New Eigenvalue Bound for the Fractional Chromatic Number

Sam Spiro, Rutgers University

Joint with Krystal Guo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Throughout we let λ_i denote the *i*th largest eigenvalue of the adjacency matrix of *G*.

Throughout we let λ_i denote the *i*th largest eigenvalue of the adjacency matrix of G.

Theorem (Wilf 1967)

```
\chi(G) \leq 1 + \lambda_1.
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Throughout we let λ_i denote the *i*th largest eigenvalue of the adjacency matrix of G.

Theorem (Wilf 1967)

 $\chi(G) \leq 1 + \lambda_1.$

Theorem (Hoffman 1970)

$$\chi(G) \geq 1 + \frac{\lambda_1}{|\lambda_n|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Elphick and Wocjan defined

$$s^+=s^+(G):=\sum_{\lambda_i>0}\lambda_i^2,\qquad s^-=s^-(G):=\sum_{\lambda_i<0}\lambda_i^2.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Elphick and Wocjan defined

$$s^+=s^+(G):=\sum_{\lambda_i>0}\lambda_i^2,\qquad s^-=s^-(G):=\sum_{\lambda_i<0}\lambda_i^2.$$

Theorem (Ando-Lin 2015)

$$\chi(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Elphick and Wocjan defined

$$s^+=s^+(G):=\sum_{\lambda_i>0}\lambda_i^2,\qquad s^-=s^-(G):=\sum_{\lambda_i<0}\lambda_i^2.$$

Theorem (Ando-Lin 2015)

$$\chi(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sharp for bipartite graphs, cliques K_n , Payley graph on 9 vertices,...

We now know

$$\chi(G) \ge 1 + \max\left\{rac{\lambda_1}{|\lambda_n|}, rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

We now know

$$\chi(G) \ge 1 + \max\left\{rac{\lambda_1}{|\lambda_n|}, rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

These bounds are incomparable with each other.

We now know

$$\chi(G) \ge 1 + \max\left\{rac{\lambda_1}{|\lambda_n|}, rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

These bounds are incomparable with each other. In particular, of the 11,855 graphs on 5,6,7,8 vertices which are connected and non-bipartite, Ando-Lin does better than Hoffman for 11,014 of them.

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

 $\min\{s^+, s^-\} \ge n-1.$

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

 $\min\{s^+, s^-\} \ge n-1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

True if G is d-regular with $d \ge 3$.

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

 $\min\{s^+, s^-\} \ge n-1.$

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$.

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

 $\min\{s^+, s^-\} \ge n-1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$. Otherwise, by Brook's Theorem,

 $d \geq \chi(G)$

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$\min\{s^+, s^-\} \ge n-1.$$

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$. Otherwise, by Brook's Theorem,

$$d \geq \chi(G) \geq 1 + \frac{s^+}{s^-}$$

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$\min\{s^+, s^-\} \ge n-1.$$

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$. Otherwise, by Brook's Theorem,

$$d \ge \chi(G) \ge 1 + rac{s^+}{s^-} = rac{s^- + s^+}{s^-}$$

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$\min\{s^+, s^-\} \ge n-1.$$

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$. Otherwise, by Brook's Theorem,

$$d \ge \chi(G) \ge 1 + \frac{s^+}{s^-} = \frac{s^- + s^+}{s^-} = \frac{dn}{s^-}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$\min\{s^+, s^-\} \ge n-1.$$

Corollary

True if G is d-regular with $d \ge 3$.

This holds for $G = K_{d+1}$. Otherwise, by Brook's Theorem,

$$d \ge \chi(G) \ge 1 + rac{s^+}{s^-} = rac{s^- + s^+}{s^-} = rac{dn}{s^-}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So $s^- \ge n$, and a similar argument works for s^+ .

Theorem (Ando-Lin 2015)

$$\chi(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Ando-Lin 2015)

$$\chi(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

Theorem (Guo-S. 2022)

$$\chi_f(G) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Picture from Wolfram Alpha.

The Kneser graph $K_{v;n}$ is the graph whose vertex set consists of *n*-element subsets of [v] where two sets are adjacent if they are disjoint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Picture from Wikipedia.

