Forbidden Configurations and Forbidden Families

Sam Spiro*, UC San Diego
Attila Sali, Alfréd Rényi Institute of Mathematics.

June 30, 2018

Motivation: Extremal Graph Theory

Definition

For a graph G, let ex (m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

Motivation: Extremal Graph Theory

Definition

For a graph G, let ex (m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

Example

$$
\begin{aligned}
& \operatorname{ex}\left(m, P_{2}\right)=\lfloor m / 2\rfloor
\end{aligned}
$$

Motivation: Extremal Graph Theory

Definition

For a graph G, let ex (m, G) denote the most number of edges a graph on m vertices can have before containing a subgraph isomorphic to G.

Example

$$
\begin{aligned}
& \circ-\ldots, K_{2,2}={ }_{\circ}^{\circ}{ }_{0}^{\circ} \\
& e x\left(m, P_{2}\right)=\lfloor m / 2\rfloor \\
& e x\left(m, K_{2,2}\right)=\Theta\left(m^{3 / 2}\right)
\end{aligned}
$$

Motivation: Extremal Graph Theory

$$
\begin{aligned}
& \text { Theorem (Erdős-Stone) } \\
& \text { Let } r=\chi(G) \text {. Then } \\
& \qquad \operatorname{ex}(m ; G)=\left(\frac{r-2}{r-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

Motivation: Extremal Graph Theory

$$
\begin{aligned}
& \text { Theorem (Erdős-Stone) } \\
& \text { Let } r=\chi(G) \text {. Then } \\
& \qquad \operatorname{ex}(m ; G)=\left(\frac{r-2}{r-1}+o(1)\right)\binom{n}{2}
\end{aligned}
$$

Question

How do we define the extremal number of a hypergraph?

Terminology

Definition (Simple Matrix)

A matrix A is simple if A is a $(0,1)$-matrix with no repeated columns. That is, A is the incidence matrix of a simple hypergraph.

Terminology

Definition (Simple Matrix)

A matrix A is simple if A is a $(0,1)$-matrix with no repeated columns. That is, A is the incidence matrix of a simple hypergraph.

Definition (Configuration)

For two matrices F and A, we say that F is a configuration in A, and write $F \prec A$ if F is a submatrix of A after permuting the rows and columns of A.
We say A has no configuration F, and write $F \nprec A$, if F is not a configuration in A.

Terminology

Definition (Configuration)

For two matrices F and A, we say that F is a configuration in A, and write $F \prec A$ if F is a submatrix of A after permuting the rows and columns of A.
We say A has no configuration F, and write $F \nprec A$, if F is not a configuration in A.

Example

$$
\text { Let } \left.\begin{array}{rl}
F & =\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \text { and } A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] . \text { Then } F \prec A . \\
A & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{\mathrm{col}_{2}, \mathrm{col}_{3}}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \xrightarrow{\mathrm{row}_{1}, \text { row }_{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1
\end{array}\right] .
\end{array}\right] .
$$

Avoid and Forb

Question

For a fixed configuration F, how "large" can a simple matrix A be if $F \nprec A$?

Avoid and Forb

Definition (Avoid (m, F))

A matrix A is in the set $\operatorname{Avoid}(m, F)$ if:
$1 A$ has m rows.
$2 A$ is a simple matrix.
$3 F \nprec A$.

Avoid and Forb

Definition (Avoid(m,F))

A matrix A is in the set $\operatorname{Avoid}(m, F)$ if:
$1 A$ has m rows.
$2 A$ is a simple matrix.
$3 F \nprec A$.

Definition (forb (m, F))

Let A be a matrix and let $|A|$ denote the number of columns of A. Let F be a $(0,1)$-matrix. We define

$$
\text { forb }(m, F):=\max _{A}\{|A| \mid A \in \operatorname{Avoid}(m, F)\} .
$$

A Simple Example: [1]

Definition

forb (m, F) :=how many columns an m-rowed simple matrix avoiding F can have.

Example
Let $F=[1]$. Then, forb $(m,[1])=1$, for all $m \geq 1$.

$$
A=\left[\begin{array}{cc}
0 & ? \\
0 & ? \\
\vdots & \vdots
\end{array}\right]
$$

A Less Simple Example: $1_{2,2}$

Theorem
Let $1_{2,2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Then, forb $\left(m, 1_{2,2}\right)=1+m+\binom{m}{2}$.

