Polynomial Relations of Matrices of Graphs

Sam Spiro, UC San Diego.

April 7th, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Idea

G

Main Idea

$$G \to M_G \text{ (or } M)$$

Main Idea

$$G \to M_G \text{ (or } M) \to \{\lambda_1, \ldots, \lambda_n\}$$

Main Idea

$$G \to M_G \text{ (or } M) \to \{\lambda_1, \dots, \lambda_n\} \to \text{Properties of } G$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

<□ > < @ > < E > < E > E のQ @

Define the adjacency matrix A by

$$A_{ij} = egin{cases} 1 & ij \in E(G) \ 0 & ij \notin E(G) \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Define the adjacency matrix A by

$$A_{ij} = \begin{cases} 1 & ij \in E(G) \\ 0 & ij \notin E(G) \end{cases}$$

Theorem

If $\{\lambda_1, \ldots, \lambda_n\}$ are the eigenvalues of A, then the total number of closed walks (walks from a vertex to itself) of length k in G is

 $\lambda_1^k + \dots + \lambda_n^k.$

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

 $\lambda_1^k + \cdots + \lambda_n^k$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \dots + \lambda_n^k.$$

Proof.

Claim: $(A^k)_{ij}$ = the number of walks of length k from vertex i to vertex j.

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \dots + \lambda_n^k.$$

Proof.

Claim: $(A^k)_{ij}$ = the number of walks of length k from vertex i to vertex j.

We're interested in walks of length k from vertex i to vertex i for all i.

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \dots + \lambda_n^k.$$

Proof.

Claim: $(A^k)_{ij}$ = the number of walks of length k from vertex i to vertex j.

We're interested in walks of length k from vertex i to vertex i for all i.

$$(A^k)_{11} + \cdots + (A^k)_{nn}$$

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \dots + \lambda_n^k.$$

Proof.

Claim: $(A^k)_{ij}$ = the number of walks of length k from vertex i to vertex j.

We're interested in walks of length k from vertex i to vertex i for all i.

$$(A^k)_{11} + \cdots + (A^k)_{nn} = \operatorname{Tr} A^k$$

Theorem

The total number of closed walks (walks from a vertex to itself) of length k in G is

$$\lambda_1^k + \dots + \lambda_n^k.$$

Proof.

Claim: $(A^k)_{ij}$ = the number of walks of length k from vertex i to vertex j.

We're interested in walks of length k from vertex i to vertex i for all i.

$$(A^k)_{11} + \dots + (A^k)_{nn} = \operatorname{Tr} A^k = \lambda_1^k + \dots + \lambda_n^k.$$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

<□ > < @ > < E > < E > E のQ @

Definition

Let $D = \text{diag}(d_1, \ldots, d_n)$ (the diagonal matrix of degrees of G). We define the Laplacian matrix L by

$$L = D - A.$$

Definition

Let $D = \text{diag}(d_1, \ldots, d_n)$ (the diagonal matrix of degrees of G). We define the Laplacian matrix L by

$$L=D-A.$$

Example

Let P_3 denote the path on 3 vertices. Then

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

L = D - A

Definition

L = D - A

Remark

 $\mathbf{1}$ is always an eigenvector of L with eigenvalue 0.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

L = D - A

Remark

 $\mathbf{1}$ is always an eigenvector of L with eigenvalue 0.

Theorem

Let $\{\mu_1, \ldots, \mu_n\}$ be the eigenvalues of L with $\mu_n = 0$. If t(G) denotes the number of spanning trees of G then

$$t(G)=\frac{1}{n}\mu_1\mu_2\cdots\mu_{n-1}.$$

Regular Graphs

<□ > < @ > < E > < E > E のQ @

Regular Graphs

Remark

If G is d-regular then D = dI and we have L = dI - A, or equivalently

$$A=dI-L.$$

Remark

If G is d-regular then D = dI and we have L = dI - A, or equivalently

$$A=dI-L.$$

Proposition

If G is d-regular and $\{\lambda_1, \ldots, \lambda_n\}$ is the set of eigenvalues of A then $\{d - \lambda_1, \ldots, d - \lambda_n\}$ is the set of eigenvalues of L. Conversely, if $\{\mu_1, \ldots, \mu_n\}$ is the set of eigenvalues of L then $\{d - \mu_1, \ldots, d - \mu_N\}$ is the set of eigenvalues of A.

Regular Graphs

Main Idea

Given the relation A = dI - L we can translate from eigenvalues of A to eigenvalues of L and vice versa.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Biregular Graphs

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A graph G is said to be (d_1, d_2) -biregular if it is bipartite with vertex partition $V = V_1 \sqcup V_2$ such that for all $v \in V_1$ we have $d(v) = d_1$ and for all $w \in V_2$ we have $d(w) = d_2$.