Recall that a map $\phi: V(G) \to V(H)$ is a homomorphism if $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recall that a map $\phi: V(G) \to V(H)$ is a homomorphism if $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that a map $\phi : V(G) \to V(H)$ is a *homomorphism* if $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$\chi_f(G) = \min_{(v,n):K_{v;n}\in\Phi} \frac{v}{n}.$$

Recall that a map $\phi: V(G) \to V(H)$ is a homomorphism if $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$\chi_f(G) = \min_{(v,n): K_{v;n} \in \Phi} \frac{v}{n}.$$

This is analogous to

$$\chi(G)=\min_{K_r\in\Phi}r,$$

since an *r*-coloring of *G* is equivalent to a homomorphism $\phi : V(G) \rightarrow V(K_r)$.

Theorem (Guo-S. 2022)

$$\chi_f(G) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Guo-S. 2022)

$$\chi_f(G) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} \geq \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Guo-S. 2022)

$$\chi_f(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} \geq \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}$$

This implies the previous result since

$$\chi_f(G) = \min_{(v,n):K_{v;n}\in\Phi} \frac{v}{n} = 1 + \min_{(v,n):K_{v;n}\in\Phi} \frac{\lambda_{\max}(K_{v;n})}{|\lambda_{\min}(K_{v;n})|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Guo-S. 2022)

$$\chi_f(G) \ge 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\} = \frac{2e(G)}{\min\{s^+, s^-\}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Guo-S. 2022)

$$\chi_f(G) \ge 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\} = \frac{2e(G)}{\min\{s^+, s^-\}}.$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid) The graph $G = C_n$ satisfies min $\{s^+, s^-\} \ge n - 1$.

Theorem (Guo-S. 2022)

$$\chi_f(G) \ge 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\} = \frac{2e(G)}{\min\{s^+, s^-\}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid) The graph $G = C_n$ satisfies min $\{s^+, s^-\} \ge n - 1$.

If *n* is even then $s^+ = s^- = n$

Theorem (Guo-S. 2022)

$$\chi_f(G) \ge 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\} = \frac{2e(G)}{\min\{s^+, s^-\}}.$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid) The graph $G = C_n$ satisfies min $\{s^+, s^-\} \ge n - 1$.

If *n* is even then $s^+ = s^- = n$, otherwise

$$\frac{2n}{s^{\pm}} \le \chi_f(G) = \frac{2n}{n-1}$$

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} \geq \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$rac{\lambda_{\sf max}({\mathcal H})}{|\lambda_{\sf min}({\mathcal H})|} \geq \max\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary (ADDGHM)

If G is a connected unicyclic graph with cycle length $m \gg \sqrt{n}$, then $\min\{s^+, s^-\} \ge n-1$.

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$rac{\lambda_{\mathsf{max}}(H)}{|\lambda_{\mathsf{min}}(H)|} \geq \mathsf{max}\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$rac{\lambda_{\mathsf{max}}(H)}{|\lambda_{\mathsf{min}}(H)|} \geq \mathsf{max}\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

One can extend this result somewhat

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$rac{\lambda_{\mathsf{max}}(H)}{|\lambda_{\mathsf{min}}(H)|} \geq \mathsf{max}\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One can extend this result somewhat, but it does not hold with "edge-transitive" replaced by "vertex-transitive"

Theorem (Guo-S. 2022)

If G has a homomorphism to an edge-transitive graph H, then

$$rac{\lambda_{\mathsf{max}}(H)}{|\lambda_{\mathsf{min}}(H)|} \geq \mathsf{max}\left\{rac{s^+}{s^-},rac{s^-}{s^+}
ight\}.$$

One can extend this result somewhat, but it does not hold with "edge-transitive" replaced by "vertex-transitive" (e.g. it fails for $G = K_3$ and $H = \overline{C_6}$).

・ロト・個ト・モト・モー うへの

Throughout we use the Frobenius norm

$$\|X\|^2 = \sum X_{i,j}^2 \left(=\operatorname{Tr}(X^2) = \sum \lambda_i^2\right).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Throughout we use the Frobenius norm

$$\|X\|^2 = \sum X_{i,j}^2 \left(=\operatorname{Tr}(X^2) = \sum \lambda_i^2\right).$$

Observe that if $A = \sum \lambda_i u_i u_i^T$, then we can write A = X - Y with

$$X = \sum_{i:\lambda_i>0} \lambda_i u_i u_i^T, \ Y = -\sum_{i:\lambda_i<0} \lambda_i u_i u_i^T.$$

Throughout we use the Frobenius norm

$$\|X\|^2 = \sum X_{i,j}^2 \left(=\operatorname{Tr}(X^2) = \sum \lambda_i^2\right).$$

Observe that if $A = \sum \lambda_i u_i u_i^T$, then we can write A = X - Y with

$$X = \sum_{i:\lambda_i>0} \lambda_i u_i u_i^T, \ Y = -\sum_{i:\lambda_i<0} \lambda_i u_i u_i^T.$$

With this X, Y are PSD and $||X||^2 = s^+$, $||Y||^2 = s^-$.

