Semi-restricted Rock, Paper, Scissors

Sam Spiro, UC San Diego.

Joint work with Erlang Surya, Yuanfan Wang, Ji Zeng

Card Guessing

Card Guessing

Start with a deck of $m n$ cards where there are n card types each appearing with multiplicity m.

Card Guessing

Start with a deck of $m n$ cards where there are n card types each appearing with multiplicity m. For example, $n=13$ and $m=4$ corresponds to a usual deck of playing cards.

Card Guessing

If G is a strategy for Guesser, we define $C_{m, n}(G)$ to be the expected number of points scored if Guesser follows strategy G and the deck is shuffled uniformly at random.

Card Guessing

If G is a strategy for Guesser, we define $C_{m, n}(G)$ to be the expected number of points scored if Guesser follows strategy G and the deck is shuffled uniformly at random. Let
$\mathcal{C}_{m, n}^{+}=\max _{\mathrm{G}} C_{m, n}(\mathrm{G})$ and $\mathcal{C}_{m, n}^{-}=\min _{\mathrm{G}} C_{m, n}(\mathrm{G})$.

Card Guessing

If G is a strategy for Guesser, we define $C_{m, n}(G)$ to be the expected number of points scored if Guesser follows strategy G and the deck is shuffled uniformly at random. Let

$$
\mathcal{C}_{m, n}^{+}=\max _{\mathrm{G}} C_{m, n}(\mathrm{G}) \text { and } \mathcal{C}_{m, n}^{-}=\min _{\mathrm{G}} C_{m, n}(\mathrm{G}) .
$$

Theorem (Diaconis-Graham, 1981)

For n fixed,

$$
\mathcal{C}_{m, n}^{ \pm}=m \pm c_{n} \sqrt{m}+o_{n}(\sqrt{m}) .
$$

Card Guessing

Theorem (Diaconis-Graham-X. He-S. 2020; J. He-Ottolini 2021)

For m fixed,

$$
\begin{aligned}
\mathcal{C}_{m, n}^{+} & \sim H_{m} \log (n) \\
\mathcal{C}_{m, n}^{-} & \sim \Gamma\left(1+\frac{1}{m}\right) n^{-1 / m}
\end{aligned}
$$

where H_{m} is the mth harmonic number and Γ is the gamma function.

Another Game

270, 725

Another Game

270, 725

Problem

Come up with a problem/theorem to justify including this joke.

Another Game

270,725

Problem

Come up with a problem/theorem to justify including this joke.
Answer: a two player game played by Guesser and Shuffler.

Adversarial Card Guessing

Let $C_{m, n}(\mathrm{G}, \mathrm{S})$ be the expected number of points Guesser scores when the two players follow strategies G, S.

Adversarial Card Guessing

Let $C_{m, n}(\mathrm{G}, \mathrm{S})$ be the expected number of points Guesser scores when the two players follow strategies G, S.

$$
\Gamma\left(1+\frac{1}{m}\right) n^{-1 / m} \lesssim C_{m, n}(\mathrm{G}, \text { Uniform }) \lesssim H_{m} \log n
$$

Adversarial Card Guessing

Let $C_{m, n}(\mathrm{G}, \mathrm{S})$ be the expected number of points Guesser scores when the two players follow strategies G, S.

$$
\Gamma\left(1+\frac{1}{m}\right) n^{-1 / m} \lesssim C_{m, n}(\mathrm{G}, \text { Uniform }) \lesssim H_{m} \log n .
$$

Theorem (S., 2021+)

If Shuffler wants to minimize the number of correct guesses and Guesser wants to maximize this, then under their optimal strategies G, S we have

$$
C_{m, n}(\mathrm{G}, \mathrm{~S})=\log n+o_{m}(\log n)
$$

Adversarial Card Guessing

Theorem

There exists a strategy S for Shuffler so that $C_{m, n}(\mathrm{G}, \mathrm{S}) \leq \log n+o_{m}(\log n)$.

Adversarial Card Guessing

Theorem

There exists a strategy S for Shuffler so that
$C_{m, n}(\mathrm{G}, \mathrm{S}) \leq \log n+o_{m}(\log n)$.
A strategy that gives this is the "greedy strategy", which is such that if there are r types of cards remaining in the deck, then Shuffler draws each of these card types with probability r^{-1}.

