Polynomial Relations of Matrices of Graphs

Sam Spiro, UC San Diego.

April 7th, 2018

Spectral Graph Theory

Spectral Graph Theory

Main Idea

G

Spectral Graph Theory

Main Idea

$$
G \rightarrow M_{G}(\text { or } M)
$$

Spectral Graph Theory

Main Idea

$$
G \rightarrow M_{G}(\text { or } M) \rightarrow\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}
$$

Spectral Graph Theory

Main Idea

$$
G \rightarrow M_{G}(\text { or } M) \rightarrow\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \rightarrow \text { Properties of } G
$$

The Adjacency Matrix A

The Adjacency Matrix A

Definition

Define the adjacency matrix A by

$$
A_{i j}= \begin{cases}1 & i j \in E(G) \\ 0 & i j \notin E(G)\end{cases}
$$

The Adjacency Matrix A

Definition

Define the adjacency matrix A by

$$
A_{i j}= \begin{cases}1 & i j \in E(G) \\ 0 & i j \notin E(G)\end{cases}
$$

Theorem

If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are the eigenvalues of A, then the total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k} .
$$

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Proof.

Claim: $\left(A^{k}\right)_{i j}=$ the number of walks of length k from vertex i to vertex j.

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Proof.

Claim: $\left(A^{k}\right)_{i j}=$ the number of walks of length k from vertex i to vertex j.
We're interested in walks of length k from vertex i to vertex i for all i.

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Proof.

Claim: $\left(A^{k}\right)_{i j}=$ the number of walks of length k from vertex i to vertex j.
We're interested in walks of length k from vertex i to vertex i for all i.

$$
\left(A^{k}\right)_{11}+\cdots+\left(A^{k}\right)_{n n}
$$

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Proof.

Claim: $\left(A^{k}\right)_{i j}=$ the number of walks of length k from vertex i to vertex j.
We're interested in walks of length k from vertex i to vertex i for all i.

$$
\left(A^{k}\right)_{11}+\cdots+\left(A^{k}\right)_{n n}=\operatorname{Tr} A^{k}
$$

The Adjacency Matrix A

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

Proof.

Claim: $\left(A^{k}\right)_{i j}=$ the number of walks of length k from vertex i to vertex j.
We're interested in walks of length k from vertex i to vertex i for all i.

$$
\left(A^{k}\right)_{11}+\cdots+\left(A^{k}\right)_{n n}=\operatorname{Tr} A^{k}=\lambda_{1}^{k}+\cdots+\lambda_{n}^{k}
$$

The Laplacian Matrix L

The Laplacian Matrix L

Definition

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ (the diagonal matrix of degrees of G). We define the Laplacian matrix L by

$$
L=D-A
$$

The Laplacian Matrix L

Definition

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ (the diagonal matrix of degrees of G). We define the Laplacian matrix L by

$$
L=D-A
$$

Example

Let P_{3} denote the path on 3 vertices. Then

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], L=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

The Laplacian Matrix L

Definition

$L=D-A$

The Laplacian Matrix L

Definition

$$
L=D-A
$$

Remark

1 is always an eigenvector of L with eigenvalue 0 .

The Laplacian Matrix L

Definition

$$
L=D-A
$$

Remark

1 is always an eigenvector of L with eigenvalue 0 .

Theorem

Let $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ be the eigenvalues of L with $\mu_{n}=0$. If $t(G)$ denotes the number of spanning trees of G then

$$
t(G)=\frac{1}{n} \mu_{1} \mu_{2} \cdots \mu_{n-1} .
$$

Regular Graphs

Regular Graphs

Remark

If G is d-regular then $D=d l$ and we have $L=d I-A$, or equivalently

$$
A=d I-L
$$

Regular Graphs

Remark

If G is d-regular then $D=d l$ and we have $L=d I-A$, or equivalently

$$
A=d l-L .
$$

Proposition

If G is d-regular and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is the set of eigenvalues of A then $\left\{d-\lambda_{1}, \ldots, d-\lambda_{n}\right\}$ is the set of eigenvalues of L.
Conversely, if $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ is the set of eigenvalues of L then $\left\{d-\mu_{1}, \ldots, d-\mu_{N}\right\}$ is the set of eigenvalues of A.