Throughout we use the Frobenius norm

$$\|X\|^2 = \sum X_{i,j}^2 \left(=\operatorname{Tr}(X^2) = \sum \lambda_i^2\right).$$

Observe that if $A = \sum \lambda_i u_i u_i^T$, then we can write A = X - Y with

$$X = \sum_{i:\lambda_i>0} \lambda_i u_i u_i^T, \ Y = -\sum_{i:\lambda_i<0} \lambda_i u_i u_i^T.$$

With this X, Y are PSD and $||X||^2 = s^+$, $||Y||^2 = s^-$. Thus to prove $s^+/s^- \le r$, it suffices to prove a bound of the form

$$||X||^2 \le r ||Y||^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism.

Say $\phi: V(G) \to V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by V(G), let $X_{[u,v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Say $\phi: V(G) \to V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by V(G), let $X_{[u,v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)

Let $\phi : V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by V(G) such that XY = 0 and $X_{[u,v]} = Y_{[u,v]}$ whenever $\{u, v\} \notin E(H)$. If

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2,$$

then

$$||X||^2 \le r ||Y||^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Say $\phi: V(G) \to V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by V(G), let $X_{[u,v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)

Let $\phi : V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by V(G) such that XY = 0 and $X_{[u,v]} = Y_{[u,v]}$ whenever $\{u, v\} \notin E(H)$. If

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2,$$

then

$$||X||^2 \le r ||Y||^2.$$

A D N A 目 N A E N A E N A B N A C N

If $\{u, v\} \notin E(H)$, then $A_{[u,v]} = 0$,

Say $\phi: V(G) \to V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by V(G), let $X_{[u,v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)

Let $\phi : V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by V(G) such that XY = 0 and $X_{[u,v]} = Y_{[u,v]}$ whenever $\{u, v\} \notin E(H)$. If

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2$$

then

$$||X||^2 \le r ||Y||^2.$$

If $\{u, v\} \notin E(H)$, then $A_{[u,v]} = 0$, so A = X - Y implies $X_{[u,v]} = Y_{[u,v]}$

Say $\phi: V(G) \to V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by V(G), let $X_{[u,v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)

Let $\phi : V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by V(G) such that XY = 0 and $X_{[u,v]} = Y_{[u,v]}$ whenever $\{u, v\} \notin E(H)$. If

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2$$

then

$$||X||^2 \le r ||Y||^2.$$

If $\{u, v\} \notin E(H)$, then $A_{[u,v]} = 0$, so A = X - Y implies $X_{[u,v]} = Y_{[u,v]}$, and the condition XY = 0 holds if $X = \sum_{i:\lambda_i>0} \lambda_i u_i u_i^T$, $Y = -\sum_{i:\lambda_i<0} \lambda_i u_i u_i^T$.

We've reduced our problem to figuring out when a PSD matrix X satisfies

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2.$$

We've reduced our problem to figuring out when a PSD matrix X satisfies

$$\|X\|^2 \leq (r+1) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma (Ando-Lin)

The result above holds if $H = K_{r+1}$.

