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The Adjacency Matrix A

The total number of closed walks (walks from a vertex to itself) of
length k in G is

Af 4o AR
Claim: (AK);; = the number of walks of length k from vertex i to
vertex J.
We're interested in walks of length k from vertex i to vertex i for
all /.

(Ak)11+"'+(Ak)nn:TrAk:Af—F"+Aﬁ.
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The Laplacian Matrix L

Let D = diag(dh, ..., d,) (the diagonal matrix of degrees of G).
We define the Laplacian matrix L by

L=D-A.

Let P3 denote the path on 3 vertices. Then

100 1 -1 0
. D=10 2 o, L=]|-1 2 -1
0 00 1 0 -1 1

010
A=11 0 1
0 1
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The Laplacian Matrix L

L=D-A

1 is always an eigenvector of L with eigenvalue 0.

Let {p1,...,1un} be the eigenvalues of L with u, = 0. If t(G)
denotes the number of spanning trees of G then

1
t(G) = —mpz- - po-1.
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Regular Graphs

If G is d-regular then D = dl and we have L = dl — A, or
equivalently

A=dl - L

Proposition

If G is d-regular and {1, ..., \p} is the set of eigenvalues of A
then {d — \1,...,d — A} is the set of eigenvalues of L.
Conversely, if {i1,...,pun} is the set of eigenvalues of L then
{d — p1,...,d — pun} is the set of eigenvalues of A.



Regular Graphs

Given the relation A = dI — L we can translate from eigenvalues of
A to eigenvalues of L and vice versa.
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Biregular Graphs

Definition

A graph G is said to be (di, d»)-biregular if it is bipartite with
vertex partition V = V4 U V5 such that for all v € V4 we have
d(v) = di and for all w € V5 we have d(w) = d». We say that a
graph G is biregular if it is (di, d2)-biregular for some di, db.

Example

Kn,m is biregular: it has an obvious bipartition, all the vertices in
one set have degree m and all the other vertices have degree n.
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Biregular Graphs

If G is (di, d2)-biregular then we claim that

A2 = (L —dyI)(L — dol).

Theorem (S.)

Given the relation A% = (L — di1)(L — d»l) we can translate from
eigenvalues of A to eigenvalues of L and vice versa.
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Question

Are there “triregular” graphs G such that
A3 = f(L),

where f is some polynomial? More generally, are there other
graphs satisfying
A" = f(L),

where r is some positive integer and f is a polynomial?

Theorem (S.)
No.




Theorem (S.)

Let G be a connected graph. If there exists a positive integer r and
polynomial f such that

A" = f(L),

then G is regular or biregular.
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Theorem (Perron-Frobenius)

There exists an eigenvector v of A such that
Every coordinate of V is non-zero.

The corresponding eigenvalue \ has multiplicity 1 in A.

Lemma

If V is also an eigenvector of L, then G is regular.

Proof.

If LV = uv then DV = AV + LV = (A + pu)V. Thus D =N+ p
whenever v; # 0. But every coordinate is non-zero, so we must
have D = (A + )/, so G is (A + p)-regular. O
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Theorem

If
A" = f(L)

then G is regular or biregular.

Case 1: r odd.
If A” = f(L) with r odd, then the multiplicity of A" of A" is 1 (if r
is even and —A is an eigenvalue of A then this would not be true).

An orthonormal basis of eigenvectors for L is an orthonormal basis
of eigenvectors for A", so there must be an eigenvector v of L such
that A"v = A"v. But A" has multiplicity 1, so v must be a scaler

multiple of V. By our lemma, G must be regular. Ol
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Case 2: r even.

If A% = (A2)k = f(L), then an orthonormal basis of eigenvectors
for L will be a basis of eigenvectors for A% (since its spectrum is
non-negative).
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then G is regular or biregular.

Case 2: r even.

If A%k = (A?)k = f(L), then an orthonormal basis of eigenvectors
for L will be a basis of eigenvectors for A% (since its spectrum is
non-negative). In particular, 1 is an eigenvector for L so it will also
be an eigenvector for A%. Ol



If
A" = f(L)

then G is regular or biregular.

Case 2: r even.

If A%k = (A?)k = f(L), then an orthonormal basis of eigenvectors
for L will be a basis of eigenvectors for A% (since its spectrum is
non-negative). In particular, 1 is an eigenvector for L so it will also
be an eigenvector for A%. O

Lemma

If 1 is an eigenvector for A% then G is regular or biregular.
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maximum degree D.
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We conclude that the inequalities are equalities. In particular, every
vertex of minimum degree is adjacent only to vertices of maximum
degree and vice versa.



Claim: (A%1); = >_jijcE(G) dj- Thus 1 being an eigenvector for A2
is equivalent to the statement that there exists a A such that

> jijeE(c) di = A for all i. Assume this is the case.

Let / be a vertex with minimum degree d and /’ a vertex with
maximum degree D.