A graph G is said to be (d_1, d_2) -biregular if it is bipartite with vertex partition $V = V_1 \sqcup V_2$ such that for all $v \in V_1$ we have $d(v) = d_1$ and for all $w \in V_2$ we have $d(w) = d_2$. We say that a graph G is biregular if it is (d_1, d_2) -biregular for some d_1, d_2 .

A graph G is said to be (d_1, d_2) -biregular if it is bipartite with vertex partition $V = V_1 \sqcup V_2$ such that for all $v \in V_1$ we have $d(v) = d_1$ and for all $w \in V_2$ we have $d(w) = d_2$. We say that a graph G is biregular if it is (d_1, d_2) -biregular for some d_1, d_2 .

Example

 $K_{n,m}$ is biregular: it has an obvious bipartition, all the vertices in one set have degree m and all the other vertices have degree n.

Remark

If G is (d_1, d_2) -biregular then we claim that

$$A^2 = (L - d_1 I)(L - d_2 I).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

If G is (d_1, d_2) -biregular then we claim that

$$A^2 = (L - d_1 I)(L - d_2 I).$$

Theorem (S.)

Given the relation $A^2 = (L - d_1 I)(L - d_2 I)$ we can translate from eigenvalues of A to eigenvalues of L and vice versa.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Are there "triregular" graphs G such that

$$A^3=f(L),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where *f* is some polynomial?

 $A^r = f(L)$

Question

Are there "triregular" graphs G such that

$$A^3=f(L),$$

where f is some polynomial? More generally, are there other graphs satisfying

 $A^r = f(L),$

where r is some positive integer and f is a polynomial?

 $A^r = f(L)$

Question

Are there "triregular" graphs G such that

$$A^3=f(L),$$

where f is some polynomial? More generally, are there other graphs satisfying

 $A^r = f(L),$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where r is some positive integer and f is a polynomial?

Theorem (S.)

No.

Theorem (S.)

Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$A^r=f(L),$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

then G is regular or biregular.

Theorem (Perron-Frobenius)

There exists an eigenvector \tilde{v} of A such that

- **1** Every coordinate of \tilde{v} is non-zero.
- **2** The corresponding eigenvalue Λ has multiplicity 1 in A.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

There exists an eigenvector \tilde{v} of A such that

- **1** Every coordinate of \tilde{v} is non-zero.
- **2** The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

There exists an eigenvector \tilde{v} of A such that

- **1** Every coordinate of \tilde{v} is non-zero.
- **2** The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

Proof.

If
$$L\tilde{v} = \mu\tilde{v}$$
 then $D\tilde{v} = A\tilde{v} + L\tilde{v} = (\Lambda + \mu)\tilde{v}$.

There exists an eigenvector \tilde{v} of A such that

- **1** Every coordinate of \tilde{v} is non-zero.
- **2** The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

Proof.

If $L\tilde{v} = \mu \tilde{v}$ then $D\tilde{v} = A\tilde{v} + L\tilde{v} = (\Lambda + \mu)\tilde{v}$. Thus $D_{ii} = \Lambda + \mu$ whenever $\tilde{v}_i \neq 0$.

There exists an eigenvector \tilde{v} of A such that

- **1** Every coordinate of \tilde{v} is non-zero.
- **2** The corresponding eigenvalue Λ has multiplicity 1 in A.

Lemma

If \tilde{v} is also an eigenvector of L, then G is regular.

Proof.

If $L\tilde{v} = \mu\tilde{v}$ then $D\tilde{v} = A\tilde{v} + L\tilde{v} = (\Lambda + \mu)\tilde{v}$. Thus $D_{ii} = \Lambda + \mu$ whenever $\tilde{v}_i \neq 0$. But every coordinate is non-zero, so we must have $D = (\Lambda + \mu)I$, so G is $(\Lambda + \mu)$ -regular.

 $A^r = f(L)$

lf

$$A^r = f(L)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

then G is regular or biregular.

 $A^r = f(L)$

lf

$$A^r = f(L)$$

then G is regular or biregular.

Case 1: r odd.

If $A^r = f(L)$ with r odd, then the multiplicity of Λ^r of A^r is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$A^r = f(L)$$

lf

$$A^r = f(L)$$

then G is regular or biregular.

Case 1: r odd.