A Less Simple Example: $1_{2,2}$

Theorem

Let $1_{2,2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Then, forb $\left(m, 1_{2,2}\right)=1+m+\binom{m}{2}$.
For the lower bound, take A containing the 0 -column, all 1-columns, and all 2-columns.

$$
A=\left[\begin{array}{cccccccccc}
0 & 1 & 0 & \cdots & 1 & 1 & \cdots & 0 & 0 & \cdots \\
0 & 0 & 1 & \cdots & 1 & 0 & \cdots & 1 & 1 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right],|A|=1+m+\binom{m}{2} .
$$

A Less Simple Example: $1_{2,2}$

For the upper bound, let $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$.
Define A^{\prime} by taking columns of A with more than two 1 's and changing 1's to 0's until the columns all have at most two 1's.

A Less Simple Example: $1_{2,2}$

For the upper bound, let $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$.
Define A^{\prime} by taking columns of A with more than two 1 's and changing 1's to 0's until the columns all have at most two 1's.

Example

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right], A^{\prime}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

Note that A^{\prime} is not simple and $1_{2,2} \prec A^{\prime}$.

A Less Simple Example: $1_{2,2}$

Claim.

If $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$ then $A^{\prime} \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$. That is, A^{\prime} is simple and $1_{2,2} \nprec A^{\prime}$.

A Less Simple Example: $1_{2,2}$

Claim.

If $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$ then $A^{\prime} \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$. That is, A^{\prime} is simple and $1_{2,2} \nprec A^{\prime}$.

Proof (Claim).

Clearly if $1_{2,2} \nprec A$ then $1_{2,2} \nprec A^{\prime}$ (we get to A^{\prime} by removing 1 's of A). If A^{\prime} has repeated columns then they must be repeated 2-columns, but repeated 2 -columns induce a $1_{2,2}$, and we've already shown that $1_{2,2} \nprec A^{\prime}$. Thus A^{\prime} must be simple.

A Less Simple Example: $1_{2,2}$

Claim.

If $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$ then $A^{\prime} \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$. That is, A^{\prime} is simple and $1_{2,2} \nprec A^{\prime}$.

Proof (Claim).

Clearly if $1_{2,2} \nprec A$ then $1_{2,2} \nprec A^{\prime}$ (we get to A^{\prime} by removing 1 's of A). If A^{\prime} has repeated columns then they must be repeated 2-columns, but repeated 2 -columns induce a $1_{2,2}$, and we've already shown that $1_{2,2} \nprec A^{\prime}$. Thus A^{\prime} must be simple.

Proof of Theorem.
If $A \in \operatorname{Avoid}\left(m, 1_{2,2}\right)$ then $|A|=\left|A^{\prime}\right| \leq 1+m+\binom{m}{2}$.

The Product Operation

Definition

Given two simple matrices A and B with m_{1} rows and m_{2} rows respectively, we define their product $A \times B$ to be the simple matrix on $m_{1}+m_{2}$ rows whose columns in the first m_{1} rows are columns of A and in the bottom m_{2} rows are columns of B, and $A \times B$ contains all such columns, i.e. $|A \times B|=|A||B|$.

The Product Operation

Definition

Given two simple matrices A and B with m_{1} rows and m_{2} rows respectively, we define their product $A \times B$ to be the simple matrix on $m_{1}+m_{2}$ rows whose columns in the first m_{1} rows are columns of A and in the bottom m_{2} rows are columns of B, and $A \times B$ contains all such columns, i.e. $|A \times B|=|A||B|$.

Example

$$
\begin{gathered}
T_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
T_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

The Product Operation

The product construction is a very useful way to construct large avoiding matrices. In fact, all known asymptotic lower bounds forb (m, F) can be obtained by taking repeated products of the matrices I_{m}, I_{m}^{c} and T_{m}.

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

The Product Operation

The product construction is a very useful way to construct large avoiding matrices. In fact, all known asymptotic lower bounds forb (m, F) can be obtained by taking repeated products of the matrices I_{m}, I_{m}^{c} and T_{m}.

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Conjecture ("Erdős-Stone")

For a configuration F let $X(F)$ denote the largest p so that there exists p matrices A_{i} equal to either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$ such that $F \nprec A_{1} \times \cdots A_{p}$. Then forb $(m, F)=\Theta\left(m^{X(F)}\right)$.

The Product Operation

Conjecture

For a configuration F let $X(F)$ denote the largest p so that there exists p matrices A_{i} equal to either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$ such that $F \nprec A_{1} \times \cdots A_{p}$. Then forb $(m, F)=\Theta\left(m^{X(F)}\right)$.

