New Eigenvalue Bound for the Fractional Chromatic Number

Sam Spiro, Rutgers University

Joint with Krystal Guo

Eigenvalues and Chromatic Numbers

Recall that the adjacency matrix A of a graph G is the symmetric matrix indexed by $V(G)$ with $A_{i, j}=1$ iff $i \sim j$ in G.

Eigenvalues and Chromatic Numbers

Recall that the adjacency matrix A of a graph G is the symmetric matrix indexed by $V(G)$ with $A_{i, j}=1$ iff $i \sim j$ in G. Throughout we let λ_{i} denote the i th largest eigenvalue of A.

Eigenvalues and Chromatic Numbers

Recall that the adjacency matrix A of a graph G is the symmetric matrix indexed by $V(G)$ with $A_{i, j}=1$ iff $i \sim j$ in G. Throughout we let λ_{i} denote the i th largest eigenvalue of A.

Theorem (Wilf 1967)

$$
\chi(G) \leq 1+\lambda_{1} .
$$

Eigenvalues and Chromatic Numbers

Recall that the adjacency matrix A of a graph G is the symmetric matrix indexed by $V(G)$ with $A_{i, j}=1$ iff $i \sim j$ in G. Throughout we let λ_{i} denote the i th largest eigenvalue of A.

Theorem (Wilf 1967)

$$
\chi(G) \leq 1+\lambda_{1} .
$$

Theorem (Hoffman 1970)

$$
\chi(G) \geq 1+\frac{\lambda_{1}}{\left|\lambda_{n}\right|}
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

Elphick and Wocjan defined

$$
s^{+}=s^{+}(G):=\sum_{\lambda_{i}>0} \lambda_{i}^{2}, \quad s^{-}=s^{-}(G):=\sum_{\lambda_{i}<0} \lambda_{i}^{2} .
$$

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Sharp for bipartite graphs, cliques K_{n}, Payley graph on 9 vertices,...

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

These bounds are incomparable with each other.

Eigenvalues and Chromatic Numbers

We now know

$$
\chi(G) \geq 1+\max \left\{\frac{\lambda_{1}}{\left|\lambda_{n}\right|}, \frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

These bounds are incomparable with each other. In particular, of the 11,855 graphs on $5,6,7,8$ vertices which are connected and non-bipartite, Ando-Lin does better than Hoffman for 11,014 of them.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$.

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G)
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}=\frac{d n}{s^{-}}
$$

Eigenvalues and Chromatic Numbers

Conjecture (Elphick-Wocjan)
If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1 .
$$

Corollary
True if G is d-regular with $d \geq 3$.
This holds for $G=K_{d+1}$. Otherwise, by Brook's Theorem,

$$
d \geq \chi(G) \geq 1+\frac{s^{+}}{s^{-}}=\frac{s^{-}+s^{+}}{s^{-}}=\frac{d n}{s^{-}} .
$$

So $s^{-} \geq n$, and a similar argument works for s^{+}.

Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Eigenvalues and Chromatic Numbers

Theorem (Ando-Lin 2015)

$$
\chi(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Coutinho-Spier 2023)

$$
\chi_{c}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Fractional Chromatic Number

Fractional Chromatic Number

Picture from Wolfram Alpha.

Fractional Chromatic Number

The Kneser graph $K_{v ; n}$ is the graph whose vertex set consists of n-element subsets of [v] where two sets are adjacent if they are disjoint.

Picture from Wikipedia.

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n} .
$$

Fractional Chromatic Number

Recall that a map $\phi: V(G) \rightarrow V(H)$ is a homomorphism if $u v \in E(G)$ implies $\phi(u) \phi(v) \in E(H)$, and given G we let Φ be the set of graphs H which G has a homomorphism to.

Theorem

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n}
$$

This is analogous to

$$
\chi(G)=\min _{K_{r} \in \Phi} r
$$

since a proper r-coloring of G is equivalent to a homomorphism $\phi: V(G) \rightarrow V\left(K_{r}\right)$.

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Fractional Chromatic Number

Theorem (Guo-S. 2022)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

This implies the previous result since

$$
\chi_{f}(G)=\min _{(v, n): K_{v ; n} \in \Phi} \frac{v}{n}=1+\min _{(v, n): K_{v ; n} \in \Phi} \frac{\lambda_{\max }\left(K_{v ; n}\right)}{\left|\lambda_{\min }\left(K_{v ; n}\right)\right|} .
$$

Fractional Chromatic Number

Theorem (Guo-S. 2022)
If G has a homomorphism to an edge-transitive graph H, then

$$
\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} \geq \max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Corollary (Abiad-De Lima-Desai-Guo-Hogben-Madrid 2022)
If G is a connected unicyclic graph with cycle length $m \gg \sqrt{n}$, then $\min \left\{s^{+}, s^{-}\right\} \geq n-1$.

Proof Sketch

Proof Sketch

We want to show that $s^{+} \leq r s^{-}$for $r=\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}$.

Proof Sketch

We want to show that $s^{+} \leq r s^{-}$for $r=\frac{\lambda_{\max }(H)}{\left|\lambda_{\text {min }}(H)\right|}$.
Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, \quad Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T} .
$$

Proof Sketch

We want to show that $s^{+} \leq r s^{-}$for $r=\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}$.
Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, \quad Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T} .
$$

With this X, Y are PSD and $\|X\|^{2}=s^{+},\|Y\|^{2}=s^{-}$.