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, \ldots, r+1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,\dots,r+1\}} \|X_{[u,u]}\|^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, \ldots, r+1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,...,r+1\}} \|X_{[u,u]}\|^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

X being PSD implies $\begin{bmatrix} X_{[u,u]} \\ X_{[v,u]} \end{bmatrix}$

$$egin{array}{c} X_{[u,v]} \ X_{[v,v]} \end{bmatrix}$$
 is

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, \ldots, r+1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,...,r+1\}} \|X_{[u,u]}\|^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

X being PSD implies $\begin{bmatrix} X_{[u,u]} & X_{[u,v]} \\ X_{[v,u]} & X_{[v,v]} \end{bmatrix}$ is, and hence

$$\|X_{[u,v]}\|^2 \le \|X_{[u,u]}\| \|X_{[v,v]}\|$$

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, \ldots, r+1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,\dots,r+1\}} \|X_{[u,u]}\|^2.$$

 $\begin{array}{l} X \text{ being PSD implies } \begin{bmatrix} X_{[u,u]} & X_{[u,v]} \\ X_{[v,u]} & X_{[v,v]} \end{bmatrix} \text{ is, and hence} \\ \\ \|X_{[u,v]}\|^2 \leq \|X_{[u,u]}\| \|X_{[v,v]}\| \leq \frac{\|X_{[u,u]}\|^2 + \|X_{[v,v]}\|^2}{2}. \end{array}$

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, ..., r + 1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,...,r+1\}} \|X_{[u,u]}\|^2.$$

 $\begin{array}{l} X \text{ being PSD implies } \begin{bmatrix} X_{[u,u]} & X_{[u,v]} \\ X_{[v,u]} & X_{[v,v]} \end{bmatrix} \text{ is, and hence} \\ \\ \|X_{[u,v]}\|^2 \leq \|X_{[u,u]}\| \|X_{[v,v]}\| \leq \frac{\|X_{[u,u]}\|^2 + \|X_{[v,v]}\|^2}{2}. \end{array}$

Thus

$$\sum_{u \neq v} \|X_{[u,v]}\|^2 \le \sum_{u \neq v} \frac{\|X_{[u,u]}\|^2 + \|X_{[v,v]}\|^2}{2} = r \sum_{u} \|X_{[u,u]}\|^2$$

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1, 2, \ldots, r+1\}$, then

$$\|X\|^2 \leq (r+1) \sum_{u \in \{1,2,...,r+1\}} \|X_{[u,u]}\|^2.$$

X being PSD implies $\begin{bmatrix} X_{[u,u]} & X_{[u,v]} \\ X_{[v,u]} & X_{[v,v]} \end{bmatrix}$ is, and hence

$$\|X_{[u,v]}\|^2 \le \|X_{[u,u]}\| \|X_{[v,v]}\| \le \frac{\|X_{[u,u]}\|^2 + \|X_{[v,v]}\|^2}{2}$$

~

Thus

$$\sum_{u \neq v} \|X_{[u,v]}\|^2 \leq \sum_{u \neq v} \frac{\|X_{[u,u]}\|^2 + \|X_{[v,v]}\|^2}{2} = r \sum_{u} \|X_{[u,u]}\|^2.$$

Hence

$$\|X\|^{2} = \sum_{u} \|X_{[u,u]}\|^{2} + \sum_{u \neq v} \|X_{[u,v]}\|^{2} \leq (r+1) \sum_{u} \|X_{[u,u]}\|^{2}.$$

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

$$\|X\|^2 \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

$$\|X\|^2 \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

To make things simpler, consider the matrix Z indexed by V(H) with $Z_{u,v} := ||X_{[u,v]}||^2$.

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

$$\|X\|^2 \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v):\{u,v\}\notin E(H)} \|X_{[u,v]}\|^2.$$

To make things simpler, consider the matrix Z indexed by V(H) with $Z_{u,v} := ||X_{[u,v]}||^2$.

Claim

It suffices to show that for non-negative PSD matrices Z, we have

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties:

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties: • $H = H_n$;

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties:

- **1** $H = H_n;$
- Por every pair of distinct vertices u, v ∈ V(H), there exists a unique i with uv ∈ E(H_i);

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties:

- $\bullet H = H_n;$
- Por every pair of distinct vertices u, v ∈ V(H), there exists a unique i with uv ∈ E(H_i);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So Each $\pi \in Aut(H)$ is an automorphism for each H_i ;

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties:

- $\bullet H = H_n;$
- ② For every pair of distinct vertices u, v ∈ V(H), there exists a unique i with uv ∈ E(H_i);
- So Each $\pi \in Aut(H)$ is an automorphism for each H_i ; and
- For every pair of edges $uv, xy \in E(H_i)$, there exists $\pi \in Aut(H)$ with $\pi(uv) = xy$.

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H} = \{H_1, \ldots, H_n\}$ on V(H) satisfying the following properties:

$$\bullet H = H_n;$$

- ② For every pair of distinct vertices u, v ∈ V(H), there exists a unique i with uv ∈ E(H_i);
- So Each $\pi \in Aut(H)$ is an automorphism for each H_i ; and
- For every pair of edges $uv, xy \in E(H_i)$, there exists $\pi \in Aut(H)$ with $\pi(uv) = xy$.

E.g. if $H = K_{v;n}$ then this holds with H_i the graph on $\binom{[v]}{n}$ where $S \sim T$ if $|S \cap T| = n - i$.