Example

For $1_{2,2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, note that for large enough m we have
$1_{2,2} \prec T_{m}$ and $1_{2,2} \prec I_{m}^{c}$, so $X(F)$ can only be obtained by taking products of I. $1_{2,2} \nprec I_{m / 2} \times I_{m / 2}$ (each column has only two 1 's), but $1_{2,2} \prec I_{m / 3} \times I_{m / 3} \times I_{m / 3}$. Thus the conjecture predicts that forb $\left.\left(m, 1_{2,2}\right)\right)=\Theta\left(m^{2}\right)$, which is indeed true.

Our Research: Forbidden Families

Definition

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of $(0,1)-$ matrices. Let A be a simple matrix. We say $A \in \operatorname{Avoid}(m, \mathcal{F})$, if $F_{i} \nprec A$ for all $i \in\{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}):=\max _{A}\{|A| \mid A \in \operatorname{Avoid}(m, \mathcal{F})\}$.

Our Research: Forbidden Families

Definition

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of $(0,1)-$ matrices. Let A be a simple matrix. We say $A \in \operatorname{Avoid}(m, \mathcal{F})$, if $F_{i} \nprec A$ for all $i \in\{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}):=\max _{A}\{|A| \mid A \in \operatorname{Avoid}(m, \mathcal{F})\}$.

Example

$$
\begin{aligned}
& \text { forb }\left(m, l_{2}\right)=\Theta(m) \\
& \text { forb }\left(m, T_{2}\right)=\Theta(m) \\
& \text { forb }\left(m,\left\{I_{2}, T_{2}\right\}\right)=2
\end{aligned}
$$

Our Research: Forbidden Families

Definition

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of $(0,1)-$ matrices. Let A be a simple matrix. We say $A \in \operatorname{Avoid}(m, \mathcal{F})$, if $F_{i} \nprec A$ for all
$i \in\{1, \ldots, n\}$ and we define forb $(m, \mathcal{F}):=\max _{A}\{|A| \mid A \in \operatorname{Avoid}(m, \mathcal{F})\}$.

Example

$$
\begin{aligned}
& \text { forb }\left(m, l_{2}\right)=\Theta(m) \\
& \text { forb }\left(m, T_{2}\right)=\Theta(m) \\
& \text { forb }\left(m,\left\{l_{2}, T_{2}\right\}\right)=2
\end{aligned}
$$

Theorem (Balogh-Bollobás)

forb $\left(m, I_{k}, T_{k}, I_{k}^{c}\right)=O_{k}(1)$.

Our Research: Forbidden Families

Our research looked at certain pairs of "minimal" configurations.

Our Research: Forbidden Families

	$1_{4,1}$	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}	$0_{4,1}$	F_{9}^{*}	F_{10}^{c}	F_{12}^{c}
$1_{3,1}$	$\Theta\left(m^{2}\right)$	$m+2$	$\boldsymbol{\Theta}(1)$	$\Theta\left(m^{3 / 2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta(1)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$
	Rm 2.1	Cr 6.16	Cr 5.1	Cr 5.3	Rm 2.1	Rm 2.1	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
$1_{2,2}$	$\Theta\left(m^{2}\right)$	$m+3$	$\boldsymbol{\theta}(1)$	$\Theta\left(m^{3 / 2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta(1)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$
	Rm 2.1	Cr 6.16	Cr 5.1	Cr 5.5	Rm 2.1	Rm 2.1	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
I_{3}	$\Theta(1)$	$\Theta\left(m^{2}\right)$								
	Cr 5.1	Rm 2.1	Rm 2.1	Rmin 2.1	Rm 2.1	Rm 2.1	Rmin 2.1	Rm 2.1	Rm 2.1	Rm 2.1
Q_{3}	$\Theta(m)$	$\Theta(m)$	$\Theta(m)$	$\Theta\left(m^{3 / 2}\right)$	$\theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta(m)$	$\Theta(m)$	$\Theta(m)$	$\Theta\left(m^{2}\right)$
	Cr 4.2	Th 6.1	Cr 4.2	Cr 4.13	Rm 2.1	Rm 2.1	Cr 4.2	Th 6.1	Cr 4.2	Rm 2.1
Q_{8}	$\Theta(m)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta(m)$	$\theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$
	Pr 3.1	Rm 2.1	Rm 2.1	Rm 2.1	Rm 2.1	$\operatorname{Rm} 2.1$	Pr 3.1	Rmin 2.1	Rm 2.1	Rm 2.1
Q_{9}	$3 \mathrm{~m}-2$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$3 m-2$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$
	Cr 7.3	Rm 2.1	Cr 7.3	Rm 2.1	Rmin 21	Rm 2.1				
$1_{4,1}$		$m+5$	$\Theta(1)$	$\Theta\left(m^{3 / 2}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta(1)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$
		Cr 6.16	Cr 5.1	Pr 5.7	Rm 2.1	$\operatorname{Pr} 3.3$	Cr 5.1	Rm 2.1	Rm 2.1	Rm 2.1
F_{9}			$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$
			Rm 2.1	Pr 3.3	$\operatorname{Rm} 2.1$	$\operatorname{Pr} 3.3$	Rm 2.1	$\operatorname{Pr} 3.4$	Pr 3.4	Rm 2.1
F_{10}				$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$
				Pr 3.3	Rm 2.1	$\operatorname{Pr} 3.3$	Rm 2.1	$\operatorname{Pr} 3.4$	Pr 3.4	Rm 2.1
F_{11}					$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3 / 2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$
					Rm 2.1	Rm 2.1	Pr 5.7	Pr 3.3	Pr 3.3	Rm 2.1
F_{12}						$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$	$\Theta\left(m^{3}\right)$
						Rm 2.1	Rm 2.1	Rmin 2.1	Rm 2.1	Rm 2.1
F_{13}							$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{2}\right)$	$\Theta\left(m^{3}\right)$
							Pr 3.3	Pr 3.3	Pr 3.3	Rm 2.1

