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Two Families of Permutations

We say that a permutation π is an odd order permutation if π has
odd order in Sn, or equivalently if π can be written as the product
of odd cycles. For example, (314)(25679)(8) is an odd order
permutation.
Given a word w = w1 · · ·wn, we say that i is a descent of w if
wi > wi+1, and we say that i is an ascent if wi ≤ wi+1.For
example, π = 31452 has descents in positions 1 and 4.
We will say that a permutation π = π1 · · ·πn is ballot if π1 · · ·πk
has at least as many ascents as it has descents for all k.
For example, π = 31452 is not ballot but σ = 14523 is.
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Two Families of Permutations

Let P(n),B(n) denote the set of odd order permutations and
ballot permutations of size n, respectively.

P(3) = {(1)(2)(3), (123), (321)}, B(3) = {123, 132, 231}.

P(4) = {(1)(2)(3), (1)(234), (1)(432), (2)(134),

(2)(143), (3)(124), (3)(421), (4)(123), (4)(321)},
B(4) = {1234, 1243, 3412, 1423, 2341, 1342, 2341, 1324, 3214}.

Let p(n) = |P(n)| and b(n) = |B(n)|. Observe that
p(3) = b(3) = 3 and p(4) = b(4) = 9.
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Two Families of Permutations

Given this overwhelming evidence, one might guess the following
to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))

For all n, p(n) = b(n).

Their proof does not give a bijection between P(n) and B(n).
Motivated by this, we will try and consider a refined version of this
problem.
Let B(n, d) denote the set of permutations π ∈ B(n) with exactly
d descents, and let b(n, d) = |B(n, d)|. We wish to define an
analogous set P(n, d) consisting of the permutations of P(n) with
some statistic equal to d . What should this statistic be?
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The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄).

For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}.

For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.

Given a permutation π = c̄1 · · · c̄k , we define M(π) =
∑k

i=1M(c̄i ).
For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Given a cycle c̄ = (c1, . . . , ck), we let asc′(c̄) denote the number of
cyclic ascents of c̄ . That is, the number of ascents in c1c2 · · · ckc1.
Similarly define des′(c̄). For example, c̄ = (48256) has

asc′(c̄) = 3, des′(c̄) = 2.

Let M(c̄) = min{asc′(c̄),des′(c̄)}. For example, M(48256) = 2.
Given a permutation π = c̄1 · · · c̄k , we define M(π) =

∑k
i=1M(c̄i ).

For example, if π = (139)(48256)(7), then

M(π) = 1 + 2 + 0 = 3.



The M Statistic

Let P(n, d) denote the set of permutations π ∈ P(n) with
M(π) = d , and let p(n, d) = |P(n, d)|.

For example, we have

p(3, 0) = b(3, 0) = 1,

p(3, 1) = b(3, 1) = 2,

p(4, 0) = b(4, 0) = 1,

p(4, 1) = b(4, 1) = 8.
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The Case d = 1

We have p(n, 0) = b(n, 0) = 1. The next simplest case is d = 1.

Theorem (S., (2018))

For all n,
p(n, 1) = b(n, 1).

Moreover, there exists an explicit bijection φ : P(n, 1)→ B(n, 1).

What are P(n, 1) and B(n, 1) again?
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The Case d = 1

B(n, 1) consists of permutations which have exactly one descent
that is not at the beginning of the word.

If π ∈ P(n, 1), then M(π) =
∑

M(c̄i ) = 1, so M(c̄i ) = 1 for
exactly one i with the rest 0. M(c̄) = 0 implies c̄ = (x). M(c̄) = 1
implies c̄ = (c1c2 · · · ck) with k > 1 and either ci < ci+1 for all i or
ci > ci+1 for all i .
Because π is also an odd order permutation, we must have
π = (c1 · · · c2k+1) with k ≥ 1 and these elements either all
increasing or all decreasing. E.g. (24568)(1)(3)(7)(9) ∈ P(9, 1).
Idea for the bijection: use the non-trivial odd cycle of π ∈ P(n, 1)
as the “backbone” for the permutation φ(π). In particular, use the
largest element of this cycle as the unique descent of φ(π).
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π = (c1 · · · c2k+1) with k ≥ 1 and these elements either all
increasing or all decreasing. E.g. (24568)(1)(3)(7)(9) ∈ P(9, 1).

Idea for the bijection: use the non-trivial odd cycle of π ∈ P(n, 1)
as the “backbone” for the permutation φ(π). In particular, use the
largest element of this cycle as the unique descent of φ(π).
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Let σ = (24568)(1)(3)(7)(9).

