Cycle-free Subgraphs of Random Hypergraphs.

Sam Spiro, UC San Diego.

Joint work with Jacques Verstraëte

Turán's Problem

Let \mathcal{F} be a family of graphs. We define the Turán number (or extremal number) of \mathcal{F} to be the maximum number of edges in an \mathcal{F}-free graph on n vertices, and we'll denote this quantity by ex (n, \mathcal{F}).

Turán's Problem

Let \mathcal{F} be a family of graphs. We define the Turán number (or extremal number) of \mathcal{F} to be the maximum number of edges in an \mathcal{F}-free graph on n vertices, and we'll denote this quantity by ex (n, \mathcal{F}).

Theorem (Erdős; Bondy-Simonovits, 1974)

$$
e x\left(n, C_{2 \ell}\right)=O\left(n^{1+1 / \ell}\right)
$$

Turán's Problem

Let \mathcal{F} be a family of graphs. We define the Turán number (or extremal number) of \mathcal{F} to be the maximum number of edges in an \mathcal{F}-free graph on n vertices, and we'll denote this quantity by ex (n, \mathcal{F}).

Theorem (Erdős; Bondy-Simonovits, 1974)
$\operatorname{ex}\left(n, C_{2 \ell}\right)=O\left(n^{1+1 / \ell}\right)$.
Conjecture (Erdős-Simonovits, 1983)
$\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, \ldots, C_{2 \ell}\right\}\right)=\Theta\left(n^{1+1 / \ell}\right)$.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets. To this end, define $G_{n, p}$ to be the random graph on n vertices obtained by keeping each edge independently and with probability p.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets. To this end, define $G_{n, p}$ to be the random graph on n vertices obtained by keeping each edge independently and with probability p.

If \mathcal{F} is a family of graphs we let $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$ denote the size of a largest \mathcal{F}-free subgraph of $G_{n, p}$.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets. To this end, define $G_{n, p}$ to be the random graph on n vertices obtained by keeping each edge independently and with probability p.

If \mathcal{F} is a family of graphs we let $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$ denote the size of a largest \mathcal{F}-free subgraph of $G_{n, p}$. For example, $\operatorname{ex}\left(G_{n, 1}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets. To this end, define $G_{n, p}$ to be the random graph on n vertices obtained by keeping each edge independently and with probability p.

If \mathcal{F} is a family of graphs we let $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$ denote the size of a largest \mathcal{F}-free subgraph of $G_{n, p}$. For example, $\operatorname{ex}\left(G_{n, 1}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

If every graph of \mathcal{F} is non-bipartite, then this problem has essentially been solved independently by Conlon-Gowers and Schacht.

Turán's Problem in Random Graphs

A big area of probabilistic combinatorics is to consider extremal problems in random sets. To this end, define $G_{n, p}$ to be the random graph on n vertices obtained by keeping each edge independently and with probability p.

If \mathcal{F} is a family of graphs we let $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$ denote the size of a largest \mathcal{F}-free subgraph of $G_{n, p}$. For example, $\operatorname{ex}\left(G_{n, 1}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

If every graph of \mathcal{F} is non-bipartite, then this problem has essentially been solved independently by Conlon-Gowers and Schacht. Thus we will focus our attention on the case when \mathcal{F} contains bipartite graphs, and in general this problem is unsolved.

Turán's Problem in Random Graphs

Of course, ex $\left(G_{n, p}, \mathcal{F}\right)$ is itself a random variable, so we can not prove (useful) deterministic bounds.

Turán's Problem in Random Graphs

Of course, ex $\left(G_{n, p}, \mathcal{F}\right)$ is itself a random variable, so we can not prove (useful) deterministic bounds. Typically we will be looking to prove result of the form

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=1
$$

where m is some function of n, p.

Turán's Problem in Random Graphs

Of course, ex $\left(G_{n, p}, \mathcal{F}\right)$ is itself a random variable, so we can not prove (useful) deterministic bounds. Typically we will be looking to prove result of the form

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=1
$$

where m is some function of n, p. In general if the probability of a sequence of events A_{n} tends to 1 we say that the event happens asymptotically almost surely or simply a.a.s.

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Theorem (Meta Theorem)

Good upper bounds on $\mathrm{N}_{m}(n, \mathcal{F})$ imply good upper bounds on $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$.

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Theorem (Meta Theorem)

Good upper bounds on $\mathrm{N}_{m}(n, \mathcal{F})$ imply good upper bounds on $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$.

Proof.