Regular Graphs

Main Idea

Given the relation $A=d I-L$ we can translate from eigenvalues of A to eigenvalues of L and vice versa.

Biregular Graphs

Biregular Graphs

Definition

A graph G is said to be $\left(d_{1}, d_{2}\right)$-biregular if it is bipartite with vertex partition $V=V_{1} \sqcup V_{2}$ such that for all $v \in V_{1}$ we have $d(v)=d_{1}$ and for all $w \in V_{2}$ we have $d(w)=d_{2}$.

Biregular Graphs

Definition

A graph G is said to be $\left(d_{1}, d_{2}\right)$-biregular if it is bipartite with vertex partition $V=V_{1} \sqcup V_{2}$ such that for all $v \in V_{1}$ we have $d(v)=d_{1}$ and for all $w \in V_{2}$ we have $d(w)=d_{2}$. We say that a graph G is biregular if it is $\left(d_{1}, d_{2}\right)$-biregular for some d_{1}, d_{2}.

Biregular Graphs

Definition

A graph G is said to be $\left(d_{1}, d_{2}\right)$-biregular if it is bipartite with vertex partition $V=V_{1} \sqcup V_{2}$ such that for all $v \in V_{1}$ we have $d(v)=d_{1}$ and for all $w \in V_{2}$ we have $d(w)=d_{2}$. We say that a graph G is biregular if it is $\left(d_{1}, d_{2}\right)$-biregular for some d_{1}, d_{2}.

Example

$K_{n, m}$ is biregular: it has an obvious bipartition, all the vertices in one set have degree m and all the other vertices have degree n.

Biregular Graphs

Remark

If G is $\left(d_{1}, d_{2}\right)$-biregular then we claim that

$$
A^{2}=\left(L-d_{1} I\right)\left(L-d_{2} I\right)
$$

Biregular Graphs

Remark

If G is $\left(d_{1}, d_{2}\right)$-biregular then we claim that

$$
A^{2}=\left(L-d_{1} I\right)\left(L-d_{2} I\right) .
$$

Theorem (S.)

Given the relation $A^{2}=\left(L-d_{1} I\right)\left(L-d_{2} I\right)$ we can translate from eigenvalues of A to eigenvalues of L and vice versa.

$A^{r}=f(L)$

Question

Are there "triregular" graphs G such that

$$
A^{3}=f(L)
$$

where f is some polynomial?

$A^{r}=f(L)$

Question

Are there "triregular" graphs G such that

$$
A^{3}=f(L)
$$

where f is some polynomial? More generally, are there other graphs satisfying

$$
A^{r}=f(L)
$$

where r is some positive integer and f is a polynomial?

$A^{r}=f(L)$

Question

Are there "triregular" graphs G such that

$$
A^{3}=f(L)
$$

where f is some polynomial? More generally, are there other graphs satisfying

$$
A^{r}=f(L)
$$

where r is some positive integer and f is a polynomial?

Theorem (S.)

No.

$A^{r}=f(L)$

Theorem (S.)

Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$
A^{r}=f(L)
$$

then G is regular or biregular.

$A^{r}=f(L)$

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that
1 Every coordinate of \tilde{v} is non-zero.
2 The corresponding eigenvalue Λ has multiplicity 1 in A.

