Ballot Permutations and Odd Order Permutations

Sam Spiro, UC San Diego.

$$
5 / 17 / 19
$$

Two Families of Permutations

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$. For example, $\pi=31452$ has descents in positions 1 and 4.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$. For example, $\pi=31452$ has descents in positions 1 and 4.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$. For example, $\pi=31452$ has descents in positions 1 and 4. We will say that a permutation $\pi=\pi_{1} \cdots \pi_{n}$ is ballot if $\pi_{1} \cdots \pi_{k}$ has at least as many ascents as it has descents for all k.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$. For example, $\pi=31452$ has descents in positions 1 and 4. We will say that a permutation $\pi=\pi_{1} \cdots \pi_{n}$ is ballot if $\pi_{1} \cdots \pi_{k}$ has at least as many ascents as it has descents for all k.
For example, $\pi=31452$ is not ballot but $\sigma=14523$ is.

Two Families of Permutations

We say that a permutation π is an odd order permutation if π has odd order in S_{n}, or equivalently if π can be written as the product of odd cycles. For example, (314)(25679)(8) is an odd order permutation.
Given a word $w=w_{1} \cdots w_{n}$, we say that i is a descent of w if $w_{i}>w_{i+1}$, and we say that i is an ascent if $w_{i} \leq w_{i+1}$. For example, $\pi=31452$ has descents in positions 1 and 4. We will say that a permutation $\pi=\pi_{1} \cdots \pi_{n}$ is ballot if $\pi_{1} \cdots \pi_{k}$ has at least as many ascents as it has descents for all k.
For example, $\pi=31452$ is not ballot but $\sigma=14523$ is.

Two Families of Permutations

Let $P(n), B(n)$ denote the set of odd order permutations and ballot permutations of size n, respectively.

Two Families of Permutations

Let $P(n), B(n)$ denote the set of odd order permutations and ballot permutations of size n, respectively.

$$
P(3)=\{(1)(2)(3),(123),(321)\}, B(3)=\{123,132,231\} .
$$

Two Families of Permutations

Let $P(n), B(n)$ denote the set of odd order permutations and ballot permutations of size n, respectively.

$$
P(3)=\{(1)(2)(3),(123),(321)\}, B(3)=\{123,132,231\} .
$$

$$
\begin{aligned}
P(4)= & \{(1)(2)(3),(1)(234),(1)(432),(2)(134), \\
& (2)(143),(3)(124),(3)(421),(4)(123),(4)(321)\}, \\
B(4)= & \{1234,1243,3412,1423,2341,1342,2341,1324,3214\} .
\end{aligned}
$$

Two Families of Permutations

Let $P(n), B(n)$ denote the set of odd order permutations and ballot permutations of size n, respectively.

$$
P(3)=\{(1)(2)(3),(123),(321)\}, B(3)=\{123,132,231\} .
$$

$$
\begin{aligned}
& P(4)=\{(1)(2)(3),(1)(234),(1)(432),(2)(134), \\
&(2)(143),(3)(124),(3)(421),(4)(123),(4)(321)\}, \\
& B(4)=\{1234,1243,3412,1423,2341,1342,2341,1324,3214\} .
\end{aligned}
$$

Let $p(n)=|P(n)|$ and $b(n)=|B(n)|$.

Two Families of Permutations

Let $P(n), B(n)$ denote the set of odd order permutations and ballot permutations of size n, respectively.

$$
P(3)=\{(1)(2)(3),(123),(321)\}, B(3)=\{123,132,231\} .
$$

$$
\begin{aligned}
& P(4)=\{(1)(2)(3),(1)(234),(1)(432),(2)(134), \\
&(2)(143),(3)(124),(3)(421),(4)(123),(4)(321)\}, \\
& B(4)=\{1234,1243,3412,1423,2341,1342,2341,1324,3214\} .
\end{aligned}
$$

Let $p(n)=|P(n)|$ and $b(n)=|B(n)|$. Observe that $p(3)=b(3)=3$ and $p(4)=b(4)=9$.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))
For all $n, p(n)=b(n)$.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))
 For all $n, p(n)=b(n)$.

