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Spectral Graph Theory

Define the adjacency matrix A by

Aij =

{
1 ij ∈ E (G )

0 ij /∈ E (G )

Theorem

If {λ1, . . . , λn} are the eigenvalues of A, then the total number of closed
walks (walks from a vertex to itself) of length k in G is

λk1 + · · ·+ λkn .



Spectral Graph Theory

Define the adjacency matrix A by

Aij =

{
1 ij ∈ E (G )

0 ij /∈ E (G )

Theorem

If {λ1, . . . , λn} are the eigenvalues of A, then the total number of closed
walks (walks from a vertex to itself) of length k in G is

λk1 + · · ·+ λkn .



Spectral Graph Theory

Let D = diag(d1, . . . , dn) be the diagonal matrix of degrees of G .

We
define the Laplacian matrix L by

L = D − A.

Example

If G is the path on 3 vertices, then

A =

0 1 0
1 0 1
0 1 0

 , D =

1 0 0
0 2 0
0 0 1

 , L =

 1 −1 0
−1 2 −1
0 −1 1

 .
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Polynomial Relations

If G is a d-regular graph, then we have the nice relation

A = dI − L,

and from this one can easily translate between eigenvalues of A and L.

If G is biregular (i.e. bipartite where every vertex on the same side has the
same degree di ), then

A2 = (d1I − L)(d2I − L),

and using this one can also translate between the eigenvalues of A and L.
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Polynomial Relations

Theorem (S. 2018)

Let G be a connected graph. If there exists a positive integer r and
polynomial f such that

Ar = f (L),

then G is either regular or biregular.

Table: Graphs Satisfying X r = f (Y )

X/Y A L Q L
A Reg, Bireg Reg, Bireg Reg, Bireg

L Reg Reg Reg

Q Reg Reg Reg

L Reg, Bireg Reg Reg
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Polynomial Relations

Question (Vague)

When do there exist “nice” polynomials f , g such that f (A) = g(L)?

This trivially holds if f = g = 0.To avoid issues like this, we’ll say that a
relationship is proper if f (A) 6= cI for some c ∈ R.

For this project, we decided to focus on (proper) relations f (A) = g(L)
when at least one of f , g has low degrees.
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Low Degree Relations

It’s easy to show that having f (A) = g(L) with deg f = 1 or deg g = 1
implies G is regular.

Theorem (FHLS 2023+)

If G is connected and f (A) = g(L) is proper with deg f , deg g = 2, then G
is either regular or biregular.
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Low Degree Relations

We define the join G ∨H by taking G ∪H and adding all edges between G
and H



Low Degree Relations

Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph
such that G ∨ H is not regular. Let AG ,AH be the adjacency matrices of
G ,H and let A, L be the adjacency matrix and Laplacian matrix of G ∨ H.

There exist polynomials f , g such that f (A) = g(L) with deg g = 2 if and
only if there exists no µ 6= k , d which is an eigenvalue of both AG and AH

and no eigenvalue of AG or AH is equal to
k+d−

√
(k−d)2+4mn
2 .

Informally, this says the join of two regular graphs G ,H has f (A) = g(L)
with deg(g) = 2 if and only if G ,H share no eigenvalues and neither of

their eigenvalues equal
k+d−

√
(k−d)2+4mn
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Proofs

Theorem (FHLS 2023+)

If G is connected and f (A) = g(L) is proper with deg f , deg g ≤ 2, then G
is either regular or biregular.

f (x) = ax2 + bx + c, g(x) = αx2 + βx + γ.

If a = 0 or α = 0 then it is easy to show G is regular. Assuming G 6= Kn,
there exist vertices u, v at distance 2 in G .

f (A)u,v = a · A2
u,v + b · Au,v + c · Iu,v = a · d(u, v) 6= 0.

g(L)u,v = α · d(u, v) 6= 0.

Having f (A)u,v = g(L)u,v means

ad(u, v) = αd(u, v) =⇒ a = α.
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Proofs

f (x) = x2 + bx + c , g(x) = x2 + βx + γ.

Let u, v be two adjacent vertices of G .

f (A)u,v = d(u, v) + b, g(L)u,v = d(u, v)− d(u)− d(v)− β

=⇒ d(u) + d(v) = −b − β ∀uv ∈ E (G ).

We thus have d(u) + d(v) equal to a common value for all uv ∈ E (G ).
This common value must be δ + ∆, which means every vertex of minimum
degree is only adjacent to vertices of maximum degree and vice versa.
This means G is either regular or biregular.
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Proofs

Proposition

For G ∨ H, under reasonable conditions there exist a proper relation
f (A) = g(L) with deg f ≤ 3, deg g ≤ 2.

Under “reasonable conditions”, the vector space spanned by

{Ai}∞i=0 ∪ {Li}∞i=0

has dimension at most 5. Thus there exists a non-trivial linear
combination of

{I ,A,A2,A3, L, L2}

equal to 0.This is exactly a proper relation of the desired degrees.
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Open Problems

Conjecture

If f (A) = g(L) is proper with deg f = 2, g = 3, then G is either regular,
biregular, or the join of two regular graphs.

Question

If f (A) = g(L) proper with deg f = 2, does G have at most 2 degrees?
More generally, does G have at most deg f degrees?
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