We use a first moment method. Define the random variable X to be the number of \mathcal{F}-free subgraphs of $G_{n, p}$ on m edges. Then

$$
\operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=\operatorname{Pr}[X \geq 1]
$$

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Theorem (Meta Theorem)

Good upper bounds on $\mathrm{N}_{m}(n, \mathcal{F})$ imply good upper bounds on $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$.

Proof.

We use a first moment method. Define the random variable X to be the number of \mathcal{F}-free subgraphs of $G_{n, p}$ on m edges. Then

$$
\operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=\operatorname{Pr}[X \geq 1] \leq \mathbb{E}[X]
$$

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Theorem (Meta Theorem)

Good upper bounds on $\mathrm{N}_{m}(n, \mathcal{F})$ imply good upper bounds on $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$.

Proof.

We use a first moment method. Define the random variable X to be the number of \mathcal{F}-free subgraphs of $G_{n, p}$ on m edges. Then

$$
\operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=\operatorname{Pr}[X \geq 1] \leq \mathbb{E}[X]=p^{m} \cdot \mathrm{~N}_{m}(n, \mathcal{F})
$$

Turán's Problem in Random Graphs

Let $\mathrm{N}_{m}(n, \mathcal{F})$ denote the number of F-free graphs on n vertices with exactly m edges.

Theorem (Meta Theorem)

Good upper bounds on $\mathrm{N}_{m}(n, \mathcal{F})$ imply good upper bounds on $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)$.

Proof.

We use a first moment method. Define the random variable X to be the number of \mathcal{F}-free subgraphs of $G_{n, p}$ on m edges. Then

$$
\operatorname{Pr}\left[\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right) \geq m\right]=\operatorname{Pr}[X \geq 1] \leq \mathbb{E}[X]=p^{m} \cdot \mathrm{~N}_{m}(n, \mathcal{F})
$$

Thus if p is such that $p^{m} \ll\left(\mathrm{~N}_{m}(n, \mathcal{F})\right)^{-1}$, we have that $\operatorname{ex}\left(G_{n, p}, \mathcal{F}\right)<m$ asymptotically almost surely.

Counting Cycle-free Graphs

The problem of determining $\mathrm{N}_{m}\left(n, C_{2 \ell}\right)$ was essentially solved by Morris and Saxton (though the case of C_{4} had been dealt with earlier by Füredi).

Counting Cycle-free Graphs

The problem of determining $\mathrm{N}_{m}\left(n, C_{2 \ell}\right)$ was essentially solved by Morris and Saxton (though the case of C_{4} had been dealt with earlier by Füredi).

Theorem (Morris-Saxton, 2013)

If $m \geq n^{1+1 /(2 \ell-1)}(\log n)^{2}$, then

$$
\mathrm{N}_{m}\left(n, C_{2 \ell}\right) \leq e^{c m}(\log n)^{(\ell / 2-1) m}\left(\frac{n^{1+1 / \ell}}{m}\right)^{\ell m}
$$

Counting Cycle-free Graphs

The problem of determining $\mathrm{N}_{m}\left(n, C_{2 \ell}\right)$ was essentially solved by Morris and Saxton (though the case of C_{4} had been dealt with earlier by Füredi).

Theorem (Morris-Saxton, 2013)

If $m \geq n^{1+1 /(2 \ell-1)}(\log n)^{2}$, then

$$
\mathrm{N}_{m}\left(n, C_{2 \ell}\right) \leq e^{c m}(\log n)^{(\ell / 2-1) m}\left(\frac{n^{1+1 / \ell}}{m}\right)^{\ell m}
$$

The proof used the method of hypergraph containers and a balanced supersaturation result.

Counting Cycle-free Graphs

The problem of determining $\mathrm{N}_{m}\left(n, C_{2 \ell}\right)$ was essentially solved by Morris and Saxton (though the case of C_{4} had been dealt with earlier by Füredi).

Theorem (Morris-Saxton, 2013)

If $m \geq n^{1+1 /(2 \ell-1)}(\log n)^{2}$, then

$$
\mathrm{N}_{m}\left(n, C_{2 \ell}\right) \leq e^{c m}(\log n)^{(\ell / 2-1) m}\left(\frac{n^{1+1 / \ell}}{m}\right)^{\ell m}
$$

The proof used the method of hypergraph containers and a balanced supersaturation result. This result is essentially best possible if $\operatorname{ex}\left(n,\left\{C_{3}, \ldots, C_{2 \ell}\right\}\right)=\Theta\left(n^{1+1 / \ell}\right)$.

