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Spectral Graph Theory

Main Idea
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The Adjacency Matrix A

Definition

Define the adjacency matrix A by

Aij =

{
1 ij ∈ E (G )

0 ij /∈ E (G )

Theorem

If {λ1, . . . , λn} are the eigenvalues of A, then the total number of
closed walks (walks from a vertex to itself) of length k in G is

λk1 + · · ·+ λkn .
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Theorem

The total number of closed walks (walks from a vertex to itself) of
length k in G is

λk1 + · · ·+ λkn .

Proof.

Claim: (Ak)ij = the number of walks of length k from vertex i to
vertex j .
We’re interested in walks of length k from vertex i to vertex i for
all i .

(Ak)11 + · · ·+ (Ak)nn = TrAk = λk1 + · · ·+ λkn .
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The Laplacian Matrix L

Definition

Let D = diag(d1, . . . , dn) (the diagonal matrix of degrees of G ).
We define the Laplacian matrix L by

L = D − A.

Example

Let P3 denote the path on 3 vertices. Then

A =

0 1 0
1 0 1
0 1 0

 , D =

1 0 0
0 2 0
0 0 1

 , L =

 1 −1 0
−1 2 −1
0 −1 1

 .
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The Laplacian Matrix L

Definition

L = D − A

Remark

1 is always an eigenvector of L with eigenvalue 0.

Theorem

Let {µ1, . . . , µn} be the eigenvalues of L with µn = 0. If t(G )
denotes the number of spanning trees of G then

t(G ) =
1

n
µ1µ2 · · ·µn−1.
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Regular Graphs

Remark

If G is d-regular then D = dI and we have L = dI − A, or
equivalently

A = dI − L.

Proposition

If G is d-regular and {λ1, . . . , λn} is the set of eigenvalues of A
then {d − λ1, . . . , d − λn} is the set of eigenvalues of L.
Conversely, if {µ1, . . . , µn} is the set of eigenvalues of L then
{d − µ1, . . . , d − µN} is the set of eigenvalues of A.
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Regular Graphs

Main Idea

Given the relation A = dI − L we can translate from eigenvalues of
A to eigenvalues of L and vice versa.



Biregular Graphs

Definition

A graph G is said to be (d1, d2)-biregular if it is bipartite with
vertex partition V = V1 t V2 such that for all v ∈ V1 we have
d(v) = d1 and for all w ∈ V2 we have d(w) = d2. We say that a
graph G is biregular if it is (d1, d2)-biregular for some d1, d2.

Example

Kn,m is biregular: it has an obvious bipartition, all the vertices in
one set have degree m and all the other vertices have degree n.
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Biregular Graphs

Remark

If G is (d1, d2)-biregular then we claim that

A2 = (L− d1I )(L− d2I ).

Theorem (S.)

Given the relation A2 = (L− d1I )(L− d2I ) we can translate from
eigenvalues of A to eigenvalues of L and vice versa.
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Ar = f (L)

Question

Are there “triregular” graphs G such that

A3 = f (L),

where f is some polynomial?

More generally, are there other
graphs satisfying

Ar = f (L),

where r is some positive integer and f is a polynomial?

Theorem (S.)

No.
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Ar = f (L)

Theorem (S.)

Let G be a connected graph. If there exists a positive integer r and
polynomial f such that

Ar = f (L),

then G is regular or biregular.



Ar = f (L)

Theorem (Perron-Frobenius)

There exists an eigenvector ṽ of A such that

1 Every coordinate of ṽ is non-zero.

2 The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If ṽ is also an eigenvector of L, then G is regular.

Proof.

If Lṽ = µṽ then Dṽ = Aṽ + Lṽ = (Λ + µ)ṽ . Thus Dii = Λ + µ
whenever ṽi 6= 0. But every coordinate is non-zero, so we must
have D = (Λ + µ)I , so G is (Λ + µ)-regular.
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1 Every coordinate of ṽ is non-zero.
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Ar = f (L)

Theorem

If
Ar = f (L)

then G is regular or biregular.

Case 1: r odd.

If Ar = f (L) with r odd, then the multiplicity of Λr of Ar is 1 (if r
is even and −Λ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis
of eigenvectors for Ar , so there must be an eigenvector v of L such
that Arv = Λrv . But Λr has multiplicity 1, so v must be a scaler
multiple of ṽ . By our lemma, G must be regular.



Ar = f (L)

Theorem

If
Ar = f (L)

then G is regular or biregular.

Case 1: r odd.

If Ar = f (L) with r odd, then the multiplicity of Λr of Ar is 1 (if r
is even and −Λ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis
of eigenvectors for Ar , so there must be an eigenvector v of L such
that Arv = Λrv . But Λr has multiplicity 1, so v must be a scaler
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If A2k = (A2)k = f (L), then an orthonormal basis of eigenvectors
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non-negative). In particular, 1 is an eigenvector for L so it will also
be an eigenvector for A2.
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If 1 is an eigenvector for A2 then G is regular or biregular.
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Ar = f (L)

Proof.

