Polynomial Relations Between Matrices of Graphs

Sam Spiro, Rutgers University
Joint with Bryce Frederickson, Paul Horn, and Sabrina Lato

Spectral Graph Theory

Spectral Graph Theory

G

Spectral Graph Theory

$G \rightarrow M_{G}$

Spectral Graph Theory

$G \rightarrow M_{G} \rightarrow\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$

Spectral Graph Theory

$G \rightarrow M_{G} \rightarrow\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \rightarrow$ Properties of G

Spectral Graph Theory

Define the adjacency matrix A by

$$
A_{i j}= \begin{cases}1 & i j \in E(G) \\ 0 & i j \notin E(G)\end{cases}
$$

Spectral Graph Theory

Define the adjacency matrix A by

$$
A_{i j}= \begin{cases}1 & i j \in E(G) \\ 0 & i j \notin E(G)\end{cases}
$$

Theorem

If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are the eigenvalues of A, then the total number of closed walks (walks from a vertex to itself) of length k in G is

$$
\lambda_{1}^{k}+\cdots+\lambda_{n}^{k} .
$$

Spectral Graph Theory

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be the diagonal matrix of degrees of G.

Spectral Graph Theory

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be the diagonal matrix of degrees of G. We define the Laplacian matrix L by

$$
L=D-A
$$

Spectral Graph Theory

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be the diagonal matrix of degrees of G. We define the Laplacian matrix L by

$$
L=D-A
$$

Example

If G is the path on 3 vertices, then

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], L=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Polynomial Relations

If G is a d-regular graph, then we have the nice relation

$$
A=d l-L,
$$

and from this one can easily translate between eigenvalues of A and L.

Polynomial Relations

If G is a d-regular graph, then we have the nice relation

$$
A=d l-L
$$

and from this one can easily translate between eigenvalues of A and L.
If G is biregular (i.e. bipartite where every vertex on the same side has the same degree d_{i}), then

$$
A^{2}=\left(d_{1} I-L\right)\left(d_{2} I-L\right)
$$

Polynomial Relations

If G is a d-regular graph, then we have the nice relation

$$
A=d l-L,
$$

and from this one can easily translate between eigenvalues of A and L.
If G is biregular (i.e. bipartite where every vertex on the same side has the same degree d_{i}), then

$$
A^{2}=\left(d_{1} I-L\right)\left(d_{2} I-L\right)
$$

and using this one can also translate between the eigenvalues of A and L.

Polynomial Relations

Question

Do there exist "triregular graphs", i.e. those with

$$
A^{3}=f(L)
$$

for some polynomial f ?

Polynomial Relations

Question
Do there exist "triregular graphs", i.e. those with

$$
A^{3}=f(L)
$$

for some polynomial f ?

Theorem (S. 2018)
No.

Polynomial Relations

Theorem (S. 2018)
Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$
A^{r}=f(L)
$$

then G is either regular or biregular.

Polynomial Relations

Theorem (S. 2018)

Let G be a connected graph. If there exists a positive integer r and polynomial f such that

$$
A^{r}=f(L)
$$

then G is either regular or biregular.

Table: Graphs Satisfying $X^{r}=f(Y)$

X / Y	A	L	Q	\mathcal{L}
A		Reg, Bireg	Reg, Bireg	Reg, Bireg
L	Reg		Reg	Reg
Q	Reg	Reg		Reg
\mathcal{L}	Reg, Bireg	Reg	Reg	

Polynomial Relations

Question (Vague)
When do there exist "nice" polynomials f, g such that $f(A)=g(L)$?

Polynomial Relations

Question (Vague)
When do there exist "nice" polynomials f, g such that $f(A)=g(L)$?
This trivially holds if $f=g=0$.

Polynomial Relations

Question (Vague)

When do there exist "nice" polynomials f, g such that $f(A)=g(L)$?
This trivially holds if $f=g=0$. To avoid issues like this, we'll say that a relationship is proper if $f(A) \neq c l$ for some $c \in \mathbb{R}$.

Polynomial Relations

Question (Vague)

When do there exist "nice" polynomials f, g such that $f(A)=g(L)$?
This trivially holds if $f=g=0$. To avoid issues like this, we'll say that a relationship is proper if $f(A) \neq c l$ for some $c \in \mathbb{R}$.

For this project, we decided to focus on (proper) relations $f(A)=g(L)$ when at least one of f, g has low degrees.

Low Degree Relations

Low Degree Relations

It's easy to show that having $f(A)=g(L)$ with $\operatorname{deg} f=1$ or $\operatorname{deg} g=1$ implies G is regular.

