New Eigenvalue Bound for the Fractional Chromatic Number

Sam Spiro, Rutgers University

Joint with Krystal Guo

Eigenvalues and Chromatic Numbers

Eigenvalues and Chromatic Numbers

Throughout we let λ_{i} denote the i th largest eigenvalue of the adjacency matrix of G.

Eigenvalues and Chromatic Numbers

Throughout we let λ_{i} denote the i th largest eigenvalue of the adjacency matrix of G.

Theorem (Wilf 1967)

$$
\chi(G) \leq 1+\lambda_{1} .
$$

Eigenvalues and Chromatic Numbers

Throughout we let λ_{i} denote the i th largest eigenvalue of the adjacency matrix of G.

Theorem (Wilf 1967)

$$
\chi(G) \leq 1+\lambda_{1} .
$$

Theorem (Hoffman 1970)

$$
\chi(G) \geq 1+\frac{\lambda_{1}}{\left|\lambda_{n}\right|} .
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Sharp for bipartite graphs, cliques K_{n}, Payley graph on 9 vertices,...

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

These bounds are incomparable with each other.

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

These bounds are incomparable with each other. In particular, of the 11,855 graphs on $5,6,7,8$ vertices which are connected and non-bipartite, Ando-Lin does better than Hoffman for 11,014 of them.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G)
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}=\frac{d n}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}=\frac{d n}{s^{-}} .
$$

So $s^{-} \geq n$, and a similar argument works for s^{+}.

Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Fractional Chromatic Number

Fractional Chromatic Number

Picture from Wolfram Alpha.

Fractional Chromatic Number

The Kneser graph $K_{v ; n}$ is the graph whose vertex set consists of n-element subsets of [v] where two sets are adjacent if they are disjoint.

Picture from Wikipedia.

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n} .
$$

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n} .
$$

This is analogous to

$$
\chi(G)=\min _{K_{r} \in \Phi} r
$$

since an r-coloring of G is equivalent to a homomorphism $\phi: V(G) \rightarrow V\left(K_{r}\right)$.

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

This implies the previous result since

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n}=1+\min _{(v, n): K_{v ; n} \in \Phi} \frac{\lambda_{\max }\left(K_{v ; n}\right)}{\left|\lambda_{\min }\left(K_{v ; n}\right)\right|} .
$$

Applications

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}=\frac{2 e(G)}{\min \left\{s^{+}, s^{-}\right\}}
$$

Applications

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}=\frac{2 e(G)}{\min \left\{s^{+}, s^{-}\right\}}
$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid)
The graph $G=C_{n}$ satisfies $\min \left\{s^{+}, s^{-}\right\} \geq n-1$.

Applications

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}=\frac{2 e(G)}{\min \left\{s^{+}, s^{-}\right\}}
$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid)
The graph $G=C_{n}$ satisfies $\min \left\{s^{+}, s^{-}\right\} \geq n-1$.
If n is even then $s^{+}=s^{-}=n$

Applications

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}=\frac{2 e(G)}{\min \left\{s^{+}, s^{-}\right\}}
$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid)
The graph $G=C_{n}$ satisfies $\min \left\{s^{+}, s^{-}\right\} \geq n-1$.
If n is even then $s^{+}=s^{-}=n$, otherwise

$$
\frac{2 n}{s^{ \pm}} \leq \chi_{f}(G)=\frac{2 n}{n-1} .
$$

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Corollary (ADDGHM)

If G is a connected unicyclic graph with cycle length $m \gg \sqrt{n}$, then $\min \left\{s^{+}, s^{-}\right\} \geq n-1$.

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

One can extend this result somewhat

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

One can extend this result somewhat, but it does not hold with "edge-transitive" replaced by "vertex-transitive"

Applications

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

One can extend this result somewhat, but it does not hold with "edge-transitive" replaced by "vertex-transitive" (e.g. it fails for $G=K_{3}$ and $H=\overline{C_{6}}$).

Proof

Proof

Throughout we use the Frobenius norm

$$
\|X\|^{2}=\sum X_{i, j}^{2}\left(=\operatorname{Tr}\left(X^{2}\right)=\sum \lambda_{i}^{2}\right)
$$

Proof

Throughout we use the Frobenius norm

$$
\|X\|^{2}=\sum X_{i, j}^{2}\left(=\operatorname{Tr}\left(X^{2}\right)=\sum \lambda_{i}^{2}\right) .
$$

Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, \quad Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T}
$$

Proof

Throughout we use the Frobenius norm

$$
\|X\|^{2}=\sum X_{i, j}^{2}\left(=\operatorname{Tr}\left(X^{2}\right)=\sum \lambda_{i}^{2}\right) .
$$

Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T}
$$

With this X, Y are PSD and $\|X\|^{2}=s^{+},\|Y\|^{2}=s^{-}$.

