Forbidden Configurations and Forbidden Families

Sam Spiro*, UC San Diego Attila Sali, Alfréd Rényi Institute of Mathematics.

June 30, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

For a graph G, let ex(m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

For a graph G, let ex(m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

Example

$$P_2 = \circ \cdots \circ , K_{2,2} = \circ \circ \circ$$

 $ex(m, P_2) = \lfloor m/2 \rfloor$

Definition

For a graph G, let ex(m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

Example

$$P_2 = \circ - \circ - \circ , \ K_{2,2} = \circ \circ \circ$$

 $ex(m, P_2) = \lfloor m/2 \rfloor$

 $ex(m, K_{2,2}) = \Theta(m^{3/2})$

Theorem (Erdős-Stone)

Let $r = \chi(G)$. Then

$$ex(m; G) = \left(\frac{r-2}{r-1} + o(1)\right) \binom{n}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Erdős-Stone)

Let $r = \chi(G)$. Then

$$ex(m; G) = \left(\frac{r-2}{r-1} + o(1)\right) \binom{n}{2}$$

Question

How do we define the extremal number of a hypergraph?

Definition (Simple Matrix)

A matrix A is **simple** if A is a (0,1)-matrix with no repeated columns. That is, A is the incidence matrix of a simple hypergraph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Simple Matrix)

A matrix A is **simple** if A is a (0,1)-matrix with no repeated columns. That is, A is the incidence matrix of a simple hypergraph.

Definition (Configuration)

For two matrices F and A, we say that F is a **configuration** in A, and write $F \prec A$ if F is a submatrix of A after permuting the rows and columns of A. We say A has no configuration F, and write $F \not\prec A$, if F is not a configuration in A.

Terminology

Definition (Configuration)

For two matrices F and A, we say that F is a **configuration** in A, and write $F \prec A$ if F is a submatrix of A after permuting the rows and columns of A. We say A has no configuration F, and write $F \not\prec A$, if F is not a configuration in A.

Example Let $F = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Then $F \prec A$. $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{col_2, col_3} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{row_1, row_2} \begin{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.

Avoid and Forb

Question

For a fixed configuration F, how "large" can a simple matrix A be if $F \not\prec A$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Avoid and Forb

Definition (Avoid(m,F))

A matrix A is in the set Avoid(m, F) if:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 A has m rows.
- 2 A is a simple matrix.
- **3** *F* ⊀ *A*.

Avoid and Forb

Definition (Avoid(m,F))

A matrix A is in the set Avoid(m, F) if:

- 1 A has m rows.
- 2 A is a simple matrix.
- **3** *F* ⊀ *A*.

Definition (forb(m,F))

Let A be a matrix and let |A| denote the *number of columns of* A. Let F be a (0,1)-matrix. We define

$$forb(m, F) := \max_{A} \{ |A| \mid A \in Avoid(m, F) \}.$$

A Simple Example: [1]

Definition

for b(m, F) := how many columns an *m*-rowed simple matrix avoiding F can have.

Example

Let
$$F = [1]$$
. Then, forb $(m, [1]) = 1$, for all $m \ge 1$.

$$A = \begin{bmatrix} 0 & ? \\ 0 & ? \\ \vdots & \vdots \end{bmatrix}$$

A Less Simple Example: 1_{2,2}

Theorem

Let
$$1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Then, forb $(m, 1_{2,2}) = 1 + m + \binom{m}{2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

Let
$$1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Then, forb $(m, 1_{2,2}) = 1 + m + {m \choose 2}$.

For the lower bound, take A containing the 0-column, all 1-columns, and all 2-columns.

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 1 & 1 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & 1 & \cdots & 1 & 0 & \cdots & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \ |A| = 1 + m + \binom{m}{2}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

For the upper bound, let $A \in Avoid(m, 1_{2,2})$.

Define A' by taking columns of A with more than two 1's and changing 1's to 0's until the columns all have at most two 1's.

For the upper bound, let $A \in Avoid(m, 1_{2,2})$.

Define A' by taking columns of A with more than two 1's and changing 1's to 0's until the columns all have at most two 1's.

Example

Note that A' is not simple and $1_{2,2} \prec A'$.

A Less Simple Example: 1_{2,2}

Claim.

