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Start with a deck of mn cards where there are n card types each
appearing with multiplicity m. For example, n = 13 and m = 4
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Card Guessing

If G is a strategy for Guesser, we define Cm,n(G) to be the
expected number of points scored if Guesser follows strategy G and
the deck is shuffled uniformly at random.

Let
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Theorem (Diaconis-Graham, 1981)
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Card Guessing

Theorem (Diaconis-Graham-X. He-S. 2020; J. He-Ottolini 2021)

For m fixed,

C+m,n ∼ Hm log(n),

C−m,n ∼ Γ

(
1 +

1

m

)
n−1/m,

where Hm is the mth harmonic number and Γ is the gamma
function.
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Adversarial Card Guessing

Let Cm,n(G, S) be the expected number of points Guesser scores
when the two players follow strategies G, S.

Γ

(
1 +

1

m

)
n−1/m . Cm,n(G,Uniform) . Hm log n.

Theorem (S., 2021+)

If Shuffler wants to minimize the number of correct guesses and
Guesser wants to maximize this, then under their optimal
strategies G, S we have

Cm,n(G,S) = log n + om(log n).
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Adversarial Card Guessing

Theorem

There exists a strategy S for Shuffler so that
Cm,n(G,S) ≤ log n + om(log n).

A strategy that gives this is the “greedy strategy”, which is such
that if there are r types of cards remaining in the deck, then
Shuffler draws each of these card types with probability r−1 . E.g.
if the deck has a hundred 1’s and one 2, we draw a 1 or 2 with
probability 1

2 . This gives the desired bound due to a variant of the
coupon collector problem.
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Theorem (S., 2021+)

The greedy strategy is the unique strategy that minimizes the
number of correct guesses if Guesser tries to maximize their score.

Interestingly, the greedy strategy is also the “unique” strategy
which maximizes the number of correct guesses if Guesser tries to
minimize their score.
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Adversarial Card Guessing

There is a classical game called “Matching Pennies” where two
players simultaneously choose one of n numbers, and if the two
numbers are the same then player Alice gets a point, and otherwise
player Bob gets a point.

Consider a “semi-restricted” version of this game where they plan
mn rounds of Matching Pennies and Bob must use each number
exactly m times. This is exactly the same as the previous game!
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Semi-restricted RPS

Question

What are good strategies (for Rei) in Semi-restricted RPS, and
how much of an advantage does Norman have?

Theorem (S.-Surya-Wang-Zeng; 2022+)

The unique optimal strategy for Rei is to play each option with
probability 1/3 when every option remains, and to play the
stronger card with probability 2/3 when two options remain.
Moreover, Norman’s advantage is Θ(

√
n) if Rei plays each of

Rock, Paper, and Scissors n times.
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More General Games

Given a digraph D, define the D-game by having two players
simultaneously pick vertices of D each round.

1

23

Given a non-negative integer vector ~r , the semi-restricted D-game
(with parameter ~r) is defined by having players Rei and Norman
iteratively play the D-game, with the restriction that Rei must play
vertex v exactly ~rv times. E.g. if D is as above and ~r = (n, n, n),
then this is semi-restricted RPS.
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Theorem (S.-Surya-Wang-Zeng; 2022+)

SD(n, . . . , n) ≥ max
v

(d+(v)− d−(v))n,

SD(n, . . . , n) ≤ max
v

(d+(v)− d−(v))n + OD(n1/2).

Moreover, both bounds are best possible in general.

Corollary

If d+(v) = d−(v) for all v (i.e. if D is Eulerian), then

0 ≤ SD(n, . . . , n) ≤ OD(n1/2).
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Question

If D is an Eulerian digraph with at least one arc, do we have

SD(n, . . . , n) = ΘD(n1/2).

Given a digraph D, we define its skew adjacency matrix A by
Au,v = +1 if u → v , Au,v = −1 if v → u, and Au,v = 0 otherwise.
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Optimal Strategies

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is the directed path 1→ 2→ 3, then a strategy for Rei is
optimal if and only if she plays 3 with probability 1/2 whenever she
can.

1 2 3
p 1/2− p 1/2



Optimal Strategies

Question

Does every digraph D have an optimal strategy for Rei which is
“oblivious”, i.e. which only looks at which u Rei can play and
ignores how many times she can play it?
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The digraph depicted below does not have an oblivious optimal
strategy for Rei.
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Theorem (S.-Surya-Wang-Zeng; 2022+)

There exist infinitely many Eulerian tournaments which do not
have an oblivious optimal strategy for Rei.
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Proofs: Bounds

Theorem

SD(n, . . . , n) ≤ max
v

(d+(v)− d−(v))n + OD(n1/2).

Consider the following strategy for Rei: uniformly at random pick
v ∈ V (D) until some option runs out, then play arbitrarily. Until
something runs out, Norman can gain at most

max
v

d+(v)

|V (D)| −
d−(v)

|V (D)|

points in expectation. Thus in this first phase, Norman gains at
most (

max
v

d+(v)

|V (D)| −
d−(v)

|V (D)|

)
· |V (D)|n.

One can show that in expectation only OD(n1/2) turns remain
after Rei runs out of some vertex to play.
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Proofs: Bounds

Theorem

SD(~r) ≤ max
v

∑
u∈N+(v)

~ru −
∑

u∈N−(v)

~ru + OD(M2/3),

where M =
∑
~ru.

First Rei arbitrarily plays vertices v with ~rv ≤ M2/3, which costs
her at most |V (D)|M2/3. Rei then plays vertex v with ~rv∑

u ~ru
until

something runs out, then she plays arbitrarily. During this first
phase, Norman expects to gain at mostmax

v

∑
u∈N+(v)

~ru∑
w ~rw

−
∑

u∈N−(v)

~ru∑
w ~rw

 ·∑
w

~rw .

After something runs out, we expect the number of actions for any

v to be at most ~r
−1/2
v

∑
u ~ru ≤ M−1/3 ·M.
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Proofs: Bounds

Theorem (S.-Surya-Wang-Zeng; 2022+)

If D is such that Null(A) = span(~1), then

SD(n, . . . , n) = ΘD(n1/2).

If Rei chooses vertices based off a probability vector p, then
Noman’s expected payoff that round is

max
v

∑
u∈N+(v)

pu −
∑

u∈N−(v)

pu ≥ ‖Ap‖∞ · |V (D)|−1.

Either (1) Rei uses many p which are far from ~1 (in which case
‖Ap‖∞ is large) or (2) her strategy looks roughly uniform until
something runs out.
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Lemma

For RPS we have SD(~r − δs) ≤ SD(~r − δp) + 1.
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Assume there was an oblivious optimal strategy for Rei with pw
the probability she picks w when every option is available. One can
show for this D that if any w ,w ′ has∑

u∈N+(w)

pu −
∑

u∈N−(w)

pu <
∑

u∈N+(w ′)

pu −
∑

u∈N−(w ′)

pu,

then there exist ~r with SD(~r)� maxv
∑

u∈N+(v) ~ru −
∑

u∈N+(v) ~ru.

One can show that such w ,w ′ exist for all p, giving a
contradiction.
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