Proof

Throughout we use the Frobenius norm

$$
\|X\|^{2}=\sum X_{i, j}^{2}\left(=\operatorname{Tr}\left(X^{2}\right)=\sum \lambda_{i}^{2}\right)
$$

Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T}
$$

With this X, Y are PSD and $\|X\|^{2}=s^{+},\|Y\|^{2}=s^{-}$. Thus to prove $s^{+} / s^{-} \leq r$, it suffices to prove a bound of the form

$$
\|X\|^{2} \leq r\|Y\|^{2}
$$

Proof
Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism.

Proof

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by $V(G)$, let $X_{[u, v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Proof

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by $V(G)$, let $X_{[u, v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)
Let $\phi: V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by $V(G)$ such that $X Y=0$ and $X_{[u, v]}=Y_{[u, v]}$ whenever $\{u, v\} \notin E(H)$. If

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

then

$$
\|X\|^{2} \leq r\|Y\|^{2}
$$

Proof

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by $V(G)$, let $X_{[u, v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)
Let $\phi: V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by $V(G)$ such that $X Y=0$ and $X_{[u, v]}=Y_{[u, v]}$ whenever $\{u, v\} \notin E(H)$. If

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

then

$$
\|X\|^{2} \leq r\|Y\|^{2}
$$

If $\{u, v\} \notin E(H)$, then $A_{[u, v]}=0$,

Proof

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by $V(G)$, let $X_{[u, v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)
Let $\phi: V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by $V(G)$ such that $X Y=0$ and $X_{[u, v]}=Y_{[u, v]}$ whenever $\{u, v\} \notin E(H)$. If

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

then

$$
\|X\|^{2} \leq r\|Y\|^{2}
$$

If $\{u, v\} \notin E(H)$, then $A_{[u, v]}=0$, so $A=X-Y$ implies $X_{[u, v]}=Y_{[u, v]}$

Proof

Say $\phi: V(G) \rightarrow V(H)$ is a homomorphism. For $u, v \in V(H)$ and a matrix X indexed by $V(G)$, let $X_{[u, v]}$ be the sumbatrix whose rows and columns are indexed by $\phi^{-1}(u)$ and $\phi^{-1}(v)$ respectively.

Lemma (Ando-Lin)

Let $\phi: V(G) \rightarrow V(H)$ be a homomorphism, let X, Y be matrices indexed by $V(G)$ such that $X Y=0$ and $X_{[u, v]}=Y_{[u, v]}$ whenever $\{u, v\} \notin E(H)$. If

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

then

$$
\|X\|^{2} \leq r\|Y\|^{2}
$$

If $\{u, v\} \notin E(H)$, then $A_{[u, v]}=0$, so $A=X-Y$ implies $X_{[u, v]}=Y_{[u, v]}$, and the condition $X Y=0$ holds if
$X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T}$.

Proof

We've reduced our problem to figuring out when a PSD matrix X satisfies

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

Proof

We've reduced our problem to figuring out when a PSD matrix X satisfies

$$
\|X\|^{2} \leq(r+1) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

Lemma (Ando-Lin)
The result above holds if $H=K_{r+1}$.

Proof

Lemma (Ando-Lin)
If X is a $P S D$ matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

Proof

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

X being PSD implies $\left[\begin{array}{ll}X_{[u, u]} & X_{[u, v]} \\ X_{[v, u]} & X_{[v, v]}\end{array}\right]$ is

Proof

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

X being PSD implies $\left[\begin{array}{ll}X_{[u, u]} & X_{[u, v]} \\ X_{[v, u]} & X_{[v, v]}\end{array}\right]$ is, and hence

$$
\left\|X_{[u, v]}\right\|^{2} \leq\left\|X_{[u, u]}\right\|\left\|X_{[v, v]}\right\|
$$