If $A \in Avoid(m, 1_{2,2})$ then $A' \in Avoid(m, 1_{2,2})$. That is, A' is simple and $1_{2,2} \not\prec A'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Claim.

If $A \in Avoid(m, 1_{2,2})$ then $A' \in Avoid(m, 1_{2,2})$. That is, A' is simple and $1_{2,2} \not\prec A'$.

Proof (Claim).

Clearly if $1_{2,2} \not\prec A$ then $1_{2,2} \not\prec A'$ (we get to A' by removing 1's of A). If A' has repeated columns then they must be repeated 2-columns, but repeated 2-columns induce a $1_{2,2}$, and we've already shown that $1_{2,2} \not\prec A'$. Thus A' must be simple.

Claim.

If $A \in Avoid(m, 1_{2,2})$ then $A' \in Avoid(m, 1_{2,2})$. That is, A' is simple and $1_{2,2} \not\prec A'$.

Proof (Claim).

Clearly if $1_{2,2} \not\prec A$ then $1_{2,2} \not\prec A'$ (we get to A' by removing 1's of A). If A' has repeated columns then they must be repeated 2-columns, but repeated 2-columns induce a $1_{2,2}$, and we've already shown that $1_{2,2} \not\prec A'$. Thus A' must be simple.

Proof of Theorem.

If $A \in Avoid(m, 1_{2,2})$ then $|A| = |A'| \le 1 + m + \binom{m}{2}$.

The Product Operation

Definition

Given two simple matrices A and B with m_1 rows and m_2 rows respectively, we define their *product* $A \times B$ to be the simple matrix on $m_1 + m_2$ rows whose columns in the first m_1 rows are columns of A and in the bottom m_2 rows are columns of B, and $A \times B$ contains all such columns, i.e. $|A \times B| = |A||B|$.

The Product Operation

Definition

Given two simple matrices A and B with m_1 rows and m_2 rows respectively, we define their *product* $A \times B$ to be the simple matrix on $m_1 + m_2$ rows whose columns in the first m_1 rows are columns of A and in the bottom m_2 rows are columns of B, and $A \times B$ contains all such columns, i.e. $|A \times B| = |A||B|$.

Example

$$T_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \ l_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$T_2 \times l_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \ l_2 \times l_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

The product construction is a very useful way to construct large avoiding matrices. In fact, all known asymptotic lower bounds forb(m, F) can be obtained by taking repeated products of the matrices I_m , I_m^c and T_m .

$$I_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ I_{4}^{c} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \ T_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

The product construction is a very useful way to construct large avoiding matrices. In fact, all known asymptotic lower bounds forb(m, F) can be obtained by taking repeated products of the matrices I_m , I_m^c and T_m .

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ I_4^c = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \ T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Conjecture ("Erdős-Stone")

For a configuration F let X(F) denote the largest p so that there exists p matrices A_i equal to either $I_{m/p}$, $I_{m/p}^c$ or $T_{m/p}$ such that $F \not\prec A_1 \times \cdots A_p$. Then forb $(m, F) = \Theta(m^{X(F)})$.

Conjecture

For a configuration F let X(F) denote the largest p so that there exists p matrices A_i equal to either $I_{m/p}$, $I_{m/p}^c$ or $T_{m/p}$ such that $F \not\prec A_1 \times \cdots A_p$. Then forb $(m, F) = \Theta(m^{X(F)})$.

Example

For $1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, note that for large enough m we have $1_{2,2} \prec T_m$ and $1_{2,2} \prec I_m^c$, so X(F) can only be obtained by taking products of I. $1_{2,2} \not\prec I_{m/2} \times I_{m/2}$ (each column has only two 1's), but $1_{2,2} \prec I_{m/3} \times I_{m/3} \times I_{m/3}$. Thus the conjecture predicts that forb $(m, 1_{2,2})$ = $\Theta(m^2)$, which is indeed true.

