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Why should I give a Zoom for Thought Talk?

It gives you an excuse to make slides for a talk.

It gives you the chance to practice giving talks, especially ones
geared towards a general mathematical audience (e.g. job
talks).

It gives you an excuse to (better) learn a topic (e.g. for a qual
class, or on a research topic you might want to explore).

There’s a non-zero probability that you end up writing a paper
based on a joke you made related to a Zoom for Thought talk.

(New) It’s a great way to procrastinate applying for jobs,
writing your thesis, etc.

Just let Vaki or me know if you’d like to give a talk on some
specific day, or if you’d just like to be on the “reserve list.”
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Other Important things

You should make a website, see my rant/tutorial on our YouTube
page (the first video of our channel).

If you’re a US citizen and a ≤ 2nd year, you should consider
applying to the NSF GRFP (a fancy fellowship which gets you out
of TAing for 3 years). Note that the deadline is October 22nd, and
you can only apply once as a grad student. I have copies of my
essays on my website (see point above), and there are several other
recipients at UCSD that you can talk to about this.
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Probability from Counting

Somewhat surprisingly, there are a number of instances where one
can go the opposite way, that is, one can reduce an enumeration
problem to a probabilistic one. In this talk we’ll look at a few ways
you can do this to prove some famous counting results.

As an aside, this talk is only about using probability to obtain
(exact) enumerative combinatorics results, much more about using
probability to get (approximate) extremal combinatorics results can
be found in 261A.
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Padlock Solitare

Situation: Edmond Dantés has been falsely accused of treason and
imprisoned in Chateau D’lf.

The door to his cell requires n keys k1, . . . , kn to open. Fortunately
Abbé Faria has managed to sneak Edmond k1, but unfortunately
the remaining keys are all locked up in boxes b1, . . . , bn (with the
keys being distributed uniformly and independently at random).
The only way to unlock bi is with ki . What is the probability that
Edmond manages to escape?
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For example, if n = 1 Edmond always escapes.

If n = 2 Edmond
escapes if and only if k2 ∈ b1, which happens with probability 1/2.

For n = 3, Edmond escapes if either (1) k2, k3 ∈ b1, (2) k2 ∈ b1
and k3 ∈ b2, or (3) k3 ∈ b1 and k2 ∈ b3.

Since each of these three events are equally likely, we see that the
probability of escape is 3/9 = 1/3.
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Theorem (Wästlund)

The probability of escape is 1/n.

Let’s say we open a box every day until we’re either stuck or until
we get all the keys, and we’ll let Kt be the number of remaining
keys after t days pass and Bt the number of unopened boxes. For
example, K0 = n − 1, B0 = n. Observe that if Kt/Bt = 0 or 1 for
some t, then Kt′/Bt′ = 0 or 1 for all t ′ ≥ t. Otherwise,

E
[
Kt

Bt

∣∣∣Kt−1
Bt−1

]
=

Kt−1 − Kt−1/(b − t + 1)

b − t
=

Kt−1
b − t + 1

=
Kt−1
Bt−1
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This implies that Kt/Bt is a martingale, i.e. a sequence of random
variables satisfying E[Xt |Xt−1] = Xt−1.

Moreover, this martingale
eventually equals 1 if Edmond fails to escape and eventually equals
0 if he succeeds. One can inductively prove that Kt/Bt equals the
probability of not escaping given the information at time t, so
taking t = 0 gives probability (n − 1)/n = 1− 1/n of not
escaping.
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Proposition

Edmond escapes iff D is a directed tree such that every arc points
away from 1.

Let tn denote the number of digraphs as in the proposition. Note
that there are nn−1 ways to distribute the keys and exactly tn of
these ways lead to escape, so

tn
nn−1

= Pr[Esacpe] =
1

n
=⇒ tn = nn−2.
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Finally, we observe that tn is equal to the number of labeled trees
on n vertices (there’s a bijection by forgetting the directions with
inverse of directing edges away from 1)

, this gives:

Theorem (Cayley’s Formula)

The number of labeled trees on n vertices is nn−2.
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Using similar ideas one can count a lot of other things:

Trees with a given degree sequence d1, . . . , dn (distribute keys
uniformly conditional on each bi having di − 1 keys).

Trees of 3-uniform hypergraphs (randomly pair up the keys
and then randomly put pairs in side the boxes).

Parking functions.

Catalan numbers.

Nilpotent matrices over finite fields.

Many other variants can be found in the lovely paper by Wästlund
(who also has a lot of other very nice papers).
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Hook Length Formula

Unfortunately for Edmond, n = 34 in Chateau D’lf, so it’s pretty
unlikely he’ll escape with padlock solitaire.