$1_{2,2}$ and F_{11}

$$
\text { Let } 1_{2,2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { and } F_{11}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

$1_{2,2}$ and F_{11}

Let $1_{2,2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $F_{11}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
First, observe that $F_{11}=A\left(K_{2,2}\right)$. That is, F_{11} is the incidence matrix of $K_{2,2}$. It is known that forb $\left(m, F_{11}\right)=\Theta\left(n^{3}\right)$.

$1_{2,2}$ and F_{11}

Let $1_{2,2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $F_{11}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
First, observe that $F_{11}=A\left(K_{2,2}\right)$. That is, F_{11} is the incidence matrix of $K_{2,2}$. It is known that forb $\left(m, F_{11}\right)=\Theta\left(n^{3}\right)$.

Question

What is forb $\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$?

$1_{2,2}$ and F_{11}

Let $A \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ and consider $A^{\prime}(A$ after downgrading columns to have two or fewer 1 's).

We already know that A^{\prime} is simple and that $1_{2,2} \nprec A^{\prime}$, but are we guaranteed that $F_{11} \nprec A^{\prime}$?

$1_{2,2}$ and F_{11}

Let $A \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ and consider $A^{\prime}(A$ after downgrading columns to have two or fewer 1 's).

We already know that A^{\prime} is simple and that $1_{2,2} \nprec A^{\prime}$, but are we guaranteed that $F_{11} \nprec A^{\prime}$?

If $F_{11} \prec A^{\prime}$ then that means that $\hat{F}_{11} \prec A$, where \hat{F}_{11} denotes F_{11} with some number of 0 's changed to 1 's.

$1_{2,2}$ and F_{11}

Claim.

If \hat{F}_{11} denotes F_{11} with some number of 0 's changed to 1 's then $1_{2,2} \prec \hat{F}_{11}$

Example

$$
F_{11}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] . \hat{F}_{11}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & \mathbf{1}^{\prime} & 1 & \mathbf{1} \\
1 & 0 & 1 & 0 \\
0 & \mathbf{1} & 0 & \mathbf{1}
\end{array}\right],\left[\begin{array}{cccc}
\mathbf{1} & \mathbf{1} & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
\mathbf{1}^{\prime} & \mathbf{1} & 0 & 1
\end{array}\right]
$$

$1_{2,2}$ and F_{11}

Claim.

If \hat{F}_{11} denotes F_{11} with some number of 0 's changed to 1 's then $1_{2,2} \prec \hat{F}_{11}$

Example

$$
F_{11}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] . \hat{F}_{11}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & \mathbf{1}^{\prime} & 1 & \mathbf{1} \\
1 & 0 & 1 & 0 \\
0 & \mathbf{1} & 0 & \mathbf{1}
\end{array}\right],\left[\begin{array}{cccc}
\mathbf{1} & \mathbf{1} & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
\mathbf{1}^{\prime} & \mathbf{1} & 0 & 1
\end{array}\right]
$$

But if $1_{2,2} \prec \hat{F}_{11}$ and $1_{2,2} \nprec A$, then we can't have $\hat{F}_{11} \prec A$. Thus $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$.