Adversarial Card Guessing

Theorem

There exists a strategy S for Shuffler so that $C_{m, n}(\mathrm{G}, \mathrm{S}) \leq \log n+o_{m}(\log n)$.

A strategy that gives this is the "greedy strategy", which is such that if there are r types of cards remaining in the deck, then Shuffler draws each of these card types with probability r^{-1}. E.g. if the deck has a hundred 1 's and one 2 , we draw a 1 or 2 with probability $\frac{1}{2}$.

Adversarial Card Guessing

Theorem

There exists a strategy S for Shuffler so that $C_{m, n}(\mathrm{G}, \mathrm{S}) \leq \log n+o_{m}(\log n)$.

A strategy that gives this is the "greedy strategy", which is such that if there are r types of cards remaining in the deck, then Shuffler draws each of these card types with probability r^{-1}. E.g. if the deck has a hundred 1 's and one 2 , we draw a 1 or 2 with probability $\frac{1}{2}$. This gives the desired bound due to a variant of the coupon collector problem.

Adversarial Card Guessing

Theorem (S., 2021+)
 The greedy strategy is the unique strategy that minimizes the number of correct guesses if Guesser tries to maximize their score.

Adversarial Card Guessing

Theorem (S., 2021+)

The greedy strategy is the unique strategy that minimizes the number of correct guesses if Guesser tries to maximize their score.

Interestingly, the greedy strategy is also the "unique" strategy which maximizes the number of correct guesses if Guesser tries to minimize their score.

Adversarial Card Guessing

There is a classical game called "Matching Pennies" where two players simultaneously choose one of n numbers, and if the two numbers are the same then player Alice gets a point, and otherwise player Bob gets a point.

Adversarial Card Guessing

There is a classical game called "Matching Pennies" where two players simultaneously choose one of n numbers, and if the two numbers are the same then player Alice gets a point, and otherwise player Bob gets a point.

Consider a "semi-restricted" version of this game where they plan $m n$ rounds of Matching Pennies and Bob must use each number exactly m times.

Adversarial Card Guessing

There is a classical game called "Matching Pennies" where two players simultaneously choose one of n numbers, and if the two numbers are the same then player Alice gets a point, and otherwise player Bob gets a point.

Consider a "semi-restricted" version of this game where they plan $m n$ rounds of Matching Pennies and Bob must use each number exactly m times. This is exactly the same as the previous game!

Semi-restricted RPS

Consider the following two player game played by Rei and Norman.

Semi-restricted RPS

Consider the following two player game played by Rei and Norman.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

This question was partially inspired by the game "Restricted Rock Paper Scissors" investigated by Fukumoto.
[9] N. Fukumoto. Tobaku Mokushiroku Kaiji. Weekly Young Magazine, 1996.

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Theorem (S.-Surya-Wang-Zeng; 2022+)

The unique optimal strategy for Rei is to play each option with probability $1 / 3$ when every option remains, and to play the stronger card with probability $2 / 3$ when two options remain.

Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and how much of an advantage does Norman have?

Theorem (S.-Surya-Wang-Zeng; 2022+)

The unique optimal strategy for Rei is to play each option with probability $1 / 3$ when every option remains, and to play the stronger card with probability $2 / 3$ when two options remain. Moreover, Norman's advantage is $\Theta(\sqrt{n})$ if Rei plays each of Rock, Paper, and Scissors n times.

More General Games

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

Given a non-negative integer vector \vec{r}, the semi-restricted D-game (with parameter \vec{r}) is defined by having players Rei and Norman iteratively play the D-game, with the restriction that Rei must play vertex v exactly \vec{r}_{v} times.

More General Games

Given a digraph D, define the D-game by having two players simultaneously pick vertices of D each round.

Given a non-negative integer vector \vec{r}, the semi-restricted D-game (with parameter \vec{r}) is defined by having players Rei and Norman iteratively play the D-game, with the restriction that Rei must play vertex v exactly \vec{r}_{v} times. E.g. if D is as above and $\vec{r}=(n, n, n)$, then this is semi-restricted RPS.

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.

Theorem (S.-Surya-Wang-Zeng; 2022+)

$$
S_{D}(\vec{r}) \geq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}
$$

Optimal Scores

Let $S_{D}(\vec{r})$ be the expected score for Norman in the semi-restricted D game is both players play optimally.