Let A_i be the adjacency matrix of H_i and A_0 the identity matrix.

Let A_i be the adjacency matrix of H_i and A_0 the identity matrix.

Claim

To show

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

for Z PSD and non-negative, it suffices to show this when $Z = \sum z_i A_i$.

Let A_i be the adjacency matrix of H_i and A_0 the identity matrix.

Claim

To show

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}$$

for Z PSD and non-negative, it suffices to show this when $Z = \sum z_i A_i$.

Gizen Z PSD and non-negative, define

$$\overline{Z} = rac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}$$
Let A_i be the adjacency matrix of H_i and A_0 the identity matrix.

Claim

To show

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}$$

for Z PSD and non-negative, it suffices to show this when $Z = \sum z_i A_i$.

Gizen Z PSD and non-negative, define

$$\overline{Z} = \frac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}.$$

This matrix is PSD and non-negative with $\sum \overline{Z}_{u,v} = \sum Z_{u,v}$, $\sum_{(u,v):\{u,v\}\notin E(H)} \overline{Z}_{u,v} = \sum_{(u,v):\{u,v\}\notin E(H)} Z_{u,v}$, and $\overline{Z} = \sum z_i A_i$.

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathbf{x}^T Z \mathbf{x}$$

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathbf{x}^T Z \mathbf{x} = \sum_{i=0}^n z_i \cdot \mathbf{x}^T A_i \mathbf{x}$$

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathbf{x}^{\mathsf{T}} Z \mathbf{x} = \sum_{i=0}^{n} z_i \cdot \mathbf{x}^{\mathsf{T}} A_i \mathbf{x} \leq \sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) + z_n \lambda_{\min}(A_n)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathbf{x}^{\mathsf{T}} Z \mathbf{x} = \sum_{i=0}^{n} z_i \cdot \mathbf{x}^{\mathsf{T}} A_i \mathbf{x} \leq \sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) + z_n \lambda_{\min}(A_n),$$

i.e.

$$\sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) \geq -z_n \lambda_{\min}(A_n) = z_n |\lambda_{\min}(A_n)|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathsf{x}^{\mathsf{T}} \mathsf{Z} \mathsf{x} = \sum_{i=0}^{n} z_i \cdot \mathsf{x}^{\mathsf{T}} \mathsf{A}_i \mathsf{x} \leq \sum_{i=0}^{n-1} z_i \lambda_{\max}(\mathsf{A}_i) + z_n \lambda_{\min}(\mathsf{A}_n),$$

i.e.

$$\sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) \geq -z_n \lambda_{\min}(A_n) = z_n |\lambda_{\min}(A_n)|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Each of the A_i matrices has $\lambda_{\max}(A_i)|V(H)|$ 1-entries

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathsf{x}^{\mathsf{T}} \mathsf{Z} \mathsf{x} = \sum_{i=0}^{n} z_i \cdot \mathsf{x}^{\mathsf{T}} \mathsf{A}_i \mathsf{x} \leq \sum_{i=0}^{n-1} z_i \lambda_{\max}(\mathsf{A}_i) + z_n \lambda_{\min}(\mathsf{A}_n),$$

i.e.

$$\sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) \geq -z_n \lambda_{\min}(A_n) = z_n |\lambda_{\min}(A_n)|.$$

Each of the A_i matrices has $\lambda_{\max}(A_i)|V(H)|$ 1-entries , so the lemma statement is equivalent to saying

$$\sum_{i=0}^{n} z_i \lambda_{\max}(A_i) |V(H)| \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1 \right) \sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) |V(H)|$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Lemma

If Z is PSD, non-negative, and $Z = \sum z_i A_i$, then

$$\sum Z_{u,v} \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{(u,v): \{u,v\} \notin E(H)} Z_{u,v}.$$

If x is the eigenvector of $A_n = A(H)$ associated to $\lambda_{\min}(A_n)$, then

$$0 \leq \mathsf{x}^{\mathsf{T}} \mathsf{Z} \mathsf{x} = \sum_{i=0}^{n} z_i \cdot \mathsf{x}^{\mathsf{T}} \mathsf{A}_i \mathsf{x} \leq \sum_{i=0}^{n-1} z_i \lambda_{\max}(\mathsf{A}_i) + z_n \lambda_{\min}(\mathsf{A}_n),$$

i.e.