Their proof does not give a bijection between $P(n)$ and $B(n)$.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

$$
\begin{aligned}
& \text { Theorem (Bernardi, Duplantier, Nadeau, (2010)) } \\
& \text { For all } n, p(n)=b(n)
\end{aligned}
$$

Their proof does not give a bijection between $P(n)$ and $B(n)$. Motivated by this, we will try and consider a refined version of this problem.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))

For all $n, p(n)=b(n)$.
Their proof does not give a bijection between $P(n)$ and $B(n)$. Motivated by this, we will try and consider a refined version of this problem.
Let $B(n, d)$ denote the set of permutations $\pi \in B(n)$ with exactly d descents, and let $b(n, d)=|B(n, d)|$.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))

For all $n, p(n)=b(n)$.
Their proof does not give a bijection between $P(n)$ and $B(n)$. Motivated by this, we will try and consider a refined version of this problem.
Let $B(n, d)$ denote the set of permutations $\pi \in B(n)$ with exactly d descents, and let $b(n, d)=|B(n, d)|$. We wish to define an analogous set $P(n, d)$ consisting of the permutations of $P(n)$ with some statistic equal to d.

Two Families of Permutations

Given this overwhelming evidence, one might guess the following to be true.

Theorem (Bernardi, Duplantier, Nadeau, (2010))

For all $n, p(n)=b(n)$.
Their proof does not give a bijection between $P(n)$ and $B(n)$. Motivated by this, we will try and consider a refined version of this problem.
Let $B(n, d)$ denote the set of permutations $\pi \in B(n)$ with exactly d descents, and let $b(n, d)=|B(n, d)|$. We wish to define an analogous set $P(n, d)$ consisting of the permutations of $P(n)$ with some statistic equal to d. What should this statistic be?

The M Statistic

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$.

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$. For example, $\bar{c}=(48256)$ has

$$
\operatorname{asc}^{\prime}(\bar{c})=3, \operatorname{des}^{\prime}(\bar{c})=2
$$

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$. For example, $\bar{c}=(48256)$ has

$$
\operatorname{asc}^{\prime}(\bar{c})=3, \operatorname{des}^{\prime}(\bar{c})=2
$$

Let $M(\bar{c})=\min \left\{\operatorname{asc}^{\prime}(\bar{c}), \operatorname{des}^{\prime}(\bar{c})\right\}$.

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$. For example, $\bar{c}=(48256)$ has

$$
\operatorname{asc}^{\prime}(\bar{c})=3, \operatorname{des}^{\prime}(\bar{c})=2
$$

Let $M(\bar{c})=\min \left\{\operatorname{asc}^{\prime}(\bar{c}), \operatorname{des}^{\prime}(\bar{c})\right\}$. For example, $M(48256)=2$.

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$. For example, $\bar{c}=(48256)$ has

$$
\operatorname{asc}^{\prime}(\bar{c})=3, \operatorname{des}^{\prime}(\bar{c})=2
$$

Let $M(\bar{c})=\min \left\{\operatorname{asc}^{\prime}(\bar{c}), \operatorname{des}^{\prime}(\bar{c})\right\}$. For example, $M(48256)=2$.
Given a permutation $\pi=\bar{c}_{1} \cdots \bar{c}_{k}$, we define $M(\pi)=\sum_{i=1}^{k} M\left(\bar{c}_{i}\right)$.

The M Statistic

Given a cycle $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$, we let $\operatorname{asc}^{\prime}(\bar{c})$ denote the number of cyclic ascents of \bar{c}. That is, the number of ascents in $c_{1} c_{2} \cdots c_{k} c_{1}$. Similarly define $\operatorname{des}^{\prime}(\bar{c})$. For example, $\bar{c}=(48256)$ has

$$
\operatorname{asc}^{\prime}(\bar{c})=3, \operatorname{des}^{\prime}(\bar{c})=2
$$

Let $M(\bar{c})=\min \left\{\operatorname{asc}^{\prime}(\bar{c}), \operatorname{des}^{\prime}(\bar{c})\right\}$. For example, $M(48256)=2$.
Given a permutation $\pi=\bar{c}_{1} \cdots \bar{c}_{k}$, we define $M(\pi)=\sum_{i=1}^{k} M\left(\bar{c}_{i}\right)$.
For example, if $\pi=(139)(48256)(7)$, then

$$
M(\pi)=1+2+0=3
$$

The M Statistic

Let $P(n, d)$ denote the set of permutations $\pi \in P(n)$ with $M(\pi)=d$, and let $p(n, d)=|P(n, d)|$.