Counting Cycle-free Graphs

Theorem (Morris-Saxton, 2013)
If $m \geq n^{1+1 /(2 \ell-1)}(\log n)^{2}$, then

$$
\mathrm{N}_{m}\left(n, C_{2 \ell}\right) \leq e^{c m}(\log n)^{(\ell / 2-1) m}\left(\frac{n^{1+1 / \ell}}{m}\right)^{\ell m}
$$

Corollary

$$
\text { If } p \geq n^{-(\ell-1) /(2 \ell-1)}(\log n)^{\ell+1}, \text { then a.a.s. }
$$

$$
\operatorname{ex}\left(G_{n, p}, C_{2 \ell}\right) \leq O\left(p^{1 / \ell} n^{1+1 / \ell} \log n\right)
$$

Counting Cycle-free Graphs

Theorem (Morris-Saxton, 2013)
If $m \geq n^{1+1 /(2 \ell-1)}(\log n)^{2}$, then

$$
\mathrm{N}_{m}\left(n, C_{2 \ell}\right) \leq e^{c m}(\log n)^{(\ell / 2-1) m}\left(\frac{n^{1+1 / \ell}}{m}\right)^{\ell m}
$$

Corollary
If $p \geq n^{-(\ell-1) /(2 \ell-1)}(\log n)^{\ell+1}$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}, C_{2 \ell}\right) \leq O\left(p^{1 / \ell} n^{1+1 / \ell} \log n\right)
$$

By using a more refined argument with containers one can get rid of this $\log n$ term.

Counting Cycle-free Graphs

Theorem (Füredi, 1991; Morris-Saxton, 2013)

$$
\operatorname{ex}\left(G_{n, p}, C_{4}\right)= \begin{cases}(1+o(1)) p\binom{n}{2} & n^{-1} \ll p \ll n^{-2 / 3} \\ n^{4 / 3}(\log n)^{O(1)} & n^{-2 / 3} \leq p \leq n^{-1 / 3}(\log n)^{4} \\ \Theta\left(p^{1 / 2} n^{3 / 2}\right) & n^{-1 / 3}(\log n)^{4} \leq p \leq 1\end{cases}
$$

Hypergraphs

We've seen some results for graphs, but what about hypergraphs?

Hypergraphs

We've seen some results for graphs, but what about hypergraphs? Define $H_{n, p}^{r}$ to be the random r-uniform hypergraph on n vertices obtained by keeping each hyperedge with probability p, and define ex $\left(H_{n, p}^{r}, \mathcal{F}\right)$ to be the largest \mathcal{F}-free subgraph of $H_{n, p}^{r}$.

Hypergraphs

We've seen some results for graphs, but what about hypergraphs? Define $H_{n, p}^{r}$ to be the random r-uniform hypergraph on n vertices obtained by keeping each hyperedge with probability p, and define ex $\left(H_{n, p}^{r}, \mathcal{F}\right)$ to be the largest \mathcal{F}-free subgraph of $H_{n, p}^{r}$.

As before it is useful to define $\mathrm{N}_{m}^{r}(n, \mathcal{F})$ to be the number of \mathcal{F}-free r-graphs on n vertices with exactly m edges.

Berge Cycles and Girth

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i.

Berge Cycles and Girth

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i.

Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's.

Berge Cycles and Girth

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i.

Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's. A hypergraph H is said to have girth larger than ℓ if it is $\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}$-free.

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)
For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil}
$$

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)
For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil}
$$

In particular, this allows us to lift the bounds of Morris-Saxton to hypergraphs.

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)

For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil}
$$

In particular, this allows us to lift the bounds of Morris-Saxton to hypergraphs. When $\ell=3$ this gives tight bounds for all r :

Theorem (S.-Verstraëte, 2020)
For $p \geq n^{-r+3 / 2}(\log n)^{2 r-3}$, we have a.a.s.

$$
\operatorname{ex}\left(H_{n, p}^{r},\left\{\mathcal{B}_{2}^{r} \cup \mathcal{B}_{3}^{r}\right\}\right)=p^{\frac{1}{2 r-3}} n^{2+o(1)},
$$

and for significantly smaller values of p this equals $\Theta\left(p n^{r}\right)$.

Berge Cycles and Girth

To illustrate the proof idea, we prove the weaker bound

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{\binom{r}{2}} .
$$

Berge Cycles and Girth

To illustrate the proof idea, we prove the weaker bound

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{\binom{r}{2}} .
$$

For any hypergraph H, go through each $e \in E(H)$ and order all of its $\binom{r}{2}$ pairs of vertices. Define the graph $\phi_{i}(H)$ by taking the i th pair from each hyperedge of H and adding it as an edge in $\phi_{i}(H)$.

Berge Cycles and Girth

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{\left({ }_{2}^{r}\right)} .
$$

It's easy to show that if H has girth larger than ℓ and m edges, then so does $\phi_{i}(H)$.