$1_{2,2}$ and F_{11}

We've now reduced the problem to computing how large $\left|A^{\prime}\right|$ can be for $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ with A^{\prime} having only 0,1 or 2-columns.

$1_{2,2}$ and F_{11}

We've now reduced the problem to computing how large $\left|A^{\prime}\right|$ can be for $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ with A^{\prime} having only 0,1 or 2-columns.

As each column of $1_{2,2}$ and F_{11} has more than one $1, A^{\prime}$ can contain all 0 and 1 -columns.

$1_{2,2}$ and F_{11}

We've now reduced the problem to computing how large $\left|A^{\prime}\right|$ can be for $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ with A^{\prime} having only 0,1 or 2-columns.

As each column of $1_{2,2}$ and F_{11} has more than one $1, A^{\prime}$ can contain all 0 and 1 -columns. It is also clear that having any number of 2 -columns can't induce $1_{2,2}$, so all we have to figure out is how many 2 -columns an m-rowed matrix have before containing F_{11}.

$1_{2,2}$ and F_{11}

We've now reduced the problem to computing how large $\left|A^{\prime}\right|$ can be for $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ with A^{\prime} having only 0,1 or 2-columns.

As each column of $1_{2,2}$ and F_{11} has more than one $1, A^{\prime}$ can contain all 0 and 1 -columns. It is also clear that having any number of 2 -columns can't induce $1_{2,2}$, so all we have to figure out is how many 2 -columns an m-rowed matrix have before containing F_{11}.

We can view an m-rowed simple matrix with only 2 -columns as the incidence matrix of a graph with m vertices.

$1_{2,2}$ and F_{11}

We've now reduced the problem to computing how large $\left|A^{\prime}\right|$ can be for $A^{\prime} \in \operatorname{Avoid}\left(m,\left\{1_{2,2}, F_{11}\right\}\right)$ with A^{\prime} having only 0,1 or 2-columns.

As each column of $1_{2,2}$ and F_{11} has more than one $1, A^{\prime}$ can contain all 0 and 1 -columns. It is also clear that having any number of 2 -columns can't induce $1_{2,2}$, so all we have to figure out is how many 2 -columns an m-rowed matrix have before containing F_{11}.

We can view an m-rowed simple matrix with only 2 -columns as the incidence matrix of a graph with m vertices. The condition of avoiding F_{11} as a configuration is equivalent to avoiding $K_{2,2}$ as a subgraph (since $F_{11}=A\left(K_{2,2}\right)$).

$1_{2,2}$ and F_{11}

Theorem (Sali-S. 2017)

$$
f \circ r b\left(m,\left\{1_{2,2}, F_{11}\right\}\right)=1+m+\operatorname{ex}\left(m, K_{2,2}\right)=\Theta\left(m^{3 / 2}\right) .
$$

$1_{2,2}$ and F_{11}

Theorem (Sali-S. 2017)

$$
\begin{aligned}
& \text { forb }\left(m,\left\{1_{2,2}, F_{11}\right\}\right)=1+m+e x\left(m, K_{2,2}\right)=\Theta\left(m^{3 / 2}\right) \\
& \quad \text { forb }\left(m,\left\{1_{2,2}, A\left(K_{r, s}\right)\right\}\right)=1+m+e x\left(m, K_{r, s}\right)
\end{aligned}
$$

$1_{2,2}$ and F_{11}

Theorem (Sali-S. 2017)

$$
\begin{aligned}
& \text { forb }\left(m,\left\{1_{2,2}, F_{11}\right\}\right)=1+m+e x\left(m, K_{2,2}\right)=\Theta\left(m^{3 / 2}\right) \\
& \quad \text { forb }\left(m,\left\{1_{2,2}, A\left(K_{r, s}\right)\right\}\right)=1+m+e x\left(m, K_{r, s}\right)
\end{aligned}
$$

Remark

$$
\frac{3}{2} \notin \mathbb{Z}
$$

$1_{2,2}$ and F_{11}

Theorem (Sali-S. 2017)

$$
\begin{aligned}
& \text { forb }\left(m,\left\{1_{2,2}, F_{11}\right\}\right)=1+m+e x\left(m, K_{2,2}\right)=\Theta\left(m^{3 / 2}\right) \\
& \quad \text { forb }\left(m,\left\{1_{2,2}, A\left(K_{r, s}\right)\right\}\right)=1+m+e x\left(m, K_{r, s}\right)
\end{aligned}
$$

Remark

$$
\frac{3}{2} \notin \mathbb{Z}
$$

In particular, the "Erdős-Stone" conjecture doesn't generalize to forbidden families.