If $A^r = f(L)$ with r odd, then the multiplicity of Λ^r of A^r is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^r , so there must be an eigenvector v of L such that $A^r v = \Lambda^r v$.

$$A^r = f(L)$$

lf

$$A^r = f(L)$$

then G is regular or biregular.

Case 1: r odd.

If $A^r = f(L)$ with r odd, then the multiplicity of Λ^r of A^r is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^r , so there must be an eigenvector v of L such that $A^r v = \Lambda^r v$. But Λ^r has multiplicity 1, so v must be a scaler multiple of \tilde{v} .

$$A^r = f(L)$$

lf

$$A^r = f(L)$$

then G is regular or biregular.

Case 1: r odd.

If $A^r = f(L)$ with r odd, then the multiplicity of Λ^r of A^r is 1 (if r is even and $-\Lambda$ is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis of eigenvectors for A^r , so there must be an eigenvector v of L such that $A^r v = \Lambda^r v$. But Λ^r has multiplicity 1, so v must be a scaler multiple of \tilde{v} . By our lemma, G must be regular.

 $A^r = f(L)$

lf

$$A^r = f(L)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

then G is regular or biregular.

$$A^r = f(L)$$

lf

$$A^r=f(L)$$

then G is regular or biregular.

Case 2: r even.

If $A^{2k} = (A^2)^k = f(L)$, then an orthonormal basis of eigenvectors for L will be a basis of eigenvectors for A^2 (since its spectrum is non-negative).

$$A^r = f(L)$$

lf

$$A^r=f(L)$$

then G is regular or biregular.

Case 2: r even.

If $A^{2k} = (A^2)^k = f(L)$, then an orthonormal basis of eigenvectors for *L* will be a basis of eigenvectors for A^2 (since its spectrum is non-negative). In particular, **1** is an eigenvector for *L* so it will also be an eigenvector for A^2 .

$$A^r = f(L)$$

lf

$$A^r=f(L)$$

then G is regular or biregular.

Case 2: r even.

If $A^{2k} = (A^2)^k = f(L)$, then an orthonormal basis of eigenvectors for *L* will be a basis of eigenvectors for A^2 (since its spectrum is non-negative). In particular, **1** is an eigenvector for *L* so it will also be an eigenvector for A^2 .

_emma

If $\mathbf{1}$ is an eigenvector for A^2 then G is regular or biregular.

 $A^r = f(L)$

Claim: $(A^2 \mathbf{1})_i = \sum_{j: ij \in E(G)} d_j$.

 $A^r = f(\underline{L})$

Claim: $(A^2\mathbf{1})_i = \sum_{j:ij \in E(G)} d_j$. Thus **1** being an eigenvector for A^2 is equivalent to the statement that there exists a λ such that $\sum_{j:ij \in E(G)} d_j = \lambda$ for all *i*. Assume this is the case.

 $A^r = f(\underline{L})$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j$$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d}$$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \leq dD$$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \leq dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j$$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \leq dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j = d_{j_1} + \cdots + d_{j_D}$$

 $A^r = f(\underline{L})$

$$\lambda = \sum_{j: ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \leq dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j = d_{j_1} + \cdots + d_{j_D} \geq dD.$$

 $A^r = f(L)$

Claim: $(A^2\mathbf{1})_i = \sum_{j:ij \in E(G)} d_j$. Thus **1** being an eigenvector for A^2 is equivalent to the statement that there exists a λ such that $\sum_{j:ij \in E(G)} d_j = \lambda$ for all *i*. Assume this is the case. Let *i* be a vertex with minimum degree *d* and *i'* a vertex with maximum degree *D*.

$$\lambda = \sum_{j:ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \le dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j = d_{j_1} + \cdots + d_{j_D} \ge dD.$$

We conclude that the inequalities are equalities.

 $A^r = f(\underline{L})$

Claim: $(A^2\mathbf{1})_i = \sum_{j:ij \in E(G)} d_j$. Thus **1** being an eigenvector for A^2 is equivalent to the statement that there exists a λ such that $\sum_{j:ij \in E(G)} d_j = \lambda$ for all *i*. Assume this is the case. Let *i* be a vertex with minimum degree *d* and *i'* a vertex with maximum degree *D*.

$$\lambda = \sum_{j:ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \le dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j = d_{j_1} + \cdots + d_{j_D} \ge dD.$$

We conclude that the inequalities are equalities. In particular, every vertex of minimum degree is adjacent only to vertices of maximum degree and vice versa.