Proof

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

X being PSD implies $\left[\begin{array}{ll}X_{[u, u]} & X_{[u, v]} \\ X_{[v, u]} & X_{[v, v]}\end{array}\right]$ is, and hence

$$
\left\|X_{[u, v]}\right\|^{2} \leq\left\|X_{[u, u]}\right\|\left\|X_{[v, v]}\right\| \leq \frac{\left\|X_{[u, u]}\right\|^{2}+\left\|X_{[v, v]}\right\|^{2}}{2}
$$

Proof

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

X being PSD implies $\left[\begin{array}{ll}X_{[u, u]} & X_{[u, v]} \\ X_{[v, u]} & X_{[v, v]}\end{array}\right]$ is, and hence

$$
\left\|x_{[u, v]}\right\|^{2} \leq\left\|X_{[u, u]}\right\|\left\|X_{[v, v]}\right\| \leq \frac{\left\|X_{[u, u]}\right\|^{2}+\left\|X_{[v, v]}\right\|^{2}}{2}
$$

Thus

$$
\sum_{u \neq v}\left\|X_{[u, v]}\right\|^{2} \leq \sum_{u \neq v} \frac{\left\|X_{[u, u]}\right\|^{2}+\left\|X_{[v, v]}\right\|^{2}}{2}=r \sum_{u}\left\|X_{[u, u]}\right\|^{2} .
$$

Proof

Lemma (Ando-Lin)

If X is a PSD matrix with blocks indexed by $\{1,2, \ldots, r+1\}$, then

$$
\|X\|^{2} \leq(r+1) \sum_{u \in\{1,2, \ldots, r+1\}}\left\|X_{[u, u]}\right\|^{2}
$$

X being PSD implies $\left[\begin{array}{ll}X_{[u, u]} & X_{[u, v]} \\ X_{[v, u]} & X_{[v, v]}\end{array}\right]$ is, and hence

$$
\left\|X_{[u, v]}\right\|^{2} \leq\left\|X_{[u, u]}\right\|\left\|X_{[v, v]}\right\| \leq \frac{\left\|X_{[u, u)}\right\|^{2}+\left\|X_{[v, v]}\right\|^{2}}{2}
$$

Thus

$$
\sum_{u \neq v}\left\|X_{[u, v]}\right\|^{2} \leq \sum_{u \neq v} \frac{\left\|X_{[u, u]}\right\|^{2}+\left\|X_{[v, v]}\right\|^{2}}{2}=r \sum_{u}\left\|X_{[u, u]}\right\|^{2} .
$$

Hence

$$
\|X\|^{2}=\sum_{u}\left\|X_{[u, u]}\right\|^{2}+\sum_{u \neq v}\left\|X_{[u, v]}\right\|^{2} \leq(r+1) \sum_{u}\left\|X_{[u, u]}\right\|^{2} .
$$

Proof

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

$$
\|X\|^{2} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

Proof

Lemma (Main)

If X is PSD and H is vertex and edge-transitive, then

$$
\|X\|^{2} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

To make things simpler, consider the matrix Z indexed by $V(H)$ with $Z_{u, v}:=\left\|X_{[u, v]}\right\|^{2}$.

Proof

Lemma (Main)

If X is $P S D$ and H is vertex and edge-transitive, then

$$
\|X\|^{2} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)}\left\|X_{[u, v]}\right\|^{2}
$$

To make things simpler, consider the matrix Z indexed by $V(H)$ with $Z_{u, v}:=\left\|X_{[u, v]}\right\|^{2}$.

Claim

It suffices to show that for non-negative $P S D$ matrices Z, we have

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$;

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$;
(3) Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i};

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$;

- Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i}; and
- For every pair of edges $u v, x y \in E\left(H_{i}\right)$, there exists $\pi \in \operatorname{Aut}(H)$ with $\pi(u v)=x y$.

Proof

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$;

- Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i}; and
- For every pair of edges $u v, x y \in E\left(H_{i}\right)$, there exists $\pi \in \operatorname{Aut}(H)$ with $\pi(u v)=x y$.
E.g. if $H=K_{v ; n}$ then this holds with H_{i} the graph on $\binom{[l]}{n}$ where $S \sim T$ if $|S \cap T|=n-i$.

Proof

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Proof

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.

Proof

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.
Gizen Z PSD and non-negative, define

$$
\bar{Z}=\frac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}
$$

Proof

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.
Gizen Z PSD and non-negative, define

$$
\bar{Z}=\frac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}
$$

This matrix is PSD and non-negative with $\sum \bar{Z}_{u, v}=\sum Z_{u, v}$, $\sum_{(u, v):\{u, v\} \notin E(H)} \bar{Z}_{u, v}=\sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}$, and $\bar{Z}=\sum z_{i} A_{i}$.