$A^{r}=f(L)$

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that
1 Every coordinate of \tilde{v} is non-zero.
2 The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

$$
A^{r}=f(L)
$$

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that
1 Every coordinate of \tilde{v} is non-zero.
2 The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

$$
\begin{aligned}
& \text { Proof. } \\
& \text { If } L \tilde{v}=\mu \tilde{v} \text { then } D \tilde{v}=A \tilde{v}+L \tilde{v}=(\Lambda+\mu) \tilde{v}
\end{aligned}
$$

$$
A^{r}=f(L)
$$

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that
1 Every coordinate of \tilde{v} is non-zero.
2 The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

Proof.

If $L \tilde{v}=\mu \tilde{v}$ then $D \tilde{v}=A \tilde{v}+L \tilde{v}=(\Lambda+\mu) \tilde{v}$. Thus $D_{i i}=\Lambda+\mu$ whenever $\tilde{v}_{i} \neq 0$.

$$
A^{r}=f(L)
$$

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that
1 Every coordinate of \tilde{v} is non-zero.
2 The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

Proof.

If $L \tilde{v}=\mu \tilde{v}$ then $D \tilde{v}=A \tilde{v}+L \tilde{v}=(\Lambda+\mu) \tilde{v}$. Thus $D_{i i}=\Lambda+\mu$ whenever $\tilde{v}_{i} \neq 0$. But every coordinate is non-zero, so we must have $D=(\Lambda+\mu) I$, so G is $(\Lambda+\mu)$-regular.

$A^{r}=f(L)$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

$A^{r}=f(L)$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 1: r odd.

If $A^{r}=f(L)$ with r odd, then the multiplicity of Λ^{r} of A^{r} is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

$$
A^{r}=f(L)
$$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 1: r odd.

If $A^{r}=f(L)$ with r odd, then the multiplicity of Λ^{r} of A^{r} is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^{r}, so there must be an eigenvector v of L such that $A^{r} v=\Lambda^{r} v$.

$$
A^{r}=f(L)
$$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 1: r odd.

If $A^{r}=f(L)$ with r odd, then the multiplicity of Λ^{r} of A^{r} is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^{r}, so there must be an eigenvector v of L such that $A^{r} v=\Lambda^{r} v$. But Λ^{r} has multiplicity 1 , so v must be a scaler multiple of \tilde{v}.

$$
A^{r}=f(L)
$$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 1: r odd.

If $A^{r}=f(L)$ with r odd, then the multiplicity of Λ^{r} of A^{r} is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^{r}, so there must be an eigenvector v of L such that $A^{r} v=\Lambda^{r} v$. But Λ^{r} has multiplicity 1 , so v must be a scaler multiple of \tilde{v}. By our lemma, G must be regular.

$A^{r}=f(L)$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

$A^{r}=f(L)$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 2: r even.

If $A^{2 k}=\left(A^{2}\right)^{k}=f(L)$, then an orthonormal basis of eigenvectors for L will be a basis of eigenvectors for A^{2} (since its spectrum is non-negative).

$$
A^{r}=f(L)
$$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 2: r even.

If $A^{2 k}=\left(A^{2}\right)^{k}=f(L)$, then an orthonormal basis of eigenvectors for L will be a basis of eigenvectors for A^{2} (since its spectrum is non-negative). In particular, $\mathbf{1}$ is an eigenvector for L so it will also be an eigenvector for A^{2}.

$$
A^{r}=f(L)
$$

Theorem

If

$$
A^{r}=f(L)
$$

then G is regular or biregular.

Case 2: r even.

If $A^{2 k}=\left(A^{2}\right)^{k}=f(L)$, then an orthonormal basis of eigenvectors for L will be a basis of eigenvectors for A^{2} (since its spectrum is non-negative). In particular, $\mathbf{1}$ is an eigenvector for L so it will also be an eigenvector for A^{2}.

Lemma

If $\mathbf{1}$ is an eigenvector for A^{2} then G is regular or biregular.

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$.