Berge Cycles and Girth

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{\left({ }_{2}^{r}\right)} .
$$

It's easy to show that if H has girth larger than ℓ and m edges, then so does $\phi_{i}(H)$. Thus the map

$$
\phi(H):=\left(\phi_{1}(H), \ldots, \phi_{\binom{(}{2}}(H)\right)
$$

sends r-graphs with m edges and girth larger than ℓ to $\binom{r}{2}$ graphs with m edges and girth larger than ℓ.

Berge Cycles and Girth

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{\left({ }_{2}^{r}\right)} .
$$

It's easy to show that if H has girth larger than ℓ and m edges, then so does $\phi_{i}(H)$. Thus the map

$$
\phi(H):=\left(\phi_{1}(H), \ldots, \phi_{\binom{(}{2}}(H)\right)
$$

sends r-graphs with m edges and girth larger than ℓ to $\binom{r}{2}$ graphs with m edges and girth larger than ℓ. With this we see that it suffices to show that ϕ is injective.

Berge Cycles and Girth

H is a hypergraph of girth larger than $\ell>3, \phi_{i}(H)$ is the graph using the i th pair of each $e \in E(H)$,

$$
\phi(H)=\left(\phi_{1}(H), \ldots, \phi_{\binom{r}{2}}(H)\right) .
$$

Berge Cycles and Girth

H is a hypergraph of girth larger than $\ell>3, \phi_{i}(H)$ is the graph using the i th pair of each $e \in E(H)$,

$$
\phi(H)=\left(\phi_{1}(H), \ldots, \phi_{\binom{r}{2}}^{(H)) .}\right.
$$

The shadow graph ∂H is defined to be the graph consisting of all pairs of vertices which appear in some hyperedge of H.

Berge Cycles and Girth

H is a hypergraph of girth larger than $\ell>3, \phi_{i}(H)$ is the graph using the i th pair of each $e \in E(H)$,

$$
\phi(H)=\left(\phi_{1}(H), \ldots, \phi_{\binom{r}{2}}(H)\right) .
$$

The shadow graph ∂H is defined to be the graph consisting of all pairs of vertices which appear in some hyperedge of H. Thus in our language, $\partial H=\bigcup \phi_{i}(H)$

Berge Cycles and Girth

H is a hypergraph of girth larger than $\ell>3, \phi_{i}(H)$ is the graph using the i th pair of each $e \in E(H)$,

$$
\phi(H)=\left(\phi_{1}(H), \ldots, \phi_{\binom{r}{2}}^{(H)) .}\right.
$$

The shadow graph ∂H is defined to be the graph consisting of all pairs of vertices which appear in some hyperedge of H. Thus in our language, $\partial H=\bigcup \phi_{i}(H)$, so if H is uniquely determined by its shadow then it is uniquely determined by $\phi(H)$.

Berge Cycles and Girth

H is a hypergraph of girth larger than $\ell>3, \phi_{i}(H)$ is the graph using the i th pair of each $e \in E(H)$,

$$
\phi(H)=\left(\phi_{1}(H), \ldots, \phi_{\binom{r}{2}}^{(H)) .}\right.
$$

The shadow graph ∂H is defined to be the graph consisting of all pairs of vertices which appear in some hyperedge of H. Thus in our language, $\partial H=\bigcup \phi_{i}(H)$, so if H is uniquely determined by its shadow then it is uniquely determined by $\phi(H)$. This is not true in general, but it is true when H is girth at least 4, so in this case ϕ is injective as desired.

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)
For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil}
$$

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)

For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil} .
$$

The key fact in proving the weaker result was that if H has large girth and we replace each hyperedge by a clique, then H is uniquely recoverable from this graph.

Berge Cycles and Girth

Theorem (S.-Verstraëte, 2020)

For $\ell, r \geq 3$ we have

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\left\lceil\frac{r-2}{\ell-2}\right\rceil}
$$

The key fact in proving the weaker result was that if H has large girth and we replace each hyperedge by a clique, then H is uniquely recoverable from this graph. To get this stronger bound, we observe the stronger fact that we can replace each hyperedge with a graph K consisting of cycles of length at most ℓ all sharing a common edge and still be uniquely recoverable.

Berge Cycles and Girth

We can use variants of this method to get related results.