Definition

Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of (0, 1)-matrices. Let A be a simple matrix. We say $A \in Avoid(m, \mathcal{F})$, if $F_i \not\prec A$ for all $i \in \{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}) := \max_A \{|A| \mid A \in Avoid(m, \mathcal{F})\}.$

Definition

Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of (0, 1)-matrices. Let A be a simple matrix. We say $A \in Avoid(m, \mathcal{F})$, if $F_i \not\prec A$ for all $i \in \{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}) := \max_A \{|A| \mid A \in Avoid(m, \mathcal{F})\}.$

Example

forb
$$(m, I_2) = \Theta(m)$$

forb $(m, T_2) = \Theta(m)$
forb $(m, \{I_2, T_2\}) = 2$.

Definition

Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of (0, 1)-matrices. Let A be a simple matrix. We say $A \in Avoid(m, \mathcal{F})$, if $F_i \not\prec A$ for all $i \in \{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}) := \max_A \{|A| \mid A \in Avoid(m, \mathcal{F})\}.$

Example

forb
$$(m, l_2) = \Theta(m)$$

forb $(m, T_2) = \Theta(m)$
forb $(m, \{l_2, T_2\}) = 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Balogh-Bollobás)

 $forb(m, I_k, T_k, I_k^c) = O_k(1).$

Our research looked at certain pairs of "minimal" configurations.

	14,1	F_9	F_{10}	F_{11}	F_{12}	F_{13}	04,1	F_9^c	F_{10}^{c}	F_{12}^{c}
13,1	$\Theta(m^2)$	m+2	$\Theta(1)$	$\Theta(m^{3/2})$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(1)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$
	Rm 2.1	Cr 6.16	Cr 5.1	Cr 5.3	Rm 2.1	Rm 2.1	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
12,2	$\Theta(m^2)$	m + 3	$\Theta(1)$	$\Theta(m^{3/2})$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(1)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$
	Rm 2.1	Cr 6.16	Cr 5.1	Cr 5.5	Rm 2.1	Rm 2.1	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
I_3	$\Theta(1)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$
	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1	${ m Rm}\ 2.1$	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1
Q_3	$\Theta(m)$	$\Theta(m)$	$\Theta(m)$	$\Theta(m^{3/2})$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m)$	$\Theta(m)$	$\Theta(m)$	$\Theta(m^2)$
	Cr 4.2	Th 6.1	Cr 4.2	Cr 4.13	Rm 2.1	Rm 2.1	Cr 4.2	Th 6.1	Cr 4.2	Rm 2.1
Q_8	$\Theta(m)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$
	Pr 3.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Pr 3.1	Rm 2.1	Rm 2.1	Rm 2.1
Q_9	3m-2	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	3m-2	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$
	Cr 7.3	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Cr 7.3	Rm 2.1	Rm 2.1	Rm 2.1
14,1		m+5	$\Theta(1)$	$\Theta(m^{3/2})$	$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(1)$	$\Theta(m^3)$	$\Theta(m^3)$	$\Theta(m^3)$
		Cr 6.16	Cr 5.1	Pr 5.7	Rm 2.1	Pr 3.3	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
F_9			$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^3)$
			Rm 2.1	Pr 3.3	Rm 2.1	Pr 3.3	Rm 2.1	Pr 3.4	Pr 3.4	Rm 2.1
F_{10}				$\Theta(m^2)$	$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(m^3)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^3)$
				Pr 3.3	Rm 2.1	Pr 3.3	Rm 2.1	Pr 3.4	Pr 3.4	Rm 2.1
F_{11}					$\Theta(m^3)$	$\Theta(m^3)$	$\Theta(m^{3/2})$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^3)$
					Rm 2.1	Rm 2.1	Pr 5.7	Pr 3.3	Pr 3.3	Rm 2.1
F_{12}						$\Theta(m^3)$	$\Theta(m^3)$	$\Theta(m^3)$	$\Theta(m^3)$	$\Theta(m^3)$
						Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1
F_{13}							$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^2)$	$\Theta(m^3)$
							Pr 3.3	Pr 3.3	Pr 3.3	Rm 2.1

Let
$$1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $F_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let
$$1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $F_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
First, observe that $F_{11} = A(K_{2,2})$. That is, F_{11} is the incidence matrix of $K_{2,2}$. It is known that $forb(m, F_{11}) = \Theta(n^3)$.

Let
$$1_{2,2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $F_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
First, observe that $F_{11} = A(K_{2,2})$. That is, F_{11} is the incidence matrix of $K_{2,2}$. It is known that forb $(m, F_{11}) = \Theta(n^3)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question

What is forb $(m, \{1_{2,2}, F_{11}\})$?