Proof Sketch

We want to show that $s^{+} \leq r s^{-}$for $r=\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}$.
Observe that if $A=\sum \lambda_{i} u_{i} u_{i}^{T}$, then we can write $A=X-Y$ with

$$
X=\sum_{i: \lambda_{i}>0} \lambda_{i} u_{i} u_{i}^{T}, \quad Y=-\sum_{i: \lambda_{i}<0} \lambda_{i} u_{i} u_{i}^{T}
$$

With this X, Y are PSD and $\|X\|^{2}=s^{+},\|Y\|^{2}=s^{-}$.

Claim

It suffices to show that for non-negative $P S D$ matrices Z,

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$ (i.e. the H_{i} partition $\left.K_{n}\right)$;

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$ (i.e. the H_{i} partition K_{n});
(3) Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i};

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$ (i.e. the H_{i} partition K_{n});
(3) Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i}; and
(9) For every pair of edges $u v, x y \in E\left(H_{i}\right)$, there exists $\pi \in \operatorname{Aut}(H)$ with $\pi(u v)=x y$.

Proof Sketch

Lemma

If H is edge-transitive, then there exists a set of non-empty graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ on $V(H)$ satisfying the following properties:
(1) $H=H_{n}$;
(2) For every pair of distinct vertices $u, v \in V(H)$, there exists a unique i with $u v \in E\left(H_{i}\right)$ (i.e. the H_{i} partition K_{n});
(3) Each $\pi \in \operatorname{Aut}(H)$ is an automorphism for each H_{i}; and
(9) For every pair of edges $u v, x y \in E\left(H_{i}\right)$, there exists $\pi \in \operatorname{Aut}(H)$ with $\pi(u v)=x y$.
E.g. if $H=K_{v ; n}$ then this holds with H_{i} the graph on $\binom{[v]}{n}$ where $S \sim T$ if $|S \cap T|=n-i$.

Proof Sketch

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Proof Sketch

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.

Proof Sketch

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.
Gizen Z PSD and non-negative, define

$$
\bar{Z}=\frac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}
$$

Proof Sketch

Let A_{i} be the adjacency matrix of H_{i} and A_{0} the identity matrix.

Claim

To show

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

for Z PSD and non-negative, it suffices to show this when $Z=\sum z_{i} A_{i}$.
Gizen Z PSD and non-negative, define

$$
\bar{Z}=\frac{1}{|\operatorname{Aut}(H)|} \sum_{\pi \in \operatorname{Aut}(H)} P_{\pi}^{T} Z P_{\pi}
$$

This matrix is PSD and non-negative with $\sum \bar{Z}_{u, v}=\sum Z_{u, v}$, $\sum_{(u, v):\{u, v\} \notin E(H)} \bar{Z}_{u, v}=\sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}$, and $\bar{Z}=\sum z_{i} A_{i}$.

Proof Sketch

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

Proof Sketch

Lemma

If Z is $P S D$, non-negative, and $Z=\sum z_{i} A_{i}$, then

$$
\sum Z_{u, v} \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{(u, v):\{u, v\} \notin E(H)} Z_{u, v}
$$

If x is the eigenvector of $A_{n}=A(H)$ associated to $\lambda_{\min }\left(A_{n}\right)$, then

$$
0 \leq \mathrm{x}^{T} Z \mathrm{x}=\sum_{i=0}^{n} z_{i} \cdot \mathrm{x}^{T} A_{i} \mathrm{x} \leq \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)+z_{n} \lambda_{\min }\left(A_{n}\right)
$$

i.e.

$$
\sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right) \geq-z_{n} \lambda_{\min }\left(A_{n}\right)=z_{n}\left|\lambda_{\min }\left(A_{n}\right)\right|
$$

Each of the A_{i} matrices has $\lambda_{\max }\left(A_{i}\right)|V(H)|$ 1-entries, so the lemma statement is equivalent to saying

$$
\sum_{i=0}^{n} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)| \leq\left(\frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|}+1\right) \sum_{i=0}^{n-1} z_{i} \lambda_{\max }\left(A_{i}\right)|V(H)|
$$

and manipulations together with the previous inequality gives the result.

Future Directions

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Future Directions

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Conjecture (Elphick-Wocjan)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{n^{+}}{n^{-}}, \frac{n^{-}}{n^{+}}\right\}
$$

where n^{+}, n^{-}is the number of positive/negative eigenvalues of G.

Future Directions

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\}
$$

Conjecture (Elphick-Wocjan)

$$
\chi_{f}(G) \geq 1+\max \left\{\frac{n^{+}}{n^{-}}, \frac{n^{-}}{n^{+}}\right\}
$$

where n^{+}, n^{-}is the number of positive/negative eigenvalues of G.

Conjecture (Elphick-Wocjan)

If G is a connected n-vertex graph, then

$$
\min \left\{s^{+}, s^{-}\right\} \geq n-1
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Question

What is the largest set of graphs \mathcal{H} for which the bound above holds?

Future Directions

Given a family of graphs \mathcal{H}, define

$$
\chi_{\mathcal{H}}(G)=1+\inf _{H \in \mathcal{H} \cap \Phi} \frac{\lambda_{\max }(H)}{\left|\lambda_{\min }(H)\right|} .
$$

Our main result shows for \mathcal{H} the set of edge-transitive graphs that

$$
\chi_{\mathcal{H}}(G) \geq 1+\max \left\{\frac{s^{+}}{s^{-}}, \frac{s^{-}}{s^{+}}\right\} .
$$

Question

What is the largest set of graphs \mathcal{H} for which the bound above holds?

Question

What is the largest set of graphs \mathcal{H} such that the bound

$$
\chi_{\mathcal{H}}(G) \geq 1+\frac{\lambda_{\max }(G)}{\left|\lambda_{\min }(G)\right|}
$$

holds?