Q_{3} and F_{11}

$$
Q_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

I claim that forb $\left(m, Q_{3}\right)=\Theta\left(m^{2}\right)$ and $I \times I^{c}$ is the only product construction giving this lower bound.

Q_{3} and F_{11}

$$
Q_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

I claim that forb $\left(m, Q_{3}\right)=\Theta\left(m^{2}\right)$ and $I \times I^{c}$ is the only product construction giving this lower bound.

Theorem (Sali-S. 2017)

All "large" matrices in $\operatorname{Avoid}\left(m, Q_{3}\right)$ "look like" $I \times I^{c}$.

Q_{3} and F_{11}

Theorem (Sali-S. 2017)

Let $A \in \operatorname{Avoid}\left(m, Q_{3}\right)$ with $|A|=\omega(m \log m)$. There exists a set of integers $\left\{k_{1}, \ldots, k_{y}\right\}$ and a set $A^{\prime}=\left\{A_{1}^{\prime}, \ldots, A_{y}^{\prime}\right\}$, of disjoint submatrices $A_{j}^{\prime} \prec A$ such that:
$1 k_{j+1} \leq \frac{1}{2} k_{j}$ for all j, and $y \leq \log m$.
2 There exists k_{j} rows of A such that the columns of A_{j}^{\prime} restricted to these rows are columns of $I_{k_{j}}$.
3 If i is a column of $I_{k_{j}}$, let C_{i}^{j} denote the set of columns of A_{j}^{\prime} that are equal to i when restricted to the k_{j} rows mentioned above. Then, besides these k_{j} rows, no row restricted to C_{i}^{j} is sparse, and every column of C_{i}^{j} is identified by some dense row.
$4|A|=\Theta\left(\sum\left|A_{j}^{\prime}\right|\right)$.

Q_{3} and F_{11}

Question

What is forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)$?

Q_{3} and F_{11}

Question

What is forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right) ?$
Theorem (Sali-S. 2017)
If $s \leq r$, then

- forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)=O\left(m^{2-1 / s}\right)$.

Q_{3} and F_{11}

Question

What is forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)$?

Theorem (Sali-S. 2017)

If $s \leq r$, then

- forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)=O\left(m^{2-1 / s}\right)$.

■ forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)=\Omega\left(e x\left(m, K_{r, s}\right)\right)$.

Q_{3} and F_{11}

Question

What is forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right) ?$

Theorem (Sali-S. 2017)

If $s \leq r$, then

- forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)=O\left(m^{2-1 / s}\right)$.
$■$ forb $\left(m, Q_{3}, I_{r} \times I_{s}^{c}\right)=\Omega\left(e x\left(m, K_{r, s}\right)\right)$.

Corollary (Sali-S. 2017)
$\operatorname{forb}\left(m, Q_{3}, F_{11}\right)=\operatorname{forb}\left(m, Q_{3}, I_{2} \times I_{2}^{c}\right)=\Theta\left(m^{3 / 2}\right)$.

Open Question

Open Question

Question

What is forb $\left(m,\left\{1_{2,3}, F_{11}\right\}\right)$, where $1_{2,3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$?

Open Question

Question

What is forb $\left(m,\left\{1_{2,3}, F_{11}\right\}\right)$, where $1_{2,3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$?
More generally, what is forb $\left(m,\left\{1_{2, \ell}, A\left(K_{r, s}\right)\right\}\right)$?

Open Question

Question

What is forb $\left(m,\left\{1_{2,3}, F_{11}\right\}\right)$, where $1_{2,3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$?
More generally, what is forb $\left(m,\left\{1_{2, \ell}, A\left(K_{r, s}\right)\right\}\right)$?

Theorem (Sali-S.)

$$
\begin{aligned}
& \text { forb }\left(m,\left\{1_{2, \ell}, A\left(K_{r, s}\right)\right\}\right)=\Omega\left(\operatorname{ex}\left(m, K_{r, s}\right)\right) \\
& \text { forb }\left(m,\left\{1_{2, \ell}, A\left(K_{r, s}\right)\right\}\right)=O\left(\operatorname{ex}\left(m, K_{\left.r+(\ell-1)\binom{s}{2}, s+(\ell-1)\binom{r}{2}\right)}\right)\right.
\end{aligned}
$$

The End

Thank You!