Let $A \in Avoid(m, \{1_{2,2}, F_{11}\})$ and consider A' (A after downgrading columns to have two or fewer 1's).

We already know that A' is simple and that $1_{2,2} \not\prec A'$, but are we guaranteed that $F_{11} \not\prec A'$?

Let $A \in Avoid(m, \{1_{2,2}, F_{11}\})$ and consider A' (A after downgrading columns to have two or fewer 1's).

We already know that A' is simple and that $1_{2,2} \not\prec A'$, but are we guaranteed that $F_{11} \not\prec A'$?

If $F_{11} \prec A'$ then that means that $\hat{F}_{11} \prec A$, where \hat{F}_{11} denotes F_{11} with some number of 0's changed to 1's.

Claim.

If \hat{F}_{11} denotes F_{11} with some number of 0's changed to 1's then $1_{2,2}\prec\hat{F}_{11}$

Example

$$F_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \hat{F}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & \mathbf{1}' & 1 & \mathbf{1} \\ 1 & 0 & 1 & 0 \\ 0 & \mathbf{1} & 0 & \mathbf{1} \end{bmatrix}, \begin{bmatrix} \mathbf{1} & \mathbf{1} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ \mathbf{1}' & \mathbf{1} & 0 & \mathbf{1} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$1_{2,2}$ and F_{11}

Claim.

If \hat{F}_{11} denotes F_{11} with some number of 0's changed to 1's then $1_{2,2}\prec\hat{F}_{11}$

Example

$$F_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} . \hat{F}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & \mathbf{1}' & 1 & \mathbf{1} \\ 1 & 0 & 1 & 0 \\ 0 & \mathbf{1} & 0 & \mathbf{1} \end{bmatrix} , \begin{bmatrix} \mathbf{1} & \mathbf{1} & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ \mathbf{1}' & \mathbf{1} & 0 & \mathbf{1} \end{bmatrix}$$

But if $1_{2,2} \prec \hat{F}_{11}$ and $1_{2,2} \not\prec A$, then we can't have $\hat{F}_{11} \prec A$. Thus $A' \in Avoid(m, \{1_{2,2}, F_{11}\})$.

As each column of $1_{2,2}$ and F_{11} has more than one 1, A' can contain all 0 and 1-columns.

As each column of $1_{2,2}$ and F_{11} has more than one 1, A' can contain all 0 and 1-columns. It is also clear that having any number of 2-columns can't induce $1_{2,2}$, so all we have to figure out is how many 2-columns an *m*-rowed matrix have before containing F_{11} .

(日) (同) (三) (三) (三) (○) (○)

As each column of $1_{2,2}$ and F_{11} has more than one 1, A' can contain all 0 and 1-columns. It is also clear that having any number of 2-columns can't induce $1_{2,2}$, so all we have to figure out is how many 2-columns an *m*-rowed matrix have before containing F_{11} .

We can view an m-rowed simple matrix with only 2-columns as the incidence matrix of a graph with m vertices.

As each column of $1_{2,2}$ and F_{11} has more than one 1, A' can contain all 0 and 1-columns. It is also clear that having any number of 2-columns can't induce $1_{2,2}$, so all we have to figure out is how many 2-columns an *m*-rowed matrix have before containing F_{11} .

We can view an *m*-rowed simple matrix with only 2-columns as the incidence matrix of a graph with *m* vertices. The condition of avoiding F_{11} as a configuration is equivalent to avoiding $K_{2,2}$ as a subgraph (since $F_{11} = A(K_{2,2})$).