Theorem (S.-Surya-Wang-Zeng; 2022+)

$$
\begin{aligned}
& S_{D}(\vec{r}) \geq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}, \\
& S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right),
\end{aligned}
$$

where $M=\sum_{u} \vec{r}_{u}$.

Optimal Scores

Theorem (S.-Surya-Wang-Zeng; 2022+)

$$
\begin{aligned}
& S_{D}(n, \ldots, n) \geq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n \\
& S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
\end{aligned}
$$

Moreover, both bounds are best possible in general.

Optimal Scores

Theorem (S.-Surya-Wang-Zeng; 2022+)

$$
\begin{aligned}
S_{D}(n, \ldots, n) & \geq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n \\
S_{D}(n, \ldots, n) & \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
\end{aligned}
$$

Moreover, both bounds are best possible in general.

Corollary

If $d^{+}(v)=d^{-}(v)$ for all v (i.e. if D is Eulerian), then

$$
0 \leq S_{D}(n, \ldots, n) \leq O_{D}\left(n^{1 / 2}\right)
$$

Optimal Scores

Question

If D is an Eulerian digraph with at least one arc, do we have

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Optimal Scores

Question

If D is an Eulerian digraph with at least one arc, do we have

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Given a digraph D, we define its skew adjacency matrix A by $A_{u, v}=+1$ if $u \rightarrow v, A_{u, v}=-1$ if $v \rightarrow u$, and $A_{u, v}=0$ otherwise.

Optimal Scores

Theorem (S.-Surya-Wang-Zeng; 2022+)
If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Optimal Scores

Theorem (S.-Surya-Wang-Zeng; 2022+)
If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Corollary
If D is an Eulerian tournament, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Optimal Scores

Theorem (S.-Surya-Wang-Zeng; 2022+)
If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Corollary
If D is an Eulerian tournament, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Question
Which digraphs satisfy $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$?

Optimal Strategies

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is the directed path $1 \rightarrow 2 \rightarrow 3$, then a strategy for Rei is optimal if and only if she plays 3 with probability $1 / 2$ whenever she can.

$$
\begin{array}{ll}
\mathbf{1} \longrightarrow \mathbf{2} \longrightarrow \\
p & \mathbf{1} 2-p \\
\mathbf{1} \\
\hline
\end{array}
$$

Optimal Strategies

Question

Does every digraph D have an optimal strategy for Rei which is "oblivious", i.e. which only looks at which u Rei can play and ignores how many times she can play it?

Optimal Strategies

Theorem (S.-Surya-Wang-Zeng; 2022+)
The digraph depicted below does not have an oblivious optimal strategy for Rei.

Optimal Strategies

Theorem (S.-Surya-Wang-Zeng; 2022+)

The digraph depicted below does not have an oblivious optimal strategy for Rei.

Theorem (S.-Surya-Wang-Zeng; 2022+)
There exist infinitely many Eulerian tournaments which do not have an oblivious optimal strategy for Rei.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
$$

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation.

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation. Thus in this first phase, Norman gains at most

$$
\left(\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}\right) \cdot|V(D)| n .
$$

Proofs: Bounds

Theorem

$$
S_{D}(n, \ldots, n) \leq \max _{v}\left(d^{+}(v)-d^{-}(v)\right) n+O_{D}\left(n^{1 / 2}\right)
$$

Consider the following strategy for Rei: uniformly at random pick $v \in V(D)$ until some option runs out, then play arbitrarily. Until something runs out, Norman can gain at most

$$
\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}
$$

points in expectation. Thus in this first phase, Norman gains at most

$$
\left(\max _{v} \frac{d^{+}(v)}{|V(D)|}-\frac{d^{-}(v)}{|V(D)|}\right) \cdot|V(D)| n .
$$

One can show that in expectation only $O_{D}\left(n^{1 / 2}\right)$ turns remain after Rei runs out of some vertex to play.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\vec{r}_{v}}{\sum_{u} \vec{r}_{u}}$ until something runs out, then she plays arbitrarily.