$$\sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) \geq -z_n \lambda_{\min}(A_n) = z_n |\lambda_{\min}(A_n)|.$$

Each of the A_i matrices has $\lambda_{\max}(A_i)|V(H)|$ 1-entries , so the lemma statement is equivalent to saying

$$\sum_{i=0}^{n} z_i \lambda_{\max}(A_i) |V(H)| \leq \left(\frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|} + 1\right) \sum_{i=0}^{n-1} z_i \lambda_{\max}(A_i) |V(H)|,$$

and manipulations together with the previous inequality gives the result, r = r

• By writing A = X - Y, we reduced showing $s^+ \le rs^-$ to showing $||X||^2 \le r ||Y||^2$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- By writing A = X Y, we reduced showing $s^+ \le rs^-$ to showing $||X||^2 \le r ||Y||^2$.
- Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.

- By writing A = X Y, we reduced showing $s^+ \le rs^-$ to showing $||X||^2 \le r ||Y||^2$.
- Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.
- By compressing X to Z and using an averaging argument based off of \mathcal{H} , we reduced this to an inequality involving PSD $Z = \sum z_i A_i$.

A D N A 目 N A E N A E N A B N A C N

- By writing A = X Y, we reduced showing $s^+ \le rs^-$ to showing $||X||^2 \le r ||Y||^2$.
- Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.
- **③** By compressing X to Z and using an averaging argument based off of \mathcal{H} , we reduced this to an inequality involving PSD $Z = \sum z_i A_i$.

• Finally, we proved this using Rayleigh quotient arguments.

$$\chi(\mathcal{G}) \geq \chi_f(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}.$$

$$\chi(G) \geq \chi_f(G) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

Question (Anekstein-Elphick-Wocjan)

Is it true that

$$\chi_c(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where $\chi_c(G)$ is the vector chromatic number?

$$\chi(G) \geq \chi_f(G) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}
ight\}.$$

Question (Anekstein-Elphick-Wocjan)

Is it true that

$$\chi_c(\mathcal{G}) \geq 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}$$

where $\chi_c(G)$ is the vector chromatic number? Do these bounds hold for orthogonal rank or projective rank?

$$\chi(G) \geq \chi_f(G) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}
ight\}.$$

Question (Anekstein-Elphick-Wocjan)

Is it true that

$$\chi_c(\mathsf{G}) \ge 1 + \max\left\{rac{s^+}{s^-}, rac{s^-}{s^+}
ight\}$$

where $\chi_c(G)$ is the vector chromatic number? Do these bounds hold for orthogonal rank or projective rank?

Conjecture (Elphick-Wocjan)

$$\chi_f(G) \ge 1 + \max\left\{\frac{n^+}{n^-}, \frac{n^-}{n^+}
ight\},$$

where n^+ , n^- is the number of positive/negative eigenvalues of G.

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$\min\{s^+, s^-\} \ge n-1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Given a family of graphs \mathcal{H} , define

$$\chi_{\mathcal{H}}(G) = 1 + \inf_{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a family of graphs \mathcal{H} , define

$$\chi_{\mathcal{H}}(G) = 1 + \inf_{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|}.$$

Our main result shows for ${\mathcal H}$ the set of edge-transitive graphs that

$$\chi_{\mathcal{H}}(\mathcal{G}) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a family of graphs \mathcal{H} , define

$$\chi_{\mathcal{H}}(G) = 1 + \inf_{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|}.$$

Our main result shows for ${\mathcal H}$ the set of edge-transitive graphs that

$$\chi_{\mathcal{H}}(\mathcal{G}) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

Question

What is the largest set of graphs $\mathcal H$ for which the bound above holds?

Given a family of graphs \mathcal{H} , define

$$\chi_{\mathcal{H}}(G) = 1 + \inf_{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max}(H)}{|\lambda_{\min}(H)|}.$$

Our main result shows for $\mathcal H$ the set of edge-transitive graphs that

$$\chi_{\mathcal{H}}(\mathcal{G}) \geq 1 + \max\left\{\frac{s^+}{s^-}, \frac{s^-}{s^+}\right\}.$$

Question

What is the largest set of graphs $\mathcal H$ for which the bound above holds?

Question

What is the largest set of graphs $\ensuremath{\mathcal{H}}$ such that the bound

$$\chi_{\mathcal{H}}(G) \geq 1 + rac{\lambda_{\mathsf{max}}(G)}{|\lambda_{\mathsf{min}}(G)|}$$

holds?