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Motivation: Extremal Graph Theory

Definition

For a graph G , let ex(m,G ) denote the most number of edges a
graph on m vertices can have before containing a subgraph
isomorphic to G .

Example

P2 = ◦ ◦◦ , K2,2 =

◦ ◦

◦ ◦

ex(m,P2) = bm/2c

ex(m,K2,2) = Θ(m3/2)



Motivation: Extremal Graph Theory

Definition

For a graph G , let ex(m,G ) denote the most number of edges a
graph on m vertices can have before containing a subgraph
isomorphic to G .

Example

P2 = ◦ ◦◦ , K2,2 =

◦ ◦

◦ ◦

ex(m,P2) = bm/2c

ex(m,K2,2) = Θ(m3/2)



Motivation: Extremal Graph Theory

Definition

For a graph G , let ex(m,G ) denote the most number of edges a
graph on m vertices can have before containing a subgraph
isomorphic to G .

Example

P2 = ◦ ◦◦ , K2,2 =

◦ ◦

◦ ◦

ex(m,P2) = bm/2c

ex(m,K2,2) = Θ(m3/2)



Motivation: Extremal Graph Theory

Theorem (Erdős-Stone)

Let r = χ(G ). Then

ex(m;G ) =

(
r − 2

r − 1
+ o(1)

)(
n

2

)

Question

How do we define the extremal number of a hypergraph?
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Terminology

Definition (Simple Matrix)

A matrix A is simple if A is a (0, 1)−matrix with no repeated
columns. That is, A is the incidence matrix of a simple hypergraph.

Definition (Configuration)

For two matrices F and A, we say that F is a configuration in A,
and write F ≺ A if F is a submatrix of A after permuting the rows
and columns of A.
We say A has no configuration F , and write F ⊀ A, if F is not a
configuration in A.
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Terminology

Definition (Configuration)

For two matrices F and A, we say that F is a configuration in A,
and write F ≺ A if F is a submatrix of A after permuting the rows
and columns of A.
We say A has no configuration F , and write F ⊀ A, if F is not a
configuration in A.

Example

Let F =

[
0 1
1 1

]
, and A =

[
1 0 1
0 0 1

]
. Then F ≺ A.

A =

[
1 0 1
0 0 1

]
col2,col3−−−−−→

[
1 1 0
0 1 0

]
row1,row2−−−−−−→

[
0 1 0
1 1 0

]
.



Avoid and Forb

Question

For a fixed configuration F , how “large” can a simple matrix A be
if F ⊀ A?



Avoid and Forb

Definition (Avoid(m,F))

A matrix A is in the set Avoid(m,F ) if:

1 A has m rows.

2 A is a simple matrix.

3 F ⊀ A.

Definition (forb(m,F))

Let A be a matrix and let |A| denote the number of columns of
A. Let F be a (0, 1)−matrix. We define

forb(m,F ) := max
A
{|A| | A ∈ Avoid(m,F )}.
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2 A is a simple matrix.

3 F ⊀ A.
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A Simple Example: [1]

Definition

forb(m,F ) :=how many columns an m-rowed simple matrix
avoiding F can have.

Example

Let F = [1]. Then, forb(m, [1]) = 1, for all m ≥ 1.

A =

0 ?
0 ?
...

...





A Less Simple Example: 12,2

Theorem

Let 12,2 =

[
1 1
1 1

]
. Then, forb(m, 12,2) = 1 + m +

(m
2

)
.

For the lower bound, take A containing the 0-column, all
1-columns, and all 2-columns.

A =



0 1 0 · · · 1 1 · · · 0 0 · · ·
0 0 1 · · · 1 0 · · · 1 1 · · ·
0 0 0 · · · 0 1 · · · 1 0 · · ·
0 0 0 · · · 0 0 · · · 0 1 · · ·
0 0 0 · · · 0 0 · · · 0 0 · · ·
...

...
... · · ·

...
...

...
...

...
. . .


, |A| = 1 +m+

(
m

2

)
.
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A Less Simple Example: 12,2

For the upper bound, let A ∈ Avoid(m, 12,2).

Define A′ by taking columns of A with more than two 1’s and
changing 1’s to 0’s until the columns all have at most two 1’s.

