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We now know

χ(G ) ≥ 1 + max

{
λ1

|λn|
,
s+

s−
,
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}
.

These bounds are incomparable with each other. In particular, of the
11,855 graphs on 5,6,7,8 vertices which are connected and non-bipartite,
Ando-Lin does better than Hoffman for 11,014 of them.
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Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

min{s+, s−} ≥ n − 1.

Corollary

True if G is d-regular with d ≥ 3.

This holds for G = Kd+1. Otherwise, by Brook’s Theorem,

d ≥ χ(G ) ≥ 1 +
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=
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=
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So s− ≥ n, and a similar argument works for s+.
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Fractional Chromatic Number

The Kneser graph Kv ;n is the graph whose vertex set consists of n-element
subsets of [v ] where two sets are adjacent if they are disjoint.

Picture from Wikipedia.
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Recall that a map φ : V (G )→ V (H) is a homomorphism if uv ∈ E (G )
implies φ(u)φ(v) ∈ E (H)

, and given G we let Φ be the set of graphs H
which G has a homomorphism to.

Theorem

χf (G ) = min
(v ,n):Kv ;n∈Φ

v

n
.

This is analogous to
χ(G ) = min

Kr∈Φ
r ,

since an r -coloring of G is equivalent to a homomorphism
φ : V (G )→ V (Kr ).
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Applications

Theorem (Guo-S. 2022)

χf (G ) ≥ 1 + max

{
s+

s−
,
s−

s+

}
=

2e(G )

min{s+, s−}
.

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid)

The graph G = Cn satisfies min{s+, s−} ≥ n − 1.

If n is even then s+ = s− = n, otherwise

2n

s±
≤ χf (G ) =

2n

n − 1
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Proof

Throughout we use the Frobenius norm

‖X‖2 =
∑

X 2
i ,j

(
= Tr(X 2) =

∑
λ2
i

)
.

Observe that if A =
∑
λiuiu

T
i , then we can write A = X − Y with

X =
∑
i :λi>0

λiuiu
T
i , Y = −

∑
i :λi<0

λiuiu
T
i .

With this X ,Y are PSD and ‖X‖2 = s+, ‖Y ‖2 = s−. Thus to prove
s+/s− ≤ r , it suffices to prove a bound of the form

‖X‖2 ≤ r ‖Y ‖2 .
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Proof

Say φ : V (G )→ V (H) is a homomorphism.

For u, v ∈ V (H) and a matrix
X indexed by V (G ), let X[u,v ] be the sumbatrix whose rows and columns
are indexed by φ−1(u) and φ−1(v) respectively.

Lemma (Ando-Lin)

Let φ : V (G )→ V (H) be a homomorphism, let X ,Y be matrices indexed
by V (G ) such that XY = 0 and X[u,v ] = Y[u,v ] whenever {u, v} /∈ E (H). If

‖X‖2 ≤ (r + 1)
∑

(u,v):{u,v}/∈E(H)

∥∥X[u,v ]

∥∥2
,

then
‖X‖2 ≤ r ‖Y ‖2 .

If {u, v} /∈ E (H), then A[u,v ] = 0, so A = X − Y implies X[u,v ] = Y[u,v ],
and the condition XY = 0 holds if
X =

∑
i :λi>0 λiuiu

T
i , Y = −

∑
i :λi<0 λiuiu

T
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Proof

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

‖X‖2 ≤
(
λmax(H)

|λmin(H)|
+ 1

) ∑
(u,v):{u,v}/∈E(H)

∥∥X[u,v ]

∥∥2
.

To make things simpler, consider the matrix Z indexed by V (H) with

Zu,v :=
∥∥X[u,v ]

∥∥2
.

Claim

It suffices to show that for non-negative PSD matrices Z , we have∑
Zu,v ≤

(
λmax(H)

|λmin(H)|
+ 1

) ∑
(u,v):{u,v}/∈E(H)

Zu,v .
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Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs
H = {H1, . . . ,Hn} on V (H) satisfying the following properties:

1 H = Hn;

2 For every pair of distinct vertices u, v ∈ V (H), there exists a unique i
with uv ∈ E (Hi );

3 Each π ∈ Aut(H) is an automorphism for each Hi ; and

4 For every pair of edges uv , xy ∈ E (Hi ), there exists π ∈ Aut(H) with
π(uv) = xy.

E.g. if H = Kv ;n then this holds with Hi the graph on
([v ]
n

)
where S ∼ T if

|S ∩ T | = n − i .
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Proof

Let Ai be the adjacency matrix of Hi and A0 the identity matrix.

Claim

To show ∑
Zu,v ≤

(
λmax(H)

|λmin(H)|
+ 1

) ∑
(u,v):{u,v}/∈E(H)

Zu,v

for Z PSD and non-negative, it suffices to show this when Z =
∑

ziAi .

Gizen Z PSD and non-negative, define

Z =
1

|Aut(H)|
∑

π∈Aut(H)

PT
π ZPπ.

This matrix is PSD and non-negative with
∑

Zu,v =
∑

Zu,v ,∑
(u,v):{u,v}/∈E(H) Zu,v =

∑
(u,v):{u,v}/∈E(H) Zu,v , and Z =

∑
ziAi .
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Lemma
If Z is PSD, non-negative, and Z =

∑
ziAi , then∑

Zu,v ≤
(
λmax(H)

|λmin(H)| + 1

) ∑
(u,v):{u,v}/∈E(H)

Zu,v .

If x is the eigenvector of An = A(H) associated to λmin(An), then

0 ≤ xTZx =
n∑

i=0

zi · xTAix ≤
n−1∑
i=0

ziλmax(Ai ) + znλmin(An),

i.e.
n−1∑
i=0

ziλmax(Ai ) ≥ −znλmin(An) = zn|λmin(An)|.

Each of the Ai matrices has λmax(Ai )|V (H)| 1-entries , so the lemma statement is
equivalent to saying

n∑
i=0

ziλmax(Ai )|V (H)| ≤
(
λmax(H)

|λmin(H)| + 1

) n−1∑
i=0

ziλmax(Ai )|V (H)|,

and manipulations together with the previous inequality gives the result.
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Proof Summary

1 By writing A = X − Y , we reduced showing s+ ≤ rs− to showing
‖X‖2 ≤ r ‖Y ‖2.

2 Through some (omitted) arithmetic, we reduced this to proving a
certain norm inequality for PSD matrices X .

3 By compressing X to Z and using an averaging argument based off of
H, we reduced this to an inequality involving PSD Z =

∑
ziAi .

4 Finally, we proved this using Rayleigh quotient arguments.
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Future Directions

χ(G ) ≥ χf (G ) ≥ 1 + max

{
s+

s−
,
s−

s+

}
.

Question (Anekstein-Elphick-Wocjan)

Is it true that

χc(G ) ≥ 1 + max

{
s+

s−
,
s−

s+

}
where χc(G ) is the vector chromatic number? Do these bounds hold for
orthogonal rank or projective rank?

Conjecture (Elphick-Wocjan)

χf (G ) ≥ 1 + max

{
n+

n−
,
n−

n+

}
,

where n+, n− is the number of positive/negative eigenvalues of G.
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Future Directions

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

min{s+, s−} ≥ n − 1.



Future Directions
Given a family of graphs H, define

χH(G ) = 1 + inf
H∈H∩Φ

λmax(H)

|λmin(H)|
.

Our main result shows for H the set of edge-transitive graphs that

χH(G ) ≥ 1 + max

{
s+

s−
,
s−

s+

}
.

Question

What is the largest set of graphs H for which the bound above holds?
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