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Define the adjacency matrix A by

A;J-:{l ij € E(G)
0 ij¢E(G)

Theorem

If {\1,...,\n} are the eigenvalues of A, then the total number of closed
walks (walks from a vertex to itself) of length k in G is

Af 4+ AR
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Let D = diag(di,...,d,) be the diagonal matrix of degrees of G. We
define the Laplacian matrix L by

L=D-A.

Example
If G is the path on 3 vertices, then

010 100
A=|10 1|,D=0 2 0|, L=]|-1 2 -1
010 001
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Let G be a connected graph. If there exists a positive integer r and
polynomial f such that
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Theorem (S. 2018)

Let G be a connected graph. If there exists a positive integer r and
polynomial f such that

A" = f(L),

then G is either regular or biregular.

Table: Graphs Satisfying X" = f(Y)

X/Y A L Q L

A Reg, Bireg | Reg, Bireg | Reg, Bireg
L Reg Reg Reg

Q Reg Reg Reg

L | Reg, Bireg Reg Reg
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Polynomial Relations

Question (Vague)
When do there exist “nice” polynomials f, g such that f(A) = g(L)?

This trivially holds if f = g = 0.To avoid issues like this, we'll say that a
relationship is proper if f(A) # cl for some ¢ € R.

For this project, we decided to focus on (proper) relations f(A) = g(L)
when at least one of f, g has low degrees.
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Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f,deg g = 2, then G
is either regular or biregular.




Low Degree Relations

We define the join GV H by taking G U H and adding all edges between G
and H
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Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph
such that GV H is not regular. Let Ag, Ay be the adjacency matrices of
G, H and let A, L be the adjacency matrix and Laplacian matrix of G V H.

There exist polynomials f, g such that f(A) = g(L) with deg g = 2 if and
only if there exists no . # k,d which is an eigenvalue of both Ag and Ay
and no eigenvalue of Ag or Ay is equal to krd—y (k2_d)2+4mn.
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Theorem (FHLS 2023+)

Let G be a k-regular m-vertex graph and H a d-regular n-vertex graph
such that GV H is not regular. Let Ag, Ay be the adjacency matrices of
G, H and let A, L be the adjacency matrix and Laplacian matrix of G V H.

There exist polynomials f, g such that f(A) = g(L) with deg g = 2 if and
only if there exists no . # k,d which is an eigenvalue of both Ag and Ay
and no eigenvalue of Ag or Ay is equal to krd—y (k2_d)2+4mn.

Informally, this says the join of two regular graphs G, H has f(A) = g(L)

with deg(g) = 2 if and only if G, H share no eigenvalues and neither of
d—+/(k—d)2+4mn
5 .

o k+
their eigenvalues equal
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Proofs
Theorem (FHLS 2023+)

If G is connected and f(A) = g(L) is proper with deg f,deg g < 2, then G
is either regular or biregular.

f(x) = ax*+ bx + ¢, g(x) = ax® + Bx + .

If a=0 or o =0 then it is easy to show G is regular. Assuming G # K,
there exist vertices u, v at distance 2 in G.

F(A)uy =a- A%,v +b-Ayv+c-lyy=a-d(u,v)#0.

g(L)y,y =a-d(u,v)#0.

Having f(A)y,, = g(L)u,v means

ad(u,v) = ad(u,v) = a=a.
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f(x):x2+bx+c, g(x):xz—f—ﬂx—l—'y.

Let u, v be two adjacent vertices of G.

f(A)uy =d(u,v)+ b, g(L)y,y =d(u,v)—d(u)—d(v) -8

= d(u)+d(v)=—-b—p VYuve E(G).

We thus have d(u) + d(v) equal to a common value for all uv € E(G).
This common value must be § + A, which means every vertex of minimum
degree is only adjacent to vertices of maximum degree and vice versa.
This means G is either regular or biregular. Ol
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Proofs

Proposition
For G V H, under reasonable conditions there exist a proper relation
f(A) = g(L) withdegf <3, degg < 2.

Under “reasonable conditions”, the vector space spanned by
{A}Zo U{L'} o

has dimension at most 5. Thus there exists a non-trivial linear

combination of
{1,A A% A3 L, 1%}

equal to 0.This is exactly a proper relation of the desired degrees.
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Open Problems

Conjecture

If f(A) = g(L) is proper with deg f =2, g =3, then G is either regular,
biregular, or the join of two regular graphs.

Question

If f(A) = g(L) proper with deg f = 2, does G have at most 2 degrees?
More generally, does G have at most deg f degrees?
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Open Problems

Problem

Can you come up with a guess as to which graphs have f(A) = g(L) with
deg f = degg = 37 What about {deg f,degg} = {2,4}?

Conjecture

If f(A) = g(L£) with deg f = degg = 2, then G is either regular or
biregular.
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