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Elphick and Wocjan defined

sT=5s1(G) = Z)\,?, s =5 (G):= ZA,Z

Ai>0 Ai<0

Theorem (Ando-Lin 2015)

st s—
> —, — 7.
X(G)_1+max{s_,s+}

Sharp for bipartite graphs, cliques K, Payley graph on 9 vertices,...
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We now know \ N
sT 5T
G)>1 s 2t
W) = L ma{ 2 2 2
These bounds are incomparable with each other. In particular, of the
11,855 graphs on 5,6,7,8 vertices which are connected and non-bipartite,
Ando-Lin does better than Hoffman for 11,014 of them.
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Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

min{sT,s7} >n—1.

Corollary
True if G is d-regular with d > 3.

This holds for G = Kgy1. Otherwise, by Brook's Theorem,

+ - + d
d>x(G)>1+ =T _
S S S

So s~ > n, and a similar argument works for s™.



Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

st s—
>1 —— .
x(G) > +max{s_,s+}




Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

st s—
>1 —— .
x(G) > +max{s_,s+}

Theorem (Guo-S. 2022)

st s~
G)>1 —,— .
xr(G) > +max{s_,s+}
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Picture from Wolfram Alpha.
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The Kneser graph K, . is the graph whose vertex set consists of n-element
subsets of [v] where two sets are adjacent if they are disjoint.

Picture from Wikipedia.
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Recall that a map ¢ : V(G) — V(H) is a homomorphism if uv € E(G)
implies ¢(u)¢p(v) € E(H), and given G we let ® be the set of graphs H
which G has a homomorphism to.

Theorem
v

G)= min -
Xf( ) (v,n)r:n}é\?nedt'n

This is analogous to

G) = mi
x(G) fmin r,

since an r-coloring of G is equivalent to a homomorphism
¢:V(G) = V(K,).
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Theorem (Guo-S. 2022)

st s~
xf(G) > 1+ max{s—_,s—+}.

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

—)\max(H) > max i i
[Amin(H)| — s st [’

This implies the previous result since

. 4 . )\m x(KV'n)
G) = —=1 T RS
Xf( ) (v,n)r‘:n}é\r,':ned) n + (v,n)rT}é\r,];,,ed) ’)\min(Kv n)‘
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Applications

Theorem (Guo-S. 2022)

st s 2¢(G)
> _— = —.
x#(6) 2 1+max{s_, s+} min{st,s"}

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid)
The graph G = C, satisfies min{s™,s™} > n— 1.

If nis even then st = s~ = n, otherwise

2n 2n
— < G) = .
S:l: = Xf( ) n 1
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Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

—/\maX(H) > max i i
[Amin(H)| — s st [’

Corollary (ADDGHM)

If G is a connected unicyclic graph with cycle length m > \/n, then
min{st,s"} >n—1.
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Applications

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

7)\max(H) > max i s
[Amin(H)| — s st [’

One can extend this result somewhat, but it does not hold with
“edge-transitive” replaced by “vertex-transitive” (e.g. it fails for G = K3
and H = G).
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Proof

Throughout we use the Frobenius norm

X2 =3 X? (Trx2 Zﬁ)

Observe that if A=Y \;ju;u], then we can write A= X — Y with

X = Z /\,‘U,'U,-T7 Y =— Z >\iUiUiT

itAi>0 i:Aj<0

With this X, Y are PSD and || X||?> = sT, ||Y||*> = s~. Thus to prove
s+/s_ < r, it suffices to prove a bound of the form

IXIP* < r Y12
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Say ¢ : V(G) — V/(H) is a homomorphism. For u,v € V(H) and a matrix
X indexed by V(G ) let X[, be the sumbatrix whose rows and columns
are indexed by ¢~1(u) and ¢~ 1(v) respectively.

Lemma (Ando-Lin)

Let ¢ : V(G) — V(H) be a homomorphism, let X, Y be matrices indexed
by V(G) such that XY = 0 and X[,,] = Y{u,,] whenever {u,v} ¢ E(H). If

IXIP<(r+1) Y Xl
(u,v):{u,vI¢E(H)

)

then
2 2
I X[1= < rlIY]=.