The M Statistic

Let $P(n, d)$ denote the set of permutations $\pi \in P(n)$ with $M(\pi)=d$, and let $p(n, d)=|P(n, d)|$. For example, we have

$$
\begin{aligned}
& p(3,0)=b(3,0)=1 \\
& p(3,1)=b(3,1)=2 \\
& p(4,0)=b(4,0)=1, \\
& p(4,1)=b(4,1)=8
\end{aligned}
$$

The M Statistic

$\mathrm{b}(\mathrm{n}, \mathrm{d})$	$\mathrm{d}=0$	$\mathrm{~d}=1$	$\mathrm{~d}=2$	$\mathrm{~d}=3$	$\mathrm{~d}=4$
$\mathrm{n}=1$	1	0	0	0	0
$\mathrm{n}=2$	1	0	0	0	0
$\mathrm{n}=3$	1	2	0	0	0
$\mathrm{n}=4$	1	8	0	0	0
$\mathrm{n}=5$	1	22	22	0	0
$\mathrm{n}=6$	1	52	172	0	0
$\mathrm{n}=7$	1	114	856	604	0
$\mathrm{n}=8$	1	240	3488	7296	0
$\mathrm{n}=9$	1	494	12746	54746	31238
$\mathrm{n}=10$	1	1004	43628	330068	518324

$\mathrm{p}(\mathrm{n}, \mathrm{d})$	$\mathrm{d}=0$	$\mathrm{~d}=1$	$\mathrm{~d}=2$	$\mathrm{~d}=3$	$\mathrm{~d}=4$
$\mathrm{n}=1$	1	0	0	0	0
$\mathrm{n}=2$	1	0	0	0	0
$\mathrm{n}=3$	1	2	0	0	0
$\mathrm{n}=4$	1	8	0	0	0
$\mathrm{n}=5$	1	22	22	0	0
$\mathrm{n}=6$	1	52	172	0	0
$\mathrm{n}=7$	1	114	856	604	0
$\mathrm{n}=8$	1	240	3488	7296	0
$\mathrm{n}=9$	1	494	12746	54746	31238
$\mathrm{n}=10$	1	1004	43628	330068	518324

The M Statistic

$b(n, d)$	$d=0$	$d=1$	$d=2$	$d=3$	$d=4$
$n=1$	1	0	0	0	0
$n=2$	1	0	0	0	0
$n=3$	1	2	0	0	0
$n=4$	1	8	0	0	0
$n=5$	1	22	22	0	0
$n=6$	1	52	172	0	0
$n=7$	1	114	856	604	0
$n=8$	1	240	3488	7296	0
$n=9$	1	494	12746	54746	31238
$n=10$	1	1004	43628	330068	518324

$\mathrm{p}(\mathrm{n}, \mathrm{d})$	$\mathrm{d}=0$	$\mathrm{~d}=1$	$\mathrm{~d}=2$	$\mathrm{~d}=3$	$\mathrm{~d}=4$
$\mathrm{n}=1$	1	0	0	0	0
$\mathrm{n}=2$	1	0	0	0	0
$\mathrm{n}=3$	1	2	0	0	0
$\mathrm{n}=4$	1	8	0	0	0
$\mathrm{n}=5$	1	22	22	0	0
$\mathrm{n}=6$	1	52	172	0	0
$\mathrm{n}=7$	1	114	856	604	0
$\mathrm{n}=8$	1	240	3488	7296	0
$\mathrm{n}=9$	1	494	12746	54746	31238
$\mathrm{n}=10$	1	1004	43628	330068	518324

Conjecture

For all n, d, we have $p(n, d)=b(n, d)$.