Low Degree Relations

It's easy to show that having $f(A)=g(L)$ with $\operatorname{deg} f=1$ or $\operatorname{deg} g=1$ implies G is regular.

Theorem (FHLS 2023+)
If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g=2$, then G is either regular or biregular.

Low Degree Relations

We define the join $G \vee H$ by taking $G \cup H$ and adding all edges between G and H

Low Degree Relations

Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph such that $G \vee H$ is not regular. Let A_{G}, A_{H} be the adjacency matrices of G, H and let A, L be the adjacency matrix and Laplacian matrix of $G \vee H$.

There exist polynomials f, g such that $f(A)=g(L)$ with $\operatorname{deg} g=2$ if and only if there exists no $\mu \neq k, d$ which is an eigenvalue of both A_{G} and A_{H} and no eigenvalue of A_{G} or A_{H} is equal to $\frac{k+d-\sqrt{(k-d)^{2}+4 m n}}{2}$.

Low Degree Relations

Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph such that $G \vee H$ is not regular. Let A_{G}, A_{H} be the adjacency matrices of G, H and let A, L be the adjacency matrix and Laplacian matrix of $G \vee H$.

There exist polynomials f, g such that $f(A)=g(L)$ with $\operatorname{deg} g=2$ if and only if there exists no $\mu \neq k, d$ which is an eigenvalue of both A_{G} and A_{H} and no eigenvalue of A_{G} or A_{H} is equal to $\frac{k+d-\sqrt{(k-d)^{2}+4 m n}}{2}$.

Informally, this says the join of two regular graphs G, H has $f(A)=g(L)$ with $\operatorname{deg}(g)=2$ if and only if G, H share no eigenvalues and neither of their eigenvalues equal $\frac{k+d-\sqrt{(k-d)^{2}+4 m n}}{2}$.

Proofs

Theorem (FHLS 2023+)
If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

Proofs

Theorem (FHLS 2023+)
If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma .
$$

Proofs

Theorem (FHLS 2023+)
If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma .
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular.

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma .
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot l_{u, v}
$$

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot I_{u, v}=a \cdot d(u, v)
$$

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot I_{u, v}=a \cdot d(u, v) \neq 0
$$

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
\begin{gathered}
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot I_{u, v}=a \cdot d(u, v) \neq 0 . \\
g(L)_{u, v}=\alpha \cdot d(u, v) \neq 0
\end{gathered}
$$

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
\begin{gathered}
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot I_{u, v}=a \cdot d(u, v) \neq 0 . \\
g(L)_{u, v}=\alpha \cdot d(u, v) \neq 0
\end{gathered}
$$

Having $f(A)_{u, v}=g(L)_{u, v}$ means

$$
a d(u, v)=\alpha d(u, v)
$$

Proofs

Theorem (FHLS 2023+)

If G is connected and $f(A)=g(L)$ is proper with $\operatorname{deg} f, \operatorname{deg} g \leq 2$, then G is either regular or biregular.

$$
f(x)=a x^{2}+b x+c, \quad g(x)=\alpha x^{2}+\beta x+\gamma
$$

If $a=0$ or $\alpha=0$ then it is easy to show G is regular. Assuming $G \neq K_{n}$, there exist vertices u, v at distance 2 in G.

$$
\begin{gathered}
f(A)_{u, v}=a \cdot A_{u, v}^{2}+b \cdot A_{u, v}+c \cdot I_{u, v}=a \cdot d(u, v) \neq 0 . \\
g(L)_{u, v}=\alpha \cdot d(u, v) \neq 0
\end{gathered}
$$

Having $f(A)_{u, v}=g(L)_{u, v}$ means

$$
\operatorname{ad}(u, v)=\alpha d(u, v) \Longrightarrow a=\alpha
$$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma .
$$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma .
$$

Let u, v be two adjacent vertices of G.

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma .
$$

Let u, v be two adjacent vertices of G.

$$
f(A)_{u, v}=d(u, v)+b
$$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma .
$$

Let u, v be two adjacent vertices of G.

$$
f(A)_{u, v}=d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta
$$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma
$$

Let u, v be two adjacent vertices of G.

$$
\begin{aligned}
f(A)_{u, v}= & d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta \\
& \Longrightarrow d(u)+d(v)=-b-\beta \quad \forall u v \in E(G)
\end{aligned}
$$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma
$$

Let u, v be two adjacent vertices of G.

$$
\begin{aligned}
f(A)_{u, v}= & d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta \\
& \Longrightarrow d(u)+d(v)=-b-\beta \quad \forall u v \in E(G)
\end{aligned}
$$

We thus have $d(u)+d(v)$ equal to a common value for all $u v \in E(G)$.