 $A^r = f(\underline{L})$

Claim: $(A^2\mathbf{1})_i = \sum_{j:ij \in E(G)} d_j$. Thus **1** being an eigenvector for A^2 is equivalent to the statement that there exists a λ such that $\sum_{j:ij \in E(G)} d_j = \lambda$ for all *i*. Assume this is the case. Let *i* be a vertex with minimum degree *d* and *i'* a vertex with maximum degree *D*.

$$\lambda = \sum_{j:ij \in E(G)} d_j = d_{j_1} + \dots + d_{j_d} \le dD$$

$$\lambda = \sum_{j:i'j\in E(G)} d_j = d_{j_1} + \cdots + d_{j_D} \geq dD.$$

We conclude that the inequalities are equalities. In particular, every vertex of minimum degree is adjacent only to vertices of maximum degree and vice versa. If $d \neq D$, this means G is biregular.

Let Q := D + A and $\mathcal{L} := D^{-1/2}LD^{-1/2}$ be the signless Laplacian and normalized Laplacian respectively.

Let Q := D + A and $\mathcal{L} := D^{-1/2}LD^{-1/2}$ be the signless Laplacian and normalized Laplacian respectively. When do there exist r, f such that $X^r = f(Y)$ for X, Y two of the four matrices A, L, Q, \mathcal{L} ?

 $X^r = f(Y)$

Let Q := D + A and $\mathcal{L} := D^{-1/2}LD^{-1/2}$ be the signless Laplacian and normalized Laplacian respectively. When do there exist r, f such that $X^r = f(Y)$ for X, Y two of the four matrices A, L, Q, \mathcal{L} ?

Table:	Graphs	Satisfying	$X^r =$	f(Y)
--------	--------	------------	---------	------

X/Y	A	L	Q	L
A		Reg, Bireg	Reg, Bireg	???
L	Reg		Reg	Reg
Q	Reg	Reg		Reg
\mathcal{L}	Reg, Bireg	Reg	Reg	

f(X) = g(Y)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

f(X) = g(Y)

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

f(X) = g(Y)?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

f(X) = g(Y)

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

f(X) = g(Y)?

Answer

Always.

f(X) = g(Y)

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

f(X) = g(Y)?

Answer

Always.

$$f(x)=g(x)=0$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

f(X) = g(Y)

Given two matrices X, Y associated to a graph G, when do there exist polynomials f, g such that

f(X) = g(Y)?

Answer

Always.

$$f(x)=g(x)=0$$

$$f(x) = m_X(x), g(x) = m_Y(x),$$

where $m_M(x)$ denotes the minimal polynomial of M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\underline{f(X)} = g(Y)$

Definition

We will say that a relation f(X) = g(Y) is proper whenever f and g are polynomials satisfying $1 \le \deg(f) < \deg(m_X)$ and $1 \le \deg(g) < \deg(m_Y)$.

f(X) = g(Y)

Definition

We will say that a relation f(X) = g(Y) is proper whenever f and g are polynomials satisfying $1 \le \deg(f) < \deg(m_X)$ and $1 \le \deg(g) < \deg(m_Y)$.

Question

Given two matrices X, Y associated to a graph G, when does there exist a proper relation

$$f(X) = g(Y)?$$

f(X) = g(Y): Families of Graphs

<□ > < @ > < E > < E > E のQ @
Question

Given a family of graphs \mathcal{F} and two matrices X, Y associated to graphs, does there exist a proper relations $f_G(X_G) = g_G(Y_G)$ for all $G \in \mathcal{F}$, and if so, what do the polynomials look like?

Question

If $G = P_n$, does there exist, for all *n*, polynomials f_n, g_n such that $f_n(A) = g_n(L)$ for all *n*? If so, what do these polynomials look like?

Question

If $G = P_n$, does there exist, for all n, polynomials f_n, g_n such that $f_n(A) = g_n(L)$ for all n? If so, what do these polynomials look like?

$$n = 2: I - A = L$$

$$n = 3: I - \frac{1}{2A^2} = \frac{3}{2L} - \frac{1}{2L^2}$$

$$n = 4: I + 2A - A^3 = 6L - 5L^2 + L^3$$

$$n = 5: A^2 - \frac{1}{3A^4} = \frac{10}{3L} - \frac{5L^2}{7} + \frac{7}{3L^3} - \frac{1}{3L^4}$$

$$n = 6: I - \frac{3A}{4} + \frac{4A^3}{4} - \frac{A^5}{4} = \frac{15L}{35L^2} + \frac{28L^3}{9L^4} + \frac{L^5}{4}$$

Question

Given X, Y what are the graphs such that there exists no proper relation f(X) = g(Y)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

If K'_n denotes the complete graph on n vertices with one edge removed, then there exists no proper relation f(Q) = g(L) for $n \ge 4$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

If K'_n denotes the complete graph on n vertices with one edge removed, then there exists no proper relation f(Q) = g(L) for $n \ge 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\{Q^k\}$ and $\{L^k\}$ such that all proper polynomials are linear combinations of these matrices.