Given π = (c1 · · · c2k+1) ∈ P(n, 1) with ci < ci+1 for all i , start
with the word

c1c3 · · · c2k−1c2k+1c2c4 · · · c2k = xc2k+1y .

E.g. for σ we start with the word 25846.
Observe that x and y consist of only ascents (because the ci are
increasing), and that x and y are non-empty because k ≥ 1 (so the
word starts with an ascent and has a descent at position k + 1).
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The Case d = 1

Let σ = (24568)(1)(3)(7)(9), start with the word 25846.

So far we have a word with exactly one descent and which begins
with an ascent. We want to insert the remaining elements of [n]
into this word without disrupting this structure.
Say we’ve currently constructed the word w and that the largest
letter we haven’t inserted yet is k. How can we insert k into w
without creating an extra descent? If k = n, put it at the end of
the word, otherwise put k right before k + 1. For example, with σ
we have

25846→ 258469→ 2578469→ 25783469→ 125783469 ∈ B(9, 1)
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The Case d = 1

This defines φ(π) if π = (c1 · · · c2k+1) and ci < ci+1 for all i , but
what if we were given π̃ = (c2k+1 · · · c1)?

Basically we “flip” φ(π).
Specifically, if φ(π) = xdyz with d the unique descent of φ(π) and
z = (d + 1)(d + 2) · · · n, we define φ(π̃) = ydxz . For example, if
φ((24568)) = 125783469, then φ((86542)) = 346812579.
One can verify that this is always an element of B(n, 1), and this
defines our map φ : P(n, 1)→ B(n, 1).
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The Case d = 1

This map is invertible.

Roughly, given π ∈ B(n, 1), one identifies
the “consecutive runs” of π (subsequences with
πi = πi+1 − 1 = πi+2 − 2 = · · · ), and then one uses the last letter
of each run to construct the non-trivial cycle of φ−1(π). For
example, if σ′ = 125783469, we write

125783469→ (24568).

It turns out that when π ∈ B(n, 1) then π (or its flipped version)
always has an odd number of consecutive runs, so this returns
something in P(n), and one can check that it is in fact in
P(n, 1).
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Formulas for Small d

Define the Eulerian number E (n, d) to be the number of
permutations with exactly d descents.

Theorem (S. (2018))

For all n ≥ 4,

p(n, 1) = b(n, 1) = 2E (n − 1, 1),

p(n, 2) = b(n, 2) = 3E (n − 1, 2)− 2

(
n

3

)
+
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)
− 1,
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+ 4

)
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Formulas for Small d

Why does (d + 1)E (n − 1, d) keep showing up in these formulas?

Proposition (Gessel (2017), S. (2018))

(d + 1)E (n − 1, d) counts the number of permutations of Sn with
exactly d descents and which begin with an ascent.

To get formulas for ballot permutations, one can start with
permutations that begin with an ascent, and then use ideas from
Shevelev to get rid of the permutations that aren’t ballot.
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Formulas for Large d

One can show that the largest value of d such that
p(n, d), b(n, d) 6= 0 is d = b(n − 1)/2c. In this case the conjecture
is true. Define EC (n) = 2E (2n, n − 1). These are known as the
Eulerian-Catalan numbers.

Theorem (Bidkhori, Sullivant (2011), S. (2018))

For all n ≥ 0, we have p(2n + 1, n) = b(2n + 1, n) = EC (n).
Moreover, there exists an explicit bijection from P(2n + 1, n) to
B(2n + 1, n).

Theorem (S. (2018))

For all n ≥ 1, we have p(2n, n − 1) = b(2n, n − 1) =

1
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∑
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Eulerian-Catalan numbers.

Theorem (Bidkhori, Sullivant (2011), S. (2018))

For all n ≥ 0, we have p(2n + 1, n) = b(2n + 1, n) = EC (n).
Moreover, there exists an explicit bijection from P(2n + 1, n) to
B(2n + 1, n).

Theorem (S. (2018))

For all n ≥ 1, we have p(2n, n − 1) = b(2n, n − 1) =

1

2

∑
k≥1, k odd

(
2n

k

)
EC

(
k − 1

2

)
EC

(
2n − k − 1

2

)
.



Remaining Problems

Problem

Prove (or disprove) that p(n, d) = b(n, d) for all n, d .

One step towards solving this might be the following.

Problem

Find an explicit bijection φ : P(n, 2)→ B(n, 2) for all n.

Solving the d = 2 case may show how to deal with multiple
non-trivial odd cycles in general, which could give insight into a
general bijection.
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Remaining Problems

Problem

Find a bivariate generating function for p(n, d) or b(n, d).

Problem

Determine the generating function

C (x , y) =
∑
n

∑
d≤n−1

E (2n, d)
x2n

(2n)!
yd .
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