Fortunately for the
Young man, his cell comes with a standard table, so he decides to
carve a leg to use as a hook to dig himself out.
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Situation: Edmond is trapped in a dungeon whose cells are layed
out in the picture below (or more generally some arrangement
where the length of the rows decrease as you go down).
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A few comments regarding this drawing:

(1) the only
mathematically important part of this picture is the grid of cells,
the water is just meant to convey that this is a prison island, and
the gray thing is supposed to represent the building the dungeon is
attached to. (2) Typically these diagrams (called Young or Ferrers
diagrams) are drawn with the row length decreasing as you go
down. I only drew it this way since it will make more sense in the
story that follows. Coincidentally, this drawing of the Young
diagrams uses so-called French notation!
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Edmond will break out of the dungeon using the following
(random) procedure:

Edmond starts at a uniformly random cell. Each day he digs either
up or to the right some number of cells, in such a way that he’s
equally likely to end up at any cell in his “hook”. After reaching a
corner cell, Edmond moves on to freedom (and revenge).
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With this procedure Edmond always escapes, but what’s the
probability that he exits from a given corner square?

To put some numbers on it, we’ll say that Edmond’s prison has
shape λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk if the bottom
row has length λ1, the next row has length λ2, and so on (e.g. the
previous prison has shape (10,8,7,5,5,2)). We call λ a partition
and let n :=

∑
λi , denote the size of the partition.

Given λ, we define the hook length hi ,j of a cell (i , j) to be the
number of cells directly to the right or directly above (i , j) (with
this including the cell (i , j) itself).
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Given a path (a1, b1)→ (a2, b2)→ · · · → (am, bm), we let
A = {a1, . . . , am} and B = {b1, . . . , bm} denote the projections of
this path.

Lemma

Given cell (a, b), corner (α, β), and sets A,B, the probability that
Edmond travels from (a, b) to (α, β) using a path with projections
A,B is

1

n

∏
i∈A\α

1

hi ,β − 1

∏
j∈B\β

1

hα,j − 1
.

Thus the probability of ending at a cell (α, β) is equal to the sum
of these probabilities over all paths, and one can verify that this is
equal to

1

n

∏
1≤i<α

(
1 +

1

hi ,β − 1

) ∏
1≤j<β

(
1 +

1

hα,j − 1

)
.



Hook Length Formula

Given a path (a1, b1)→ (a2, b2)→ · · · → (am, bm), we let
A = {a1, . . . , am} and B = {b1, . . . , bm} denote the projections of
this path.

Lemma

Given cell (a, b), corner (α, β), and sets A,B, the probability that
Edmond travels from (a, b) to (α, β) using a path with projections
A,B is

1

n

∏
i∈A\α

1

hi ,β − 1

∏
j∈B\β

1

hα,j − 1
.

Thus the probability of ending at a cell (α, β) is equal to the sum
of these probabilities over all paths, and one can verify that this is
equal to

1

n

∏
1≤i<α

(
1 +

1

hi ,β − 1

) ∏
1≤j<β

(
1 +

1

hα,j − 1

)
.



Hook Length Formula

Given a path (a1, b1)→ (a2, b2)→ · · · → (am, bm), we let
A = {a1, . . . , am} and B = {b1, . . . , bm} denote the projections of
this path.

Lemma

Given cell (a, b), corner (α, β), and sets A,B, the probability that
Edmond travels from (a, b) to (α, β) using a path with projections
A,B is

1

n

∏
i∈A\α

1

hi ,β − 1

∏
j∈B\β

1

hα,j − 1
.

Thus the probability of ending at a cell (α, β) is equal to the sum
of these probabilities over all paths, and one can verify that this is
equal to

1

n

∏
1≤i<α

(
1 +

1

hi ,β − 1

) ∏
1≤j<β

(
1 +

1

hα,j − 1

)
.



Hook Length Formula

This is nice and all, but again where is the combinatorics?

We say
that a diagram of shape λ filled with the integers 1, . . . , n is a
standard Young Tableaux (or SYT) if all of the rows and columns
increase as you travel up or to the right.

How many SYT of a given shape are there? This turns out to be
an important question in representation theory and algebraic
combinatorics, since this is the dimension of the irreducible
representation of the symmetric group Sn indexed by λ.
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Theorem (Hook length formula: Frame-Robinson-Thrall,
Greene-Niejenhuis-Wilf)

If λ is a partition of n, then the number of SYT of shape λ is

n!∏
hi ,j

.
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Let F (λ) = n!∏
hi,j

and G (λ) the number of SYT of shape λ, so our

goal is to show F (λ) = G (λ).

Observe that in a SYT the entry n
must appear in a corner (α, β) of λ, so we have

G := G (λ1, . . . , λk) =
∑
α

G (λ1, . . . , λα−1, λα−1, λα+1, . . . , λk) :=
∑
α

Gα.

Thus we’ll have F = G if F satisfies this same recurrence relation,
or equivalently if

1 =
∑
α

Fα
F
.
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Goal: show

1 =
∑
α

Fα
F
.