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.

$$
A^{r}=f(L)
$$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\lambda=\sum_{j: i j \in E(G)} d_{j}
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\lambda=\sum_{j: i j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}}
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\lambda=\sum_{j: i j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j: i j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}
\end{aligned}
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j: i j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{D}}
\end{aligned}
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j:: j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{D}} \geq d D .
\end{aligned}
$$

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j:: j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{D}} \geq d D .
\end{aligned}
$$

We conclude that the inequalities are equalities.

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j:: i j \in(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{D}} \geq d D
\end{aligned}
$$

We conclude that the inequalities are equalities. In particular, every vertex of minimum degree is adjacent only to vertices of maximum degree and vice versa.

$A^{r}=f(L)$

Proof.

Claim: $\left(A^{2} \mathbf{1}\right)_{i}=\sum_{j: i j \in E(G)} d_{j}$. Thus $\mathbf{1}$ being an eigenvector for A^{2} is equivalent to the statement that there exists a λ such that $\sum_{j: i j \in E(G)} d_{j}=\lambda$ for all i. Assume this is the case.
Let i be a vertex with minimum degree d and i^{\prime} a vertex with maximum degree D.

$$
\begin{aligned}
& \lambda=\sum_{j:: j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{d}} \leq d D \\
& \lambda=\sum_{j: i^{\prime} j \in E(G)} d_{j}=d_{j_{1}}+\cdots+d_{j_{D}} \geq d D .
\end{aligned}
$$

We conclude that the inequalities are equalities. In particular, every vertex of minimum degree is adjacent only to vertices of maximum degree and vice versa. If $d \neq D$, this means G is biregular.

$X^{r}=f(Y)$

Question

Let $Q:=D+A$ and $\mathcal{L}:=D^{-1 / 2} L D^{-1 / 2}$ be the signless Laplacian and normalized Laplacian respectively.

$$
X^{r}=f(Y)
$$

Question

Let $Q:=D+A$ and $\mathcal{L}:=D^{-1 / 2} L D^{-1 / 2}$ be the signless Laplacian and normalized Laplacian respectively. When do there exist r, f such that $X^{r}=f(Y)$ for X, Y two of the four matrices A, L, Q, \mathcal{L} ?

$X^{r}=f(Y)$

Question

Let $Q:=D+A$ and $\mathcal{L}:=D^{-1 / 2} L D^{-1 / 2}$ be the signless Laplacian and normalized Laplacian respectively.
When do there exist r, f such that $X^{r}=f(Y)$ for X, Y two of the four matrices A, L, Q, \mathcal{L} ?

Table: Graphs Satisfying $X^{r}=f(Y)$

X / Y	A	L	Q	\mathcal{L}
A		Reg, Bireg	Reg, Bireg	???
L	Reg		Reg	Reg
Q	Reg	Reg		Reg
\mathcal{L}	Reg, Bireg	Reg	Reg	

$f(X)=g(Y)$
aray

$$
f(X)=g(Y)
$$

Question

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

$$
f(X)=g(Y) ?
$$

$$
f(X)=g(Y)
$$

Question

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

$$
f(X)=g(Y) ?
$$

Answer

Always.

$$
f(X)=g(Y)
$$

Question

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

$$
f(X)=g(Y) ?
$$

Answer

Always.

$$
f(x)=g(x)=0
$$

$$
f(X)=g(Y)
$$

Question

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

$$
f(X)=g(Y) ?
$$

Answer
Always.

$$
\begin{gathered}
f(x)=g(x)=0 \\
f(x)=m_{X}(x), g(x)=m_{Y}(x)
\end{gathered}
$$

where $m_{M}(x)$ denotes the minimal polynomial of M.

$$
f(X)=g(Y)
$$

Definition

We will say that a relation $f(X)=g(Y)$ is proper whenever f and g are polynomials satisfying $1 \leq \operatorname{deg}(f)<\operatorname{deg}\left(m_{X}\right)$ and
$1 \leq \operatorname{deg}(g)<\operatorname{deg}\left(m_{Y}\right)$.

$$
f(X)=g(Y)
$$

Definition

We will say that a relation $f(X)=g(Y)$ is proper whenever f and g are polynomials satisfying $1 \leq \operatorname{deg}(f)<\operatorname{deg}\left(m_{X}\right)$ and
$1 \leq \operatorname{deg}(g)<\operatorname{deg}\left(m_{Y}\right)$.