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\vec{r}_{v}}{\sum_{u} \vec{r}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w}
$$

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\vec{r}_{v}}{\sum_{u} \vec{r}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w} .
$$

After something runs out, we expect the number of actions for any v to be at most $\vec{r}_{v}^{-1 / 2} \sum_{u} \vec{r}_{u}$

Proofs: Bounds

Theorem

$$
S_{D}(\vec{r}) \leq \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{-}(v)} \vec{r}_{u}+O_{D}\left(M^{2 / 3}\right)
$$

where $M=\sum \vec{r}_{u}$.
First Rei arbitrarily plays vertices v with $\vec{r}_{v} \leq M^{2 / 3}$, which costs her at most $|V(D)| M^{2 / 3}$. Rei then plays vertex v with $\frac{\vec{r}_{v}}{\sum_{u} \vec{r}_{u}}$ until something runs out, then she plays arbitrarily. During this first phase, Norman expects to gain at most

$$
\left(\max _{v} \sum_{u \in N^{+}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}-\sum_{u \in N^{-}(v)} \frac{\vec{r}_{u}}{\sum_{w} \vec{r}_{w}}\right) \cdot \sum_{w} \vec{r}_{w}
$$

After something runs out, we expect the number of actions for any v to be at most $\vec{r}_{V}^{-1 / 2} \sum_{u} \vec{r}_{u} \leq M^{-1 / 3} \cdot M$.

Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)
If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

If Rei chooses vertices based off a probability vector p, then
Noman's expected payoff that round is

$$
\max _{v} \sum_{u \in N^{+}(v)} p_{u}-\sum_{u \in N^{-}(v)} p_{u}
$$

Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

If Rei chooses vertices based off a probability vector p, then Noman's expected payoff that round is

$$
\max _{v} \sum_{u \in N^{+}(v)} p_{u}-\sum_{u \in N^{-}(v)} p_{u} \geq\|A p\|_{\infty} \cdot|V(D)|^{-1}
$$

Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

If Rei chooses vertices based off a probability vector p, then Noman's expected payoff that round is

$$
\max _{v} \sum_{u \in N^{+}(v)} p_{u}-\sum_{u \in N^{-}(v)} p_{u} \geq\|A p\|_{\infty} \cdot|V(D)|^{-1} .
$$

Either (1) Rei uses many p which are far from $\overrightarrow{1}$ (in which case $\|A p\|_{\infty}$ is large)

Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is such that $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$, then

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

If Rei chooses vertices based off a probability vector p, then Noman's expected payoff that round is

$$
\max _{v} \sum_{u \in N^{+}(v)} p_{u}-\sum_{u \in N^{-}(v)} p_{u} \geq\|A p\|_{\infty} \cdot|V(D)|^{-1} .
$$

Either (1) Rei uses many p which are far from $\overrightarrow{1}$ (in which case $\|A p\|_{\infty}$ is large) or (2) her strategy looks roughly uniform until something runs out.

Proofs: Strategies

Lemma

For $R P S$ we have $S_{D}\left(\vec{r}-\delta_{s}\right) \leq S_{D}\left(\vec{r}-\delta_{p}\right)+1$.

Proofs: Strategies

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available.

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

then there exist \vec{r} with $S_{D}(\vec{r}) \gg \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{+}(v)} \vec{r}_{u}$.

Proofs: Strategies

Assume there was an oblivious optimal strategy for Rei with p_{w} the probability she picks w when every option is available. One can show for this D that if any w, w^{\prime} has

$$
\sum_{u \in N^{+}(w)} p_{u}-\sum_{u \in N^{-}(w)} p_{u}<\sum_{u \in N^{+}\left(w^{\prime}\right)} p_{u}-\sum_{u \in N^{-}\left(w^{\prime}\right)} p_{u}
$$

then there exist \vec{r} with $S_{D}(\vec{r}) \gg \max _{v} \sum_{u \in N^{+}(v)} \vec{r}_{u}-\sum_{u \in N^{+}(v)} \vec{r}_{u}$.
One can show that such w, w^{\prime} exist for all p, giving a contradiction.

Open Problems

Question

What are the optimal strategies for the semi-restricted D-game with D as below?

Open Problems

Question

What are the optimal strategies for the semi-restricted D-game with D as below?

Question

What are the optimal strategies for directed paths?

Open Problems

Question

Which digraphs satisfy $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$?

Open Problems

Question

Which digraphs satisfy $\operatorname{Null}(A)=\operatorname{span}(\overrightarrow{1})$?

Question

If D is an Eulerian digraph with at least one arc, do we have

$$
S_{D}(n, \ldots, n)=\Theta_{D}\left(n^{1 / 2}\right)
$$