The Case $d=1$

We have $p(n, 0)=b(n, 0)=1$. The next simplest case is $d=1$.

The Case $d=1$

We have $p(n, 0)=b(n, 0)=1$. The next simplest case is $d=1$.
Theorem (S., (2018))
For all n,

$$
p(n, 1)=b(n, 1)
$$

Moreover, there exists an explicit bijection $\phi: P(n, 1) \rightarrow B(n, 1)$.

The Case $d=1$

We have $p(n, 0)=b(n, 0)=1$. The next simplest case is $d=1$.
Theorem (S., (2018))
For all n,

$$
p(n, 1)=b(n, 1)
$$

Moreover, there exists an explicit bijection $\phi: P(n, 1) \rightarrow B(n, 1)$.
What are $P(n, 1)$ and $B(n, 1)$ again?

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for exactly one i with the rest 0 .

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x)$.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x) . M(\bar{c})=1$ implies $\bar{c}=\left(c_{1} c_{2} \cdots c_{k}\right)$ with $k>1$ and either $c_{i}<c_{i+1}$ for all i or $c_{i}>c_{i+1}$ for all i.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for
exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x) . M(\bar{c})=1$ implies $\bar{c}=\left(c_{1} c_{2} \cdots c_{k}\right)$ with $k>1$ and either $c_{i}<c_{i+1}$ for all i or $c_{i}>c_{i+1}$ for all i.
Because π is also an odd order permutation, we must have $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ with $k \geq 1$ and these elements either all increasing or all decreasing.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x) . M(\bar{c})=1$ implies $\bar{c}=\left(c_{1} c_{2} \cdots c_{k}\right)$ with $k>1$ and either $c_{i}<c_{i+1}$ for all i or $c_{i}>c_{i+1}$ for all i.
Because π is also an odd order permutation, we must have $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ with $k \geq 1$ and these elements either all increasing or all decreasing. E.g. $(24568)(1)(3)(7)(9) \in P(9,1)$.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for
exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x) . M(\bar{c})=1$ implies $\bar{c}=\left(c_{1} c_{2} \cdots c_{k}\right)$ with $k>1$ and either $c_{i}<c_{i+1}$ for all i or $c_{i}>c_{i+1}$ for all i.
Because π is also an odd order permutation, we must have $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ with $k \geq 1$ and these elements either all increasing or all decreasing. E.g. $(24568)(1)(3)(7)(9) \in P(9,1)$. Idea for the bijection: use the non-trivial odd cycle of $\pi \in P(n, 1)$ as the "backbone" for the permutation $\phi(\pi)$.

The Case $d=1$

$B(n, 1)$ consists of permutations which have exactly one descent that is not at the beginning of the word.
If $\pi \in P(n, 1)$, then $M(\pi)=\sum M\left(\bar{c}_{i}\right)=1$, so $M\left(\bar{c}_{i}\right)=1$ for
exactly one i with the rest $0 . M(\bar{c})=0$ implies $\bar{c}=(x) . M(\bar{c})=1$ implies $\bar{c}=\left(c_{1} c_{2} \cdots c_{k}\right)$ with $k>1$ and either $c_{i}<c_{i+1}$ for all i or $c_{i}>c_{i+1}$ for all i.
Because π is also an odd order permutation, we must have $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ with $k \geq 1$ and these elements either all increasing or all decreasing. E.g. $(24568)(1)(3)(7)(9) \in P(9,1)$. Idea for the bijection: use the non-trivial odd cycle of $\pi \in P(n, 1)$ as the "backbone" for the permutation $\phi(\pi)$. In particular, use the largest element of this cycle as the unique descent of $\phi(\pi)$.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$.
Given $\pi=\left(c_{1} \cdots c_{2 k+1}\right) \in P(n, 1)$ with $c_{i}<c_{i+1}$ for all i, start with the word

$$
c_{1} c_{3} \cdots c_{2 k-1} c_{2 k+1} c_{2} c_{4} \cdots c_{2 k}=x c_{2 k+1} y
$$

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$.
Given $\pi=\left(c_{1} \cdots c_{2 k+1}\right) \in P(n, 1)$ with $c_{i}<c_{i+1}$ for all i, start with the word

$$
c_{1} c_{3} \cdots c_{2 k-1} c_{2 k+1} c_{2} c_{4} \cdots c_{2 k}=x c_{2 k+1} y
$$

E.g. for σ we start with the word 25846 .