Question

Given two matrices X, Y associated to a graph G, when does there exist a proper relation

$$
f(X)=g(Y) ?
$$

$f(X)=g(Y)$: Families of Graphs

$f(X)=g(Y)$: Families of Graphs

Question

Given a family of graphs \mathcal{F} and two matrices X, Y associated to graphs, does there exist a proper relations $f_{G}\left(X_{G}\right)=g_{G}\left(Y_{G}\right)$ for all $G \in \mathcal{F}$, and if so, what do the polynomials look like?

$f(X)=g(Y)$: Families of Graphs

Question

If $G=P_{n}$, does there exist, for all n, polynomials f_{n}, g_{n} such that $f_{n}(A)=g_{n}(L)$ for all n ? If so, what do these polynomials look like?

$f(X)=g(Y)$: Families of Graphs

Question

If $G=P_{n}$, does there exist, for all n, polynomials f_{n}, g_{n} such that $f_{n}(A)=g_{n}(L)$ for all n ? If so, what do these polynomials look like?

$$
\begin{aligned}
& n=2: \quad I-A=L \\
& n=3: \quad I-1 / 2 A^{2}=3 / 2 L-1 / 2 L^{2} \\
& n=4: \quad I+2 A-A^{3}=6 L-5 L^{2}+L^{3} \\
& n=5: A^{2}-1 / 3 A^{4}=10 / 3 L-5 L^{2}+7 / 3 L^{3}-1 / 3 L^{4} \\
& n=6: \quad I-3 A+4 A^{3}-A^{5}=15 L-35 L^{2}+28 L^{3}-9 L^{4}+L^{5}
\end{aligned}
$$

$f(X)=g(Y)$: Families of Graphs

Question

Given X, Y what are the graphs such that there exists no proper relation $f(X)=g(Y)$?

$f(X)=g(Y)$: Families of Graphs

Proposition

If K_{n}^{\prime} denotes the complete graph on n vertices with one edge removed, then there exists no proper relation $f(Q)=g(L)$ for $n \geq 4$.

$f(X)=g(Y)$: Families of Graphs

Proposition

If K_{n}^{\prime} denotes the complete graph on n vertices with one edge removed, then there exists no proper relation $f(Q)=g(L)$ for $n \geq 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\left\{Q^{k}\right\}$ and $\left\{L^{k}\right\}$ such that all proper polynomials are linear combinations of these matrices.

$f(X)=g(Y)$: Families of Graphs

Proposition

If K_{n}^{\prime} denotes the complete graph on n vertices with one edge removed, then there exists no proper relation $f(Q)=g(L)$ for $n \geq 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\left\{Q^{k}\right\}$ and $\left\{L^{k}\right\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.

$f(X)=g(Y)$: Families of Graphs

Proposition

If K_{n}^{\prime} denotes the complete graph on n vertices with one edge removed, then there exists no proper relation $f(Q)=g(L)$ for $n \geq 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\left\{Q^{k}\right\}$ and $\left\{L^{k}\right\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.
To prove this for the whole family of K_{n}^{\prime} graphs, one observes that the minimal polynomials of Q and L both have degree 3 .

$f(X)=g(Y)$: Families of Graphs

Proposition

If K_{n}^{\prime} denotes the complete graph on n vertices with one edge removed, then there exists no proper relation $f(Q)=g(L)$ for $n \geq 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\left\{Q^{k}\right\}$ and $\left\{L^{k}\right\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.
To prove this for the whole family of K_{n}^{\prime} graphs, one observes that the minimal polynomials of Q and L both have degree 3 . Thus one only has to ask if there exists constants such that $a Q^{2}+b Q=c L^{2}+d L+e l$, and one can verify that no such constants exist if n is at least 4 .