for
$$b(m, \{1_{2,2}, F_{11}\}) = 1 + m + ex(m, K_{2,2}) = \Theta(m^{3/2}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

forb
$$(m, \{1_{2,2}, F_{11}\}) = 1 + m + ex(m, K_{2,2}) = \Theta(m^{3/2}).$$

forb $(m, \{1_{2,2}, A(K_{r,s})\}) = 1 + m + ex(m, K_{r,s}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

forb
$$(m, \{1_{2,2}, F_{11}\}) = 1 + m + ex(m, K_{2,2}) = \Theta(m^{3/2}).$$

forb $(m, \{1_{2,2}, A(K_{r,s})\}) = 1 + m + ex(m, K_{r,s}).$

Remark

$$\frac{3}{2} \notin \mathbb{Z}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

forb
$$(m, \{1_{2,2}, F_{11}\}) = 1 + m + ex(m, K_{2,2}) = \Theta(m^{3/2}).$$

forb $(m, \{1_{2,2}, A(K_{r,s})\}) = 1 + m + ex(m, K_{r,s}).$

Remark

$$\frac{3}{2} \notin \mathbb{Z}.$$

In particular, the "Erdős-Stone" conjecture doesn't generalize to forbidden families.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Q_3 and F_{11}

$$Q_3 = egin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

I claim that forb $(m, Q_3) = \Theta(m^2)$ and $I \times I^c$ is the only product construction giving this lower bound.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Q_3 and F_{11}

$$Q_3 = egin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

I claim that forb $(m, Q_3) = \Theta(m^2)$ and $I \times I^c$ is the only product construction giving this lower bound.

Theorem (Sali-S. 2017)

All "large" matrices in Avoid (m, Q_3) "look like" $I \times I^c$.

Q_3 and F_{11}

Theorem (Sali-S. 2017)

Let $A \in Avoid(m, Q_3)$ with $|A| = \omega(m \log m)$. There exists a set of integers $\{k_1, \ldots, k_y\}$ and a set $A' = \{A'_1, \ldots, A'_y\}$, of disjoint submatrices $A'_i \prec A$ such that:

- 1 $k_{j+1} \leq \frac{1}{2}k_j$ for all j, and $y \leq \log m$.
- 2 There exists k_j rows of A such that the columns of A'_j restricted to these rows are columns of I_{k_i}.
- If i is a column of I_{kj}, let C^j_i denote the set of columns of A'_j that are equal to i when restricted to the k_j rows mentioned above. Then, besides these k_j rows, no row restricted to C^j_i is sparse, and every column of C^j_i is identified by some dense row.

$$|A| = \Theta(\sum |A'_j|)$$

What is forb $(m, Q_3, I_r \times I_s^c)$?

What is forb $(m, Q_3, I_r \times I_s^c)$?

Theorem (Sali-S. 2017)

If $s \leq r$, then

•
$$forb(m, Q_3, I_r \times I_s^c) = O(m^{2-1/s}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


```
What is forb(m, Q_3, I_r \times I_s^c)?
```

Theorem (Sali-S. 2017)

If $s \leq r$, then

•
$$forb(m, Q_3, I_r \times I_s^c) = O(m^{2-1/s}).$$

• forb $(m, Q_3, I_r \times I_s^c) = \Omega(ex(m, K_{r,s})).$

What is forb $(m, Q_3, I_r \times I_s^c)$?

Theorem (Sali-S. 2017)

If $s \leq r$, then

•
$$forb(m, Q_3, I_r \times I_s^c) = O(m^{2-1/s}).$$

forb
$$(m, Q_3, I_r \times I_s^c) = \Omega(ex(m, K_{r,s})).$$

Corollary (Sali-S. 2017)

 $forb(m, Q_3, F_{11}) = forb(m, Q_3, I_2 \times I_2^c) = \Theta(m^{3/2}).$

Open Question

<□ > < @ > < E > < E > E のQ @

What is forb(m, {1_{2,3}, F_{11} }), where 1_{2,3} = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is forb $(m, \{1_{2,3}, F_{11}\})$, where $1_{2,3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$? More generally, what is forb $(m, \{1_{2,\ell}, A(K_{r,s})\})$?

What is forb $(m, \{1_{2,3}, F_{11}\})$, where $1_{2,3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$? More generally, what is forb $(m, \{1_{2,\ell}, A(K_{r,s})\})$?

Theorem (Sali-S.)

 $forb(m, \{1_{2,\ell}, A(K_{r,s})\}) = \Omega(ex(m, K_{r,s}))$ $forb(m, \{1_{2,\ell}, A(K_{r,s})\}) = O(ex(m, K_{r+(\ell-1)\binom{s}{2}, s+(\ell-1)\binom{r}{2}}))$

Thank You!