A= Z dj:d.il"i_"'_’_ddedD
JHj€E(G)

A= Y dmditetdy2 D,

J:i'JEE(G)
We conclude that the inequalities are equalities. In particular, every
vertex of minimum degree is adjacent only to vertices of maximum
degree and vice versa. If d £ D, this means G is biregular. Ol
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Question

Let @ := D+ A and £ := D~1/21.D~1/2 pe the signless Laplacian
and normalized Laplacian respectively.

When do there exist r, f such that X" = f(Y) for X, Y two of the
four matrices A, L, Q, L?

Table: Graphs Satisfying X" = f(Y)

X/Y A L Q L
A Reg, Bireg | Reg, Bireg | 777
L Reg Reg Reg
Q Reg Reg Reg
L | Reg, Bireg Reg Reg
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Question

Given two matrices X, Y associated to a graph G, when do there
exist polynomials f, g such that

Answer

Always.

f(x) = mx(x), g(x) = my(x),

where mp(x) denotes the minimal polynomial of M.



Definition

We will say that a relation 7(X) = g(Y) is proper whenever f and
g are polynomials satisfying 1 < deg(f) < deg(mx) and
1 < deg(g) < deg(my).



Definition

We will say that a relation 7(X) = g(Y) is proper whenever f and
g are polynomials satisfying 1 < deg(f) < deg(mx) and

1 < deg(g) < deg(my).

Question

Given two matrices X, Y associated to a graph G, when does there
exist a proper relation
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f(X) = g(Y): Families of Graphs

Question

Given a family of graphs F and two matrices X, Y associated to
graphs, does there exist a proper relations f6(Xg) = g¢(Ye) for
all G € F, and if so, what do the polynomials look like?



f(X) = g(Y): Families of Graphs

If G = P,, does there exist, for all n, polynomials f,, g, such that
fa(A) = gn(L) for all n? If so, what do these polynomials look like?
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If G = P,, does there exist, for all n, polynomials f,, g, such that
fa(A) = gn(L) for all n? If so, what do these polynomials look like?

n=2:1—-A=1L

n=3:1—-1/2A*>=3/2L —1/2[>

n=4: 14+2A—-A3=6L—5L%+ 13

n=5: A> —1/3A* =10/3L — 51%> +7/313 — 1/3L*

n=6: 1 —3A+4A3 — A5 =151 — 3512 + 2813 —91* + I®
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Given X, Y what are the graphs such that there exists no proper
relation f(X) = g(Y)?
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Proposition

If K], denotes the complete graph on n vertices with one edge
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For any fixed G one can generate the matrices { @} and {L*}
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matrices. If these matrices are linearly independent, then no proper
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To prove this for the whole family of K] graphs, one observes that
the minimal polynomials of @ and L both have degree 3.



f(X) = g(Y): Families of Graphs

Proposition

If K], denotes the complete graph on n vertices with one edge
removed, then there exists no proper relation f(Q) = g(L) for
n>4.

Sketch of Proof.

For any fixed G one can generate the matrices {Q*} and {L¥}
such that all proper polynomials are linear combinations of these
matrices. If these matrices are linearly independent, then no proper
relation exists.

To prove this for the whole family of K] graphs, one observes that
the minimal polynomials of @ and L both have degree 3. Thus one
only has to ask if there exists constants such that

aQ? + bQ = cL? + dL + el, and one can verify that no such
constants exist if n is at least 4. O
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f(X) = g(Y): Families of Functions

Question

Given X, Y, what graphs satisfy f(X) = g(Y) where f and g
satisfy certain restraints?

Example

If X =A,Y = L and we require f(x) = x" for some r, then the
graphs satisfying f(A) = g(L) are the regular and biregular graphs.
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f(X) = g(Y): Families of Functions

Question
Given X, Y, what graphs satisfy f(X) = —f(Y) for f proper?

Conjecture

No graphs satisfy f(A) = —f(Q) for f proper.

Conjecture

If f(A) = —f(L) with —f proper then G is regular and A has at
least 4 distinct eigenvalues (i.e. it's not “strongly regular”).

Question
What graphs satisfy f(Q) = —f(L)?
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f(X) = g(Y): Other Questions

There are many other kinds of questions that can be asked:
m When are the relations obtained “unique”’ (want to say
A=dl — L and A%2 = (dl — L)? aren't distinct relations)?
m When do there exists a polynomial f(x,y) where x and y
don’t commute such that (X, Y) = 07?

m When do there exists polynomials f, g, h such that
f(X)+g(Y)+ h(Z2)=07



f(X) = g(Y): Other Questions

There are many other kinds of questions that can be asked:
m When are the relations obtained “unique”’ (want to say
A=dl — L and A%2 = (dl — L)? aren't distinct relations)?
m When do there exists a polynomial f(x,y) where x and y
don’t commute such that (X, Y) = 07?
m When do there exists polynomials f, g, h such that
f(X)+g(Y)+ h(Z)=07

m How are relations affected by graph operations (cones,
deleting edges)?



The End

Thank Youl