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$.
Given $\pi=\left(c_{1} \cdots c_{2 k+1}\right) \in P(n, 1)$ with $c_{i}<c_{i+1}$ for all i, start with the word

$$
c_{1} c_{3} \cdots c_{2 k-1} c_{2 k+1} c_{2} c_{4} \cdots c_{2 k}=x c_{2 k+1} y
$$

E.g. for σ we start with the word 25846 .

Observe that x and y consist of only ascents (because the c_{i} are increasing)

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$.
Given $\pi=\left(c_{1} \cdots c_{2 k+1}\right) \in P(n, 1)$ with $c_{i}<c_{i+1}$ for all i, start with the word

$$
c_{1} c_{3} \cdots c_{2 k-1} c_{2 k+1} c_{2} c_{4} \cdots c_{2 k}=x c_{2 k+1} y
$$

E.g. for σ we start with the word 25846 .

Observe that x and y consist of only ascents (because the c_{i} are increasing), and that x and y are non-empty because $k \geq 1$ (so the word starts with an ascent and has a descent at position $k+1$).

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent?

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$.

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have

25846

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have
$25846 \rightarrow 258469$

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have
$25846 \rightarrow 258469 \rightarrow 2578469$

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have
$25846 \rightarrow 258469 \rightarrow 2578469 \rightarrow 25783469$

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have
$25846 \rightarrow 258469 \rightarrow 2578469 \rightarrow 25783469 \rightarrow 125783469$

The Case $d=1$

Let $\sigma=(24568)(1)(3)(7)(9)$, start with the word 25846.
So far we have a word with exactly one descent and which begins with an ascent. We want to insert the remaining elements of [n] into this word without disrupting this structure.
Say we've currently constructed the word w and that the largest letter we haven't inserted yet is k. How can we insert k into w without creating an extra descent? If $k=n$, put it at the end of the word, otherwise put k right before $k+1$. For example, with σ we have
$25846 \rightarrow 258469 \rightarrow 2578469 \rightarrow 25783469 \rightarrow 125783469 \in B(9,1)$

The Case $d=1$

This defines $\phi(\pi)$ if $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ and $c_{i}<c_{i+1}$ for all i, but what if we were given $\tilde{\pi}=\left(c_{2 k+1} \cdots c_{1}\right)$?

The Case $d=1$

This defines $\phi(\pi)$ if $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ and $c_{i}<c_{i+1}$ for all i, but what if we were given $\tilde{\pi}=\left(c_{2 k+1} \cdots c_{1}\right)$? Basically we "flip" $\phi(\pi)$.

The Case $d=1$

This defines $\phi(\pi)$ if $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ and $c_{i}<c_{i+1}$ for all i, but what if we were given $\tilde{\pi}=\left(c_{2 k+1} \cdots c_{1}\right)$? Basically we "flip" $\phi(\pi)$. Specifically, if $\phi(\pi)=x d y z$ with d the unique descent of $\phi(\pi)$ and $z=(d+1)(d+2) \cdots n$, we define $\phi(\tilde{\pi})=y d x z$.

The Case $d=1$

This defines $\phi(\pi)$ if $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ and $c_{i}<c_{i+1}$ for all i, but what if we were given $\tilde{\pi}=\left(c_{2 k+1} \cdots c_{1}\right)$? Basically we "flip" $\phi(\pi)$. Specifically, if $\phi(\pi)=x d y z$ with d the unique descent of $\phi(\pi)$ and $z=(d+1)(d+2) \cdots n$, we define $\phi(\tilde{\pi})=y d x z$. For example, if $\phi((24568))=125783469$, then $\phi((86542))=346812579$.