If {u,v} ¢ E(H), then A, =0, 50 A= X — Y implies X, ,] = Y{u,\],
and the condition XY = 0 holds if

_ T _ T
X = ZI:A,->0 Aivjug, Y = ZI:A,-<O Aiuju;
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We've reduced our problem to figuring out when a PSD matrix X satisfies

IXIP<er+n Y [ Xual
(u,v):{u,vigE(H)

Lemma (Ando-Lin)
The result above holds if H = K,41.
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X being PSD implies Klw] X["’Vl] is, and hence
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A H
xip< (2m=E ) s X
Poin(H)
(u,v):{u,v}¢E(H)
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Lemma (Main)
If X is PSD and H is vertex and edge-transitive, then

2 /\max(H) 2
IXPs (G 41) S Xl
(u,v):{u,vi¢E(H)

To make things simpler, consider the matrix Z indexed by V/(H) with
2
Zuw = [ Xumll™

Claim

It suffices to show that for non-negative PSD matrices Z, we have

Yz (2t Xz

(u,v):{u,v}ZE(H)
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Proof

Lemma
If H is edge-transitive, then there exists a set of non-empty graphs
H ={Hi,...,Hp} on V(H) satisfying the following properties:
Q@ H=H,y
@ For every pair of distinct vertices u,v € V(H), there exists a unique i
with uv € E(H;);
© Each m € Aut(H) is an automorphism for each H;; and

Q For every pair of edges uv,xy € E(H;), there exists m € Aut(H) with
m(uv) = xy.

E.g. if H= K., then this holds with H; the graph on (1)) where S ~ T if
ISNT|=n—1.
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Proof

Let A; be the adjacency matrix of H; and Ag the identity matrix.

Claim
To show

DY G BRI D DR

(u,v):{u,v}ZE(H)

for Z PSD and non-negative, it suffices to show this when Z =" z;A;.

Gizen Z PSD and non-negative, define

- 1
7= > PlZP.
| Aut(H)| T
mEAut(H)

This matrix is PSD and non-negative with Y- Z,,, =" Z,,,
D () Lo} eE(H) Zuw = () {uvigE(H) Loy, and Z = > ZA;.
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Lemma

If Z is PSD, non-negative, and Z = 3, z;A;, then

L2 () D

(u,v):{u,v}E(H)

If x is the eigenvector of A, = A(H) associated to Amin(An), then

0< x! Zx = Zz,— ‘xTA,-x

i=0
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Yz.s(pEide) ¥z
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If x is the eigenvector of A, = A(H) associated to Amin(An), then

n—1
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Lemma
If Z is PSD, non-negative, and Z = ZZ,‘A;, then

> Zuu < (% +1> >z

(u,v):{u,v}E(H)

If x is the eigenvector of A, = A(H) associated to Amin(An), then

0<xTZX*Zz, X Ax<Zz, max(Ai) + ZnAmin(An),

n—1
Zzi)\max(Ai) 2 7znAmin(An) = Zn|Amin(An)|~
i=0

Each of the A; matrices has Amax(A;)|V(H)| 1-entries , so the lemma statement is
equivalent to saying

Amax
Zz: A Vi) < (= +1)zz, (A V(H)],

and manipulations together with the previous inequality gives the-result.



Proof Summary



Proof Summary

@ By writing A= X — Y, we reduced showing s < rs~ to showing
2 2
X[ < r 1Y~



Proof Summary

@ By writing A= X — Y, we reduced showing s < rs~ to showing
2 2
X% < r Y.
@ Through some (omitted) arithmetic, we reduced this to proving a
certain norm inequality for PSD matrices X.



Proof Summary

@ By writing A= X — Y, we reduced showing s < rs~ to showing
2 2
X[ < r 1Y~
@ Through some (omitted) arithmetic, we reduced this to proving a
certain norm inequality for PSD matrices X.
© By compressing X to Z and using an averaging argument based off of
‘H, we reduced this to an inequality involving PSD Z = > zA;.



Proof Summary

@ By writing A= X — Y, we reduced showing s < rs~ to showing
2 2
X% < r Y.
@ Through some (omitted) arithmetic, we reduced this to proving a
certain norm inequality for PSD matrices X.

© By compressing X to Z and using an averaging argument based off of
‘H, we reduced this to an inequality involving PSD Z = > zA;.

@ Finally, we proved this using Rayleigh quotient arguments.
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(6) > xe(G) > 1+max{

X - Xf — s~ ) S+ °
Question (Anekstein-Elphick-Wocjan)

Is it true that

st s
(G)>1 —, —
Xc(G) > —|—max{s_ 5+}

where x.(G) is the vector chromatic number? Do these bounds hold for
orthogonal rank or projective rank?

Conjecture (Elphick-Wocjan)

nt n—
Xf(G) 2 1 -+ max{n—_,n—+},

where n* n~ is the number of positive/negative eigenvalues of G.




Future Directions

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

min{sT,s"} >n—1.
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Given a family of graphs H, define

_ Amax(H)
G)=1 oD (A
xn(G) =1+ inf Amin(H)]

Our main result shows for H the set of edge-transitive graphs that

+ max .
XH = )

Question
What is the largest set of graphs # for which the bound above holds?

Question
What is the largest set of graphs # such that the bound
)\max(G)
xu(G) > 1+ T ==
’)‘min(G)’

holds?
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