This is equivalent to saying that there exists a random variable
with codomain corners (α, β) of λ such that each is outputted
with probability Fα/F . One can check that

Fα
F

=
1

n

∏
1≤i<α

hi ,β
hi ,β − 1

∏
1≤j<β

hα,j
hα,j − 1

=
1

n

∏
1≤i<α

(
1 +

1

hi ,β − 1

) ∏
1≤j<β

(
1 +

1

hα,j − 1

)
,

which is exactly the probability that Edmond escapes through
(α, β)!
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and extremal combinatorics. In my defense, this will still give an
“exact” result, and the proof is too good to pass up.
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Turán’s Theorem

Situation: Let G be the graph whose vertices are the citizens of
Paris and where two people are adjacent if they’re friends.

To
enact his revenge, Edmond wants to manipulate as many people as
possible, but he doesn’t want to manipulate two people who are
friends (since they might get to talking and figure out that he’s
scheming). How many people can Edmond manipulate?

A set of vertices I ⊆ V (G ) where no two vertices are adjacent is
called an independent set, so the above problem is really asking to
find the largest independent set in G , which we denote by α(G ).
Doing this in general is a hard problem, but still one can ask for
reasonable bounds in terms of parameters of G .



Turán’s Theorem

Situation: Let G be the graph whose vertices are the citizens of
Paris and where two people are adjacent if they’re friends. To
enact his revenge, Edmond wants to manipulate as many people as
possible, but he doesn’t want to manipulate two people who are
friends (since they might get to talking and figure out that he’s
scheming). How many people can Edmond manipulate?

A set of vertices I ⊆ V (G ) where no two vertices are adjacent is
called an independent set, so the above problem is really asking to
find the largest independent set in G , which we denote by α(G ).
Doing this in general is a hard problem, but still one can ask for
reasonable bounds in terms of parameters of G .



Turán’s Theorem

Situation: Let G be the graph whose vertices are the citizens of
Paris and where two people are adjacent if they’re friends. To
enact his revenge, Edmond wants to manipulate as many people as
possible, but he doesn’t want to manipulate two people who are
friends (since they might get to talking and figure out that he’s
scheming). How many people can Edmond manipulate?

A set of vertices I ⊆ V (G ) where no two vertices are adjacent is
called an independent set, so the above problem is really asking to
find the largest independent set in G , which we denote by α(G ).

Doing this in general is a hard problem, but still one can ask for
reasonable bounds in terms of parameters of G .



Turán’s Theorem

Situation: Let G be the graph whose vertices are the citizens of
Paris and where two people are adjacent if they’re friends. To
enact his revenge, Edmond wants to manipulate as many people as
possible, but he doesn’t want to manipulate two people who are
friends (since they might get to talking and figure out that he’s
scheming). How many people can Edmond manipulate?

A set of vertices I ⊆ V (G ) where no two vertices are adjacent is
called an independent set, so the above problem is really asking to
find the largest independent set in G , which we denote by α(G ).
Doing this in general is a hard problem, but still one can ask for
reasonable bounds in terms of parameters of G .



Turán’s Theorem

Theorem (Caro-Wei Bound)

Let G be an n-vertex graph with degrees d1, . . . , dn. Then

α(G ) ≥
∑ 1

di + 1
.

Moreover, equality holds if and only if G is a disjoint union of
cliques.

To achieve this, let π = π1 · · ·πn be a uniformly random
permutation of the vertices of G , and let I consist of all the
vertices u such that π−1u < π−1v for every neighbor v of u. This is
an independent set (if u ∼ v , then whichever one appears second
in π can’t be in I ).
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Turán’s Theorem

The probability that u ∈ I is exactly 1
du+1

, so by linearity of
expectation

E[I ] =
∑ 1

du + 1
.

In particular, there exists a (deterministic) choice of I with size at
least

∑ 1
di+1 , and hence G has an independent set of at least this

size.
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Theorem (Turán’s Theorem)

If G is an n-vertex graph which is Kr -free (i.e. which contains no r
vertices which are all adjacent). Then

e(G ) ≤
⌊(

r − 1

2

)
(n/(r − 1))2

⌋
,

with equality holding if and only if G is the complement of r
cliques with sizes as close to n/(r − 1) as possible.

For example, if G is a triangle-free graph then it has at most⌊
n2/4

⌋
edges, and equality holds iff G is a complete balanced

bipartite graph.
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Turán’s Theorem

G being Kr -free is equivalent to its complement G having no
independent set of size r , i.e.

r − 1 ≥ α(G )

≥
∑ 1

n − di
.

One can check that the quantity on the right is maximized when
all the di are as close to 2e(G )/n (since

∑
di = 2e(G )). Fiddling

with a few calculations gives the result.
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Turán’s Theorem

Turán’s theorem is arguably the most important theorem in all of
extremal combinatorics

(though Jason would probably argue
against me).

Much more generally, one can define ex(n,F ) to be the maximum
number of edges that an n-vertex F -free graph can have, and
determining ex(n,F ) for various F is one of the central problems in
extremal combinatorics.

Lots of tools have been developed for bounding ex(n,F ), many of
which are probabilistic in nature. Again, see Math 261 (or my
notes online) for more details.
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The End
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