The Case $d=1$

This defines $\phi(\pi)$ if $\pi=\left(c_{1} \cdots c_{2 k+1}\right)$ and $c_{i}<c_{i+1}$ for all i, but what if we were given $\tilde{\pi}=\left(c_{2 k+1} \cdots c_{1}\right)$? Basically we "flip" $\phi(\pi)$. Specifically, if $\phi(\pi)=x d y z$ with d the unique descent of $\phi(\pi)$ and $z=(d+1)(d+2) \cdots n$, we define $\phi(\tilde{\pi})=y d x z$. For example, if $\phi((24568))=125783469$, then $\phi((86542))=346812579$.
One can verify that this is always an element of $B(n, 1)$, and this defines our map $\phi: P(n, 1) \rightarrow B(n, 1)$.

The Case $d=1$

This map is invertible.

The Case $d=1$

This map is invertible. Roughly, given $\pi \in B(n, 1)$, one identifies the "consecutive runs" of π (subsequences with $\pi_{i}=\pi_{i+1}-1=\pi_{i+2}-2=\cdots$), and then one uses the last letter of each run to construct the non-trivial cycle of $\phi^{-1}(\pi)$.

The Case $d=1$

This map is invertible. Roughly, given $\pi \in B(n, 1)$, one identifies the "consecutive runs" of π (subsequences with $\pi_{i}=\pi_{i+1}-1=\pi_{i+2}-2=\cdots$), and then one uses the last letter of each run to construct the non-trivial cycle of $\phi^{-1}(\pi)$. For example, if $\sigma^{\prime}=125783469$, we write

The Case $d=1$

This map is invertible. Roughly, given $\pi \in B(n, 1)$, one identifies the "consecutive runs" of π (subsequences with $\pi_{i}=\pi_{i+1}-1=\pi_{i+2}-2=\cdots$), and then one uses the last letter of each run to construct the non-trivial cycle of $\phi^{-1}(\pi)$. For example, if $\sigma^{\prime}=125783469$, we write

125783469

The Case $d=1$

This map is invertible. Roughly, given $\pi \in B(n, 1)$, one identifies the "consecutive runs" of π (subsequences with $\pi_{i}=\pi_{i+1}-1=\pi_{i+2}-2=\cdots$), and then one uses the last letter of each run to construct the non-trivial cycle of $\phi^{-1}(\pi)$. For example, if $\sigma^{\prime}=125783469$, we write

$$
125783469 \rightarrow(24568) .
$$

The Case $d=1$

This map is invertible. Roughly, given $\pi \in B(n, 1)$, one identifies the "consecutive runs" of π (subsequences with $\pi_{i}=\pi_{i+1}-1=\pi_{i+2}-2=\cdots$), and then one uses the last letter of each run to construct the non-trivial cycle of $\phi^{-1}(\pi)$. For example, if $\sigma^{\prime}=125783469$, we write

$$
125783469 \rightarrow(24568)
$$

It turns out that when $\pi \in B(n, 1)$ then π (or its flipped version) always has an odd number of consecutive runs, so this returns something in $P(n)$, and one can check that it is in fact in $P(n, 1)$.

Formulas for Small d

Formulas for Small d

Define the Eulerian number $E(n, d)$ to be the number of permutations with exactly d descents.

Formulas for Small d

Define the Eulerian number $E(n, d)$ to be the number of permutations with exactly d descents.

Theorem (S. (2018))

For all $n \geq 4$,

$$
\begin{aligned}
& p(n, 1)=b(n, 1)=2 E(n-1,1), \\
& p(n, 2)=b(n, 2)=3 E(n-1,2)-2\binom{n}{3}+\binom{n}{2}-1, \\
& p(n, 3)=b(n, 3)= \\
& 4 E(n-1,3)-\left(\binom{n}{3}-\binom{n}{2}+4\right) 2^{n-2}-22\binom{n}{5}+16\binom{n}{4}-4\binom{n}{3}+2 n .
\end{aligned}
$$

Formulas for Small d

Why does $(d+1) E(n-1, d)$ keep showing up in these formulas?