Example

A =



0 1 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 1 1
0 0 0 1 0

 , A
′ =



0 1 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 ,

Note that A′ is not simple and 12,2 ≺ A′.
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A Less Simple Example: 12,2

Claim.

If A ∈ Avoid(m, 12,2) then A′ ∈ Avoid(m, 12,2). That is, A′ is
simple and 12,2 ⊀ A′.

Proof ( Claim).

Clearly if 12,2 ⊀ A then 12,2 ⊀ A′ (we get to A′ by removing 1’s of
A). If A′ has repeated columns then they must be repeated
2-columns, but repeated 2-columns induce a 12,2, and we’ve
already shown that 12,2 ⊀ A′. Thus A′ must be simple.

Proof of Theorem.

If A ∈ Avoid(m, 12,2) then |A| = |A′| ≤ 1 + m +
(m
2

)
.
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The Product Operation

Definition

Given two simple matrices A and B with m1 rows and m2 rows
respectively, we define their product A× B to be the simple matrix
on m1 + m2 rows whose columns in the first m1 rows are columns
of A and in the bottom m2 rows are columns of B, and A× B
contains all such columns, i.e. |A× B| = |A||B|.

Example

T2 =

[
1 1
1 0

]
, I2 =

[
1 0
0 1

]

T2 × I2 =


1 1 1 1
1 1 0 0
1 0 1 0
0 1 0 1

 , I2 × I2 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
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The Product Operation

The product construction is a very useful way to construct large
avoiding matrices. In fact, all known asymptotic lower bounds
forb(m,F ) can be obtained by taking repeated products of the
matrices Im, I

c
m and Tm.

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I c4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , T4 =


1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0



Conjecture (“Erdős-Stone”)

For a configuration F let X (F ) denote the largest p so that there
exists p matrices Ai equal to either Im/p, I

c
m/p or Tm/p such that

F ⊀ A1 × · · ·Ap. Then forb(m,F ) = Θ(mX (F )).
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The Product Operation

Conjecture

For a configuration F let X (F ) denote the largest p so that there
exists p matrices Ai equal to either Im/p, I

c
m/p or Tm/p such that

F ⊀ A1 × · · ·Ap. Then forb(m,F ) = Θ(mX (F )).

Example

For 12,2 =

[
1 1
1 1

]
, note that for large enough m we have

12,2 ≺ Tm and 12,2 ≺ I cm, so X (F ) can only be obtained by taking
products of I . 12,2 ⊀ Im/2 × Im/2 (each column has only two 1’s),
but 12,2 ≺ Im/3 × Im/3 × Im/3. Thus the conjecture predicts that
forb(m, 12,2)) = Θ(m2), which is indeed true.



Our Research: Forbidden Families

Definition

Let F = {F1, . . . ,Fn} be a family of (0, 1)−matrices. Let A be a
simple matrix. We say A ∈ Avoid(m,F), if Fi ⊀ A for all
i ∈ {1, . . . , n} and we define
forb(m,F) := max

A
{|A| | A ∈ Avoid(m,F)}.

Example

forb(m, I2) = Θ(m)
forb(m,T2) = Θ(m)
forb(m, {I2,T2}) = 2.

Theorem (Balogh-Bollobás)

forb(m, Ik ,Tk , I
c
k ) = Ok(1).
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Our Research: Forbidden Families

Our research looked at certain pairs of “minimal” configurations.



Our Research: Forbidden Families



12,2 and F11

Let 12,2 =

[
1 1
1 1

]
and F11 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

.

First, observe that F11 = A(K2,2). That is, F11 is the incidence
matrix of K2,2. It is known that forb(m,F11) = Θ(n3).

Question

What is forb(m, {12,2,F11})?



12,2 and F11

Let 12,2 =

[
1 1
1 1

]
and F11 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

.

First, observe that F11 = A(K2,2). That is, F11 is the incidence
matrix of K2,2. It is known that forb(m,F11) = Θ(n3).

Question

What is forb(m, {12,2,F11})?



12,2 and F11

Let 12,2 =

[
1 1
1 1

]
and F11 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

.