$f(X)=g(Y)$: Families of Functions

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=g(Y)$ where f and g satisfy certain restraints?

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=g(Y)$ where f and g satisfy certain restraints?

Example

If $X=A, Y=L$ and we require $f(x)=x^{r}$ for some r, then the graphs satisfying $f(A)=g(L)$ are the regular and biregular graphs.

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=f(Y)$ for f proper?

$f(X)=g(Y)$: Families of Functions

Question
Given X, Y, what graphs satisfy $f(X)=f(Y)$ for f proper?
Conjecture
No graphs satisfy $f(A)=f(Q)$ for f proper.

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=f(Y)$ for f proper?

Conjecture

No graphs satisfy $f(A)=f(Q)$ for f proper.

Conjecture
If $f(A)=f(L)$ with f proper then G is regular and not a clique.

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=f(Y)$ for f proper?

Conjecture

No graphs satisfy $f(A)=f(Q)$ for f proper.
Conjecture
If $f(A)=f(L)$ with f proper then G is regular and not a clique.

Question

What graphs satisfy $f(Q)=f(L)$?

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=-f(Y)$ for f proper?

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=-f(Y)$ for f proper?

Conjecture

No graphs satisfy $f(A)=-f(Q)$ for f proper.

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=-f(Y)$ for f proper?

Conjecture

No graphs satisfy $f(A)=-f(Q)$ for f proper.

Conjecture

If $f(A)=-f(L)$ with $-f$ proper then G is regular and A has at least 4 distinct eigenvalues (i.e. it's not "strongly regular").

$f(X)=g(Y)$: Families of Functions

Question

Given X, Y, what graphs satisfy $f(X)=-f(Y)$ for f proper?

Conjecture

No graphs satisfy $f(A)=-f(Q)$ for f proper.

Conjecture

If $f(A)=-f(L)$ with $-f$ proper then G is regular and A has at least 4 distinct eigenvalues (i.e. it's not "strongly regular").

Question

What graphs satisfy $f(Q)=-f(L)$?

$f(X)=g(Y):$ Other Questions

There are many other kinds of questions that can be asked:

$f(X)=g(Y)$: Other Questions

There are many other kinds of questions that can be asked:
■ When are the relations obtained "unique" (want to say $A=d I-L$ and $A^{2}=(d I-L)^{2}$ aren't distinct relations)?

$f(X)=g(Y)$: Other Questions

There are many other kinds of questions that can be asked:
■ When are the relations obtained "unique" (want to say $A=d I-L$ and $A^{2}=(d I-L)^{2}$ aren't distinct relations)?

- When do there exists a polynomial $f(x, y)$ where x and y don't commute such that $f(X, Y)=0$?

$f(X)=g(Y)$: Other Questions

There are many other kinds of questions that can be asked:
■ When are the relations obtained "unique" (want to say $A=d I-L$ and $A^{2}=(d I-L)^{2}$ aren't distinct relations)?

- When do there exists a polynomial $f(x, y)$ where x and y don't commute such that $f(X, Y)=0$?
■ When do there exists polynomials f, g, h such that $f(X)+g(Y)+h(Z)=0$?

$f(X)=g(Y)$: Other Questions

There are many other kinds of questions that can be asked:
■ When are the relations obtained "unique" (want to say $A=d I-L$ and $A^{2}=(d l-L)^{2}$ aren't distinct relations)?

- When do there exists a polynomial $f(x, y)$ where x and y don't commute such that $f(X, Y)=0$?
■ When do there exists polynomials f, g, h such that $f(X)+g(Y)+h(Z)=0$?
- How are relations affected by graph operations (cones, deleting edges)?

The End

Thank You!