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma
$$

Let u, v be two adjacent vertices of G.

$$
\begin{aligned}
f(A)_{u, v}= & d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta \\
& \Longrightarrow d(u)+d(v)=-b-\beta \quad \forall u v \in E(G)
\end{aligned}
$$

We thus have $d(u)+d(v)$ equal to a common value for all $u v \in E(G)$. This common value must be $\delta+\Delta$

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma
$$

Let u, v be two adjacent vertices of G.

$$
\begin{aligned}
f(A)_{u, v}= & d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta \\
& \Longrightarrow d(u)+d(v)=-b-\beta \quad \forall u v \in E(G)
\end{aligned}
$$

We thus have $d(u)+d(v)$ equal to a common value for all $u v \in E(G)$. This common value must be $\delta+\Delta$, which means every vertex of minimum degree is only adjacent to vertices of maximum degree and vice versa.

Proofs

$$
f(x)=x^{2}+b x+c, \quad g(x)=x^{2}+\beta x+\gamma
$$

Let u, v be two adjacent vertices of G.

$$
\begin{aligned}
f(A)_{u, v}= & d(u, v)+b, \quad g(L)_{u, v}=d(u, v)-d(u)-d(v)-\beta \\
& \Longrightarrow d(u)+d(v)=-b-\beta \quad \forall u v \in E(G)
\end{aligned}
$$

We thus have $d(u)+d(v)$ equal to a common value for all $u v \in E(G)$. This common value must be $\delta+\Delta$, which means every vertex of minimum degree is only adjacent to vertices of maximum degree and vice versa.
This means G is either regular or biregular.

Proofs

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation $f(A)=g(L)$ with $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 2$.

Proofs

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation $f(A)=g(L)$ with $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 2$.

Under "reasonable conditions", the vector space spanned by

$$
\left\{A^{i}\right\}_{i=0}^{\infty} \cup\left\{L^{i}\right\}_{i=0}^{\infty}
$$

has dimension at most 5 .

Proofs

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation $f(A)=g(L)$ with $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 2$.

Under "reasonable conditions", the vector space spanned by

$$
\left\{A^{i}\right\}_{i=0}^{\infty} \cup\left\{L^{i}\right\}_{i=0}^{\infty}
$$

has dimension at most 5. Thus there exists a non-trivial linear combination of

$$
\left\{I, A, A^{2}, A^{3}, L, L^{2}\right\}
$$

equal to 0 .

Proofs

Proposition

For $G \vee H$, under reasonable conditions there exist a proper relation $f(A)=g(L)$ with $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 2$.

Under "reasonable conditions", the vector space spanned by

$$
\left\{A^{i}\right\}_{i=0}^{\infty} \cup\left\{L^{i}\right\}_{i=0}^{\infty}
$$

has dimension at most 5. Thus there exists a non-trivial linear combination of

$$
\left\{I, A, A^{2}, A^{3}, L, L^{2}\right\}
$$

equal to 0 . This is exactly a proper relation of the desired degrees.

Open Problems

Open Problems

Conjecture

If $f(A)=g(L)$ is proper with $\operatorname{deg} f=2, g=3$, then G is either regular, biregular, or the join of two regular graphs.

Open Problems

Conjecture

If $f(A)=g(L)$ is proper with $\operatorname{deg} f=2, g=3$, then G is either regular, biregular, or the join of two regular graphs.

Question

If $f(A)=g(L)$ proper with $\operatorname{deg} f=2$, does G have at most 2 degrees?

Open Problems

Conjecture

If $f(A)=g(L)$ is proper with $\operatorname{deg} f=2, g=3$, then G is either regular, biregular, or the join of two regular graphs.

Question

If $f(A)=g(L)$ proper with $\operatorname{deg} f=2$, does G have at most 2 degrees?
More generally, does G have at most $\operatorname{deg} f$ degrees?

Open Problems

Problem

Can you come up with a guess as to which graphs have $f(A)=g(L)$ with $\operatorname{deg} f=\operatorname{deg} g=3$? What about $\{\operatorname{deg} f, \operatorname{deg} g\}=\{2,4\}$?

Open Problems

Problem

Can you come up with a guess as to which graphs have $f(A)=g(L)$ with $\operatorname{deg} f=\operatorname{deg} g=3$? What about $\{\operatorname{deg} f, \operatorname{deg} g\}=\{2,4\}$?

Conjecture

If $f(A)=g(\mathcal{L})$ with $\operatorname{deg} f=\operatorname{deg} g=2$, then G is either regular or biregular.