First, observe that F11 = A(K2,2). That is, F11 is the incidence
matrix of K2,2. It is known that forb(m,F11) = Θ(n3).

Question

What is forb(m, {12,2,F11})?



12,2 and F11

Let A ∈ Avoid(m, {12,2,F11}) and consider A′ (A after
downgrading columns to have two or fewer 1’s).

We already know that A′ is simple and that 12,2 ⊀ A′, but are we
guaranteed that F11 ⊀ A′?

If F11 ≺ A′ then that means that F̂11 ≺ A, where F̂11 denotes F11
with some number of 0’s changed to 1’s.
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12,2 and F11

Claim.

If F̂11 denotes F11 with some number of 0’s changed to 1’s then
12,2 ≺ F̂11

Example

F11 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 . F̂11 =


1 1 0 0
0 1′ 1 1
1 0 1 0
0 1 0 1

 ,


1 1 0 0
0 0 1 1
1 0 1 0
1′ 1 0 1



But if 12,2 ≺ F̂11 and 12,2 ⊀ A, then we can’t have F̂11 ≺ A. Thus
A′ ∈ Avoid(m, {12,2,F11}).
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A′ ∈ Avoid(m, {12,2,F11}).



12,2 and F11

We’ve now reduced the problem to computing how large |A′| can
be for A′ ∈ Avoid(m, {12,2,F11}) with A′ having only 0, 1 or
2-columns.

As each column of 12,2 and F11 has more than one 1, A′ can
contain all 0 and 1-columns. It is also clear that having any number
of 2-columns can’t induce 12,2, so all we have to figure out is how
many 2-columns an m-rowed matrix have before containing F11.

We can view an m-rowed simple matrix with only 2-columns as the
incidence matrix of a graph with m vertices. The condition of
avoiding F11 as a configuration is equivalent to avoiding K2,2 as a
subgraph (since F11 = A(K2,2)).
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12,2 and F11

Theorem (Sali-S. 2017)

forb(m, {12,2,F11}) = 1 + m + ex(m,K2,2) = Θ(m3/2).

forb(m, {12,2,A(Kr ,s)}) = 1 + m + ex(m,Kr ,s).

Remark

3

2
/∈ Z.

In particular, the “Erdős-Stone” conjecture doesn’t generalize to
forbidden families.
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Q3 and F11

Q3 =

[
0 0 0 1 1 1
0 1 1 0 0 1

]
I claim that forb(m,Q3) = Θ(m2) and I × I c is the only product
construction giving this lower bound.

Theorem (Sali-S. 2017)

All “large” matrices in Avoid(m,Q3) “look like” I × I c .
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[
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]
I claim that forb(m,Q3) = Θ(m2) and I × I c is the only product
construction giving this lower bound.

Theorem (Sali-S. 2017)
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Q3 and F11

Theorem (Sali-S. 2017)

Let A ∈ Avoid(m,Q3) with |A| = ω(m logm). There exists a set of
integers {k1, . . . , ky} and a set A′ =

{
A′1, . . . ,A

′
y

}
, of disjoint

submatrices A′j ≺ A such that:

1 kj+1 ≤ 1
2kj for all j , and y ≤ logm.

2 There exists kj rows of A such that the columns of A′j
restricted to these rows are columns of Ikj .

3 If i is a column of Ikj , let C j
i denote the set of columns of A′j

that are equal to i when restricted to the kj rows mentioned

above. Then, besides these kj rows, no row restricted to C j
i is

sparse, and every column of C j
i is identified by some dense

row.

4 |A| = Θ(
∑
|A′j |).



Q3 and F11

Question

What is forb(m,Q3, Ir × I cs )?

Theorem (Sali-S. 2017)

If s ≤ r , then

forb(m,Q3, Ir × I cs ) = O(m2−1/s).

forb(m,Q3, Ir × I cs ) = Ω(ex(m,Kr ,s)).

Corollary (Sali-S. 2017)

forb(m,Q3,F11) = forb(m,Q3, I2 × I c2 ) = Θ(m3/2).
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Corollary (Sali-S. 2017)

forb(m,Q3,F11) = forb(m,Q3, I2 × I c2 ) = Θ(m3/2).
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The End

Thank You!