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq x^{T} Z x
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x}
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\text {min }}\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

i.e.

$$
\sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right) \geq-z_{n} \lambda_{\min }\left(A_{n}\right)=z_{n}\left|\lambda_{\min }\left(A_{n}\right)\right|
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

i.e.

$$
\sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right) \geq-z_{n} \lambda_{\min }\left(A_{n}\right)=z_{n}\left|\lambda_{\min }\left(A_{n}\right)\right|
$$

Each of the A_{i} matrices has $\lambda_{\max }\left(A_{i}\right)|V(H)|$ 1-entries

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

i.e.

$$
\sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right) \geq-z_{n} \lambda_{\min }\left(A_{n}\right)=z_{n}\left|\lambda_{\min }\left(A_{n}\right)\right|
$$

Each of the A_{i} matrices has $\lambda_{\max }\left(A_{i}\right)|V(H)|$ 1-entries, so the lemma statement is equivalent to saying

$$
\sum_{i=0}^{n} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)| \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)|
$$

Proof

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

i.e.

$$
\sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right) \geq-z_{n} \lambda_{\min }\left(A_{n}\right)=z_{n}\left|\lambda_{\min }\left(A_{n}\right)\right|
$$

Each of the A_{i} matrices has $\lambda_{\max }\left(A_{i}\right)|V(H)|$ 1-entries, so the lemma statement is equivalent to saying

$$
\sum_{i=0}^{n} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)| \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)|
$$

and manipulations together with the previous inequality gives the result.

Proof Summary

Proof Summary

(1) By writing $A=X-Y$, we reduced showing $s^{+} \leq r s^{-}$to showing $\|X\|^{2} \leq r\|Y\|^{2}$.

Proof Summary

(1) By writing $A=X-Y$, we reduced showing $s^{+} \leq r s^{-}$to showing $\|X\|^{2} \leq r\|Y\|^{2}$.
(2) Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.

Proof Summary

(1) By writing $A=X-Y$, we reduced showing $s^{+} \leq r s^{-}$to showing $\|X\|^{2} \leq r\|Y\|^{2}$.
(2) Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.
(3) By compressing X to Z and using an averaging argument based off of \mathcal{H}, we reduced this to an inequality involving PSD $Z=\sum z_{i} A_{i}$.

Proof Summary

(1) By writing $A=X-Y$, we reduced showing $s^{+} \leq r s^{-}$to showing $\|X\|^{2} \leq r\|Y\|^{2}$.
(2) Through some (omitted) arithmetic, we reduced this to proving a certain norm inequality for PSD matrices X.
(3) By compressing X to Z and using an averaging argument based off of \mathcal{H}, we reduced this to an inequality involving PSD $Z=\sum z_{i} A_{i}$.
(9) Finally, we proved this using Rayleigh quotient arguments.

Future Directions

$$
\chi(G) \geq \chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Future Directions

$$
\chi(G) \geq \chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Question (Anekstein-Elphick-Wocjan)
Is it true that

$$
\chi_{c}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

where $\chi_{c}(G)$ is the vector chromatic number?

Future Directions

$$
\chi(G) \geq \chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Question (Anekstein-Elphick-Wocjan)

Is it true that

$$
\chi_{c}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

where $\chi_{c}(G)$ is the vector chromatic number? Do these bounds hold for orthogonal rank or projective rank?

Future Directions

$$
\chi(G) \geq \chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Question (Anekstein-Elphick-Wocjan)

Is it true that

$$
\chi_{c}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

where $\chi_{c}(G)$ is the vector chromatic number? Do these bounds hold for orthogonal rank or projective rank?

Conjecture (Elphick-Wocjan)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{n^{+}}{n^{-}}, \frac{n^{-}}{n^{+}}\right\}
$$

where n^{+}, n^{-}is the number of positive/negative eigenvalues of G.

Future Directions

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Question

What is the largest set of graphs \mathcal{H} for which the bound above holds?

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Question

What is the largest set of graphs \mathcal{H} for which the bound above holds?

Question

What is the largest set of graphs \mathcal{H} such that the bound

$$
\chi_{\mathcal{H}}(G) \geq 1+\frac{\lambda_{\max }(G)}{\left|\lambda_{\min }(G)\right|}
$$

holds?