Formulas for Small d

Why does $(d+1) E(n-1, d)$ keep showing up in these formulas?
Proposition (Gessel (2017), S. (2018))
$(d+1) E(n-1, d)$ counts the number of permutations of S_{n} with exactly d descents and which begin with an ascent.

Formulas for Small d

Why does $(d+1) E(n-1, d)$ keep showing up in these formulas?
Proposition (Gessel (2017), S. (2018))
$(d+1) E(n-1, d)$ counts the number of permutations of S_{n} with exactly d descents and which begin with an ascent.

To get formulas for ballot permutations, one can start with permutations that begin with an ascent, and then use ideas from Shevelev to get rid of the permutations that aren't ballot.

Formulas for Large d

Formulas for Large d

One can show that the largest value of d such that $p(n, d), b(n, d) \neq 0$ is $d=\lfloor(n-1) / 2\rfloor$. In this case the conjecture is true.

Formulas for Large d

One can show that the largest value of d such that $p(n, d), b(n, d) \neq 0$ is $d=\lfloor(n-1) / 2\rfloor$. In this case the conjecture is true. Define $E C(n)=2 E(2 n, n-1)$. These are known as the Eulerian-Catalan numbers.

Formulas for Large d

One can show that the largest value of d such that $p(n, d), b(n, d) \neq 0$ is $d=\lfloor(n-1) / 2\rfloor$. In this case the conjecture is true. Define $E C(n)=2 E(2 n, n-1)$. These are known as the Eulerian-Catalan numbers.

Theorem (Bidkhori, Sullivant (2011), S. (2018))

For all $n \geq 0$, we have $p(2 n+1, n)=b(2 n+1, n)=E C(n)$.
Moreover, there exists an explicit bijection from $P(2 n+1, n)$ to $B(2 n+1, n)$.

Formulas for Large d

One can show that the largest value of d such that $p(n, d), b(n, d) \neq 0$ is $d=\lfloor(n-1) / 2\rfloor$. In this case the conjecture is true. Define $E C(n)=2 E(2 n, n-1)$. These are known as the Eulerian-Catalan numbers.

Theorem (Bidkhori, Sullivant (2011), S. (2018))

For all $n \geq 0$, we have $p(2 n+1, n)=b(2 n+1, n)=E C(n)$.
Moreover, there exists an explicit bijection from $P(2 n+1, n)$ to $B(2 n+1, n)$.

Theorem (S. (2018))
For all $n \geq 1$, we have $p(2 n, n-1)=b(2 n, n-1)=$

$$
\frac{1}{2} \sum_{k \geq 1, k \text { odd }}\binom{2 n}{k} E C\left(\frac{k-1}{2}\right) E C\left(\frac{2 n-k-1}{2}\right)
$$

Remaining Problems

Remaining Problems

Problem

Prove (or disprove) that $p(n, d)=b(n, d)$ for all n, d.

Remaining Problems

Problem

Prove (or disprove) that $p(n, d)=b(n, d)$ for all n, d.
One step towards solving this might be the following.

Remaining Problems

Problem

Prove (or disprove) that $p(n, d)=b(n, d)$ for all n, d.
One step towards solving this might be the following.

Problem

Find an explicit bijection $\phi: P(n, 2) \rightarrow B(n, 2)$ for all n.

Remaining Problems

Problem

Prove (or disprove) that $p(n, d)=b(n, d)$ for all n, d.
One step towards solving this might be the following.

Problem

Find an explicit bijection $\phi: P(n, 2) \rightarrow B(n, 2)$ for all n.
Solving the $d=2$ case may show how to deal with multiple non-trivial odd cycles in general, which could give insight into a general bijection.

Remaining Problems

Problem

Find a bivariate generating function for $p(n, d)$ or $b(n, d)$.

Remaining Problems

Problem

Find a bivariate generating function for $p(n, d)$ or $b(n, d)$.

Problem

Determine the generating function

$$
C(x, y)=\sum_{n} \sum_{d \leq n-1} E(2 n, d) \frac{x^{2 n}}{(2 n)!} y^{d}
$$

