’s strategy. In [21] I came up with a strategy giving at least
m+ 1/2 points in the offline model (and an easy adaptation of the argument gives m+ e− 2),
as well as a strategy giving just a smidge more than m in the online model; but the situation
is pretty pitiful overall.

Note that in [6, 19], it is shown that if Shuffler shuffles the deck uniformly at random, then the
Guesser can do is m + Θ(m1/2) points in expectation and that this is best possible. Thus this
provide some reasonable benchmarks on how well one might be able to do here.

Finally, we note that one can consider variants of these problems for other “semi-restricted
games” in the sense of [23].

5 Hall of Fame

5.1 ♦♦♦

� Wang and Zhao [25] for solving my original conjecture on ballot permutations; and Lin,
Wang, and Zhao [13] for solving an even stronger version!

5.2 ♦

� Alon and Kravitz [1] for solving my problem with Greg Patchell about the number of
CAT’s one can pack into a cube filled with letters (and the extension to arbitrary words
of distinct letters!).

� Pebody [20] for showing that every integer n > 2 has a bounded number of slowest
tribonacci walks.

� Menon and Singh [15] for showing tight bounds for the number of zero forcing sets for
trees.
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[11] Zoltán Füredi. Random ramsey graphs for the four-cycle. Discrete Mathematics, 126(1-
3):407–410, 1994.

[12] Xiaoyu He, Jiaxi Nie, and Sam Spiro. Maximal indpendent sets of clique-free graphs. arXiv
preprint arXiv:2107.09233, 2021.

[13] Zhicong Lin, David G.L. Wang, and Tongyuan Zhao. A decomposition of ballot permuta-
tions, pattern avoidance and gessel walks. arXiv preprint arXiv:2103.04599, 2021.
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