Proposition

If K'_n denotes the complete graph on n vertices with one edge removed, then there exists no proper relation f(Q) = g(L) for $n \ge 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\{Q^k\}$ and $\{L^k\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.

Proposition

If K'_n denotes the complete graph on n vertices with one edge removed, then there exists no proper relation f(Q) = g(L) for $n \ge 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\{Q^k\}$ and $\{L^k\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.

To prove this for the whole family of K'_n graphs, one observes that the minimal polynomials of Q and L both have degree 3.

Proposition

If K'_n denotes the complete graph on n vertices with one edge removed, then there exists no proper relation f(Q) = g(L) for $n \ge 4$.

Sketch of Proof.

For any fixed G one can generate the matrices $\{Q^k\}$ and $\{L^k\}$ such that all proper polynomials are linear combinations of these matrices. If these matrices are linearly independent, then no proper relation exists.

To prove this for the whole family of K'_n graphs, one observes that the minimal polynomials of Q and L both have degree 3. Thus one only has to ask if there exists constants such that $aQ^2 + bQ = cL^2 + dL + eI$, and one can verify that no such constants exist if n is at least 4.

Question

Given X, Y, what graphs satisfy f(X) = g(Y) where f and g satisfy certain restraints?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question

Given X, Y, what graphs satisfy f(X) = g(Y) where f and g satisfy certain restraints?

Example

If X = A, Y = L and we require $f(x) = x^r$ for some r, then the graphs satisfying f(A) = g(L) are the regular and biregular graphs.

Question

Given X, Y, what graphs satisfy f(X) = f(Y) for f proper?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Given X, Y, what graphs satisfy f(X) = f(Y) for f proper?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

No graphs satisfy f(A) = f(Q) for f proper.

Question

Given X, Y, what graphs satisfy f(X) = f(Y) for f proper?

Conjecture

No graphs satisfy f(A) = f(Q) for f proper.

Conjecture

If f(A) = f(L) with f proper then G is regular and not a clique.

Question

Given X, Y, what graphs satisfy f(X) = f(Y) for f proper?

Conjecture

No graphs satisfy
$$f(A) = f(Q)$$
 for f proper.

Conjecture

If f(A) = f(L) with f proper then G is regular and not a clique.

Question

What graphs satisfy f(Q) = f(L)?

Question

Given X, Y, what graphs satisfy f(X) = -f(Y) for f proper?

Question

Given X, Y, what graphs satisfy f(X) = -f(Y) for f proper?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

No graphs satisfy f(A) = -f(Q) for f proper.

Question

Given X, Y, what graphs satisfy f(X) = -f(Y) for f proper?

Conjecture

No graphs satisfy f(A) = -f(Q) for f proper.

Conjecture

If f(A) = -f(L) with -f proper then G is regular and A has at least 4 distinct eigenvalues (i.e. it's not "strongly regular").

Question

Given X, Y, what graphs satisfy f(X) = -f(Y) for f proper?

Conjecture

No graphs satisfy
$$f(A) = -f(Q)$$
 for f proper.

Conjecture

If f(A) = -f(L) with -f proper then G is regular and A has at least 4 distinct eigenvalues (i.e. it's not "strongly regular").

Question

What graphs satisfy f(Q) = -f(L)?

• When are the relations obtained "unique" (want to say A = dI - L and $A^2 = (dI - L)^2$ aren't distinct relations)?

- When are the relations obtained "unique" (want to say A = dI L and $A^2 = (dI L)^2$ aren't distinct relations)?
- When do there exists a polynomial f(x, y) where x and y don't commute such that f(X, Y) = 0?

- When are the relations obtained "unique" (want to say A = dI L and $A^2 = (dI L)^2$ aren't distinct relations)?
- When do there exists a polynomial f(x, y) where x and y don't commute such that f(X, Y) = 0?

When do there exists polynomials f, g, h such that f(X) + g(Y) + h(Z) = 0?

- When are the relations obtained "unique" (want to say A = dI L and $A^2 = (dI L)^2$ aren't distinct relations)?
- When do there exists a polynomial f(x, y) where x and y don't commute such that f(X, Y) = 0?
- When do there exists polynomials f, g, h such that f(X) + g(Y) + h(Z) = 0?
- How are relations affected by graph operations (cones, deleting edges)?

Thank You!