Claim: (A21)i =
∑

j :ij∈E(G) dj .

Thus 1 being an eigenvector for A2

is equivalent to the statement that there exists a λ such that∑
j :ij∈E(G) dj = λ for all i . Assume this is the case.

Let i be a vertex with minimum degree d and i ′ a vertex with
maximum degree D.

λ =
∑

j :ij∈E(G)

dj = dj1 + · · ·+ djd ≤ dD

λ =
∑

j :i ′j∈E(G)

dj = dj1 + · · ·+ djD ≥ dD.

We conclude that the inequalities are equalities. In particular, every
vertex of minimum degree is adjacent only to vertices of maximum
degree and vice versa. If d 6= D, this means G is biregular.
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X r = f (Y )

Question

Let Q := D + A and L := D−1/2LD−1/2 be the signless Laplacian
and normalized Laplacian respectively.

When do there exist r , f such that X r = f (Y ) for X ,Y two of the
four matrices A, L, Q, L?

Table: Graphs Satisfying X r = f (Y )

X/Y A L Q L
A Reg, Bireg Reg, Bireg ???

L Reg Reg Reg

Q Reg Reg Reg

L Reg, Bireg Reg Reg
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f (X ) = g(Y )

Question

Given two matrices X ,Y associated to a graph G , when do there
exist polynomials f , g such that

f (X ) = g(Y )?

Answer

Always.
f (x) = g(x) = 0

f (x) = mX (x), g(x) = mY (x),

where mM(x) denotes the minimal polynomial of M.
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f (X ) = g(Y )

Definition

We will say that a relation f (X ) = g(Y ) is proper whenever f and
g are polynomials satisfying 1 ≤ deg(f ) < deg(mX ) and
1 ≤ deg(g) < deg(mY ).

Question

Given two matrices X ,Y associated to a graph G , when does there
exist a proper relation

f (X ) = g(Y )?
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f (X ) = g(Y ): Families of Graphs

Question

Given a family of graphs F and two matrices X , Y associated to
graphs, does there exist a proper relations fG (XG ) = gG (YG ) for
all G ∈ F , and if so, what do the polynomials look like?
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f (X ) = g(Y ): Families of Graphs

Question

If G = Pn, does there exist, for all n, polynomials fn, gn such that
fn(A) = gn(L) for all n? If so, what do these polynomials look like?

n = 2 : I − A = L

n = 3 : I − 1/2A2 = 3/2L− 1/2L2

n = 4 : I + 2A− A3 = 6L− 5L2 + L3

n = 5 : A2 − 1/3A4 = 10/3L− 5L2 + 7/3L3 − 1/3L4

n = 6 : I − 3A + 4A3 − A5 = 15L− 35L2 + 28L3 − 9L4 + L5
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f (X ) = g(Y ): Families of Graphs

Question

Given X ,Y what are the graphs such that there exists no proper
relation f (X ) = g(Y )?



f (X ) = g(Y ): Families of Graphs

Proposition

If K ′n denotes the complete graph on n vertices with one edge
removed, then there exists no proper relation f (Q) = g(L) for
n ≥ 4.

Sketch of Proof.

For any fixed G one can generate the matrices {Qk} and {Lk}
such that all proper polynomials are linear combinations of these
matrices. If these matrices are linearly independent, then no proper
relation exists.
To prove this for the whole family of K ′n graphs, one observes that
the minimal polynomials of Q and L both have degree 3. Thus one
only has to ask if there exists constants such that
aQ2 + bQ = cL2 + dL + eI , and one can verify that no such
constants exist if n is at least 4.
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f (X ) = g(Y ): Families of Functions

Question

Given X ,Y , what graphs satisfy f (X ) = g(Y ) where f and g
satisfy certain restraints?

Example

If X = A,Y = L and we require f (x) = x r for some r , then the
graphs satisfying f (A) = g(L) are the regular and biregular graphs.
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Conjecture

No graphs satisfy f (A) = f (Q) for f proper.

Conjecture

If f (A) = f (L) with f proper then G is regular and not a clique.

Question

What graphs satisfy f (Q) = f (L)?
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Question

Given X ,Y , what graphs satisfy f (X ) = −f (Y ) for f proper?

Conjecture

No graphs satisfy f (A) = −f (Q) for f proper.

Conjecture

If f (A) = −f (L) with −f proper then G is regular and A has at
least 4 distinct eigenvalues (i.e. it’s not “strongly regular”).

Question

What graphs satisfy f (Q) = −f (L)?
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f (X ) = g(Y ): Other Questions

There are many other kinds of questions that can be asked:

When are the relations obtained “unique” (want to say
A = dI − L and A2 = (dI − L)2 aren’t distinct relations)?

When do there exists a polynomial f (x , y) where x and y
don’t commute such that f (X ,Y ) = 0?

When do there exists polynomials f , g , h such that
f (X ) + g(Y ) + h(Z ) = 0?

How are relations affected by graph operations (cones,
deleting edges)?
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The End

Thank You!


