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that the player can get in the complete feedback model.
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the maximum expected score in this model,
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Theorem (Diaconis-Graham-He-S., 2020)

For m fixed,

C+m,n ∼ Hm log(n),

C−m,n = Θ(n−1/m),

where Hm is the mth harmonic number.

With this we have the trivial bounds

m ≤ P+
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A Partial Proof

Lemma

Assume that we have played in the partial feedback model for t − 1
rounds such that we have guessed card type i a total of gi times

,
and let S be the total number of points scored. Given this, we have

Pr[πt = i ] ≤ m

mn − gi − S
.

That is, our upper bound is strongest when gi and S is small.
These conditions are necessary: if i has been guessed incorrectly
gi = mn −m times, then we know the card must be an i .
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n for all t. Thus in expectation at most
mn · (2/n) = 2m cards are guessed correctly from this part, and in
total at most 3m are guessed correctly in expectation.
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(1) If you made less than m/2 +

√
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Practical Strategies

A very simple strategy is the safe strategy, which guesses 1 until m
correct guesses are made, then 2 until m correct guesses are made,
and so on.

Elementary arguments give that the score for this
strategy is

m + 1− 1

m + 1
+ O(e−βm)

for some β > 0.

Another simple strategy is the shifting strategy, which guesses 1
until a correct guess is made, then 2 until a correct guess is made,
and so on.
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Practical Strategies

If π is a word where each letter in {1, 2, . . . , n} exactly m times,
we define L(π) to be the largest integer p so that π contains a
subsequence of the form 123 · · · p.

For example,

π = 2345124351 =⇒ L(π) = 3.

Note that L(π) is (essentially) the score one gets using the shifting
strategy if the deck is shuffled according to π.

Corollary

If n is sufficiently large in terms of m, then

Lm,n := E[L(π)] ≤ m + O(m3/4 logm).
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Conjecture (Diaconis-Graham-He-S., 2020)
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Lm,n ∼ m.

Theorem (Clifton-Deb-Huang-S.-Yoo, 2021)
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More precisely: if α1, . . . , αm are the zeroes of
∑m

k=0
xk

k! , then

lim
n→∞

Lm,n = −1−
∑

α−1i e−αi .

This implies L1,n → e − 1 and that

L2,n → e(cos(1) + sin(1))− 1.
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The probability of drawing four aces in a row with a deck shuffled
uniformly at random is 1/270725.

More precisely, we are now considering a two player game played
by Shuffler and Guesser. Let Cm,n(G,S) be the expected number of
points Guesser scores when the two players follow strategies G,S.
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Θm(n−1/m) ≤ Cm,n(G ,Uniform) ≤ Hm log n + om(log n).

Theorem (S., 2021)

There exists a strategy S′ for Shuffler so that

Cm,n(G,S′) ≤ log n + om(log n),

and this bound is best possible.

This theorem is a first for me, since normally I prove a result, then
makes jokes about it during my talk.
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Theorem

There exists a strategy S′ for Shuffler so that
Cm,n(G, S′) ≤ log n + om(log n).

A strategy that gives this is the “greedy strategy”, which is such
that if there are r types of cards remaining in the deck, then
Shuffler draws each of these card types with probability r−1

(regardless of how many copies are left in the deck of each type).
E.g. if the deck has a hundred 1’s and one 2, we draw a 1 or 2
with probability 1

2 . This gives the desired bound due to a variant
of the coupon collector problem.
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Theorem (S., 2021)

The greedy strategy is the unique strategy that minimizes the
number of correct guesses if Guesser tries to maximize their score.

Interestingly, the greedy strategy is also the “unique” strategy
which maximizes the number of correct guesses if Guesser tries to
minimize their score.
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There is a classical game called “Matching Pennies” where two
players simultaneously choose one of n numbers, and if the two
match player A gets a point and otherwise player B gets a point.

The “semi-restricted” version of this game has mn rounds of
Matching Pennies is played where player B must use each number
exactly m times.
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More generally, one can consider “semi-restricted” versions of any
zero sum game.

Theorem (S.-Surya-Zeng, 2022)

In semi-restricted Rock, Paper, Scissors the “greedy strategy” is
the unique optimal strategy for the restricted player.
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Given a digraph D, we define its skew adjacency matrix A by
Au,v = +1 if u → v , Au,v = −1 if v → u, and Au,v = 0 otherwise.

Question

Which digraphs D are such that their skew-adjacency matrix A
satisfies Null(A) = span(~1)?
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