Berge Cycles and Girth

We can use variants of this method to get related results.
Theorem (S.-Verstraëte, 2020)
For $\ell \geq 3$, we have

$$
\mathrm{N}_{m}^{3}\left(n, \mathcal{B}_{\ell}^{3}\right) \leq 2^{c m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{3} .
$$

Berge Cycles and Girth

We can use variants of this method to get related results.
Theorem (S.-Verstraëte, 2020)
For $\ell \geq 3$, we have

$$
\mathrm{N}_{m}^{3}\left(n, \mathcal{B}_{\ell}^{3}\right) \leq 2^{c m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{3} .
$$

This proof works by showing that the map $H \mapsto \partial H$ is "almost injective" when H omits a single Berge cycle.

Berge Cycles and Girth

We can use variants of this method to get related results.

Theorem (S.-Verstraëte, 2020)

For $\ell \geq 3$, we have

$$
\mathrm{N}_{m}^{3}\left(n, \mathcal{B}_{\ell}^{3}\right) \leq 2^{c m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{3} .
$$

This proof works by showing that the map $H \mapsto \partial H$ is "almost injective" when H omits a single Berge cycle.

Theorem (S.-Verstraëte)
If $2 \leq \ell^{\prime} \leq 4$, then

$$
\mathrm{N}_{m}^{r}\left(n, \mathcal{B}_{\ell^{\prime}}^{r} \cup \mathcal{B}_{\ell}^{r}\right) \leq 2^{c m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{\binom{r}{2}} .
$$

Open Problems

Question

For $\ell \geq 3$, does there exist a constant c_{ℓ} such that

$$
\mathrm{N}_{m}^{r}\left(n, \mathcal{B}_{\ell}^{r}\right) \leq 2^{c_{\ell} m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{c_{\ell} r} .
$$

Open Problems

Question

For $\ell \geq 3$, does there exist a constant c_{ℓ} such that

$$
\mathrm{N}_{m}^{r}\left(n, \mathcal{B}_{\ell}^{r}\right) \leq 2^{c_{\ell} m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{c_{\ell} r} .
$$

Conjecture

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\frac{r-2}{\ell-2}}
$$

Open Problems

Question

For $\ell \geq 3$, does there exist a constant c_{ℓ} such that

$$
\mathrm{N}_{m}^{r}\left(n, \mathcal{B}_{\ell}^{r}\right) \leq 2^{c_{\ell} m} \cdot \mathrm{~N}_{m}^{2}\left(n, C_{\ell}\right)^{c_{\ell} r} .
$$

Conjecture

$$
\mathrm{N}_{m}^{r}\left(n,\left\{\mathcal{B}_{2}^{r}, \ldots, \mathcal{B}_{\ell}^{r}\right\}\right) \leq \mathrm{N}_{m}^{2}\left(n,\left\{C_{3}, \ldots, C_{\ell}\right\}\right)^{r-1+\frac{r-2}{\ell-2}}
$$

In particular, for $r=3$ this would decrease the exponent from 3 to $2+\frac{1}{\ell-2}$.

Open Problems

Define the r-uniform loose ℓ-cycle C_{ℓ}^{r} to be the r-graph with e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} such that $e_{i} \cap e_{i+1}=\left\{v_{i}\right\}$ and $e_{i} \cap e_{j}=\emptyset$ otherwise. For example, here is C_{3}^{3}.

Open Problems

Theorem (Nie-S.-Verstraëte, 2020)

We have a.a.s.

$$
\operatorname{ex}\left(H_{n, p}^{3}, C_{3}^{3}\right)= \begin{cases}(1+o(1)) p\binom{n}{3} & n^{-1 / 3} \ll p \leq n^{-3 / 2+o(1)} \\ p^{1 / 3} n^{2+o(1)} & n^{-3 / 2+o(1)} \leq p \leq 1\end{cases}
$$

Theorem (Mubayi-Yepremyan, 2020)

For all $\ell \geq 2, r \geq 3$, we have a.a.s.
$\operatorname{ex}\left(H_{n, p}^{r}, C_{2 \ell}^{r}\right) \leq \begin{cases}p^{\frac{1}{2 \ell-1}} n^{1+\frac{r-1}{2 \ell-1}+o(1)} & n^{-(r-2)+o(1)} \leq p \leq n^{-(r-2)+\frac{1}{2 \ell-2}+o(1)} \\ p n^{r-1+o(1)} & n^{-(r-2)+\frac{1}{2 \ell-2}+o(1)} \leq p \leq 1 .\end{cases}$

Open Problems

We have the following bounds for 3-uniform 4-cycles (with figures taken from Mubayi-Yepremyan and S.-Verstraëte, respectively):

$\mathbb{E}\left[\operatorname{ex}\left(H_{n, p}^{3}, C_{4}^{3}\right)\right]$

$\mathbb{E}\left[\operatorname{ex}\left(H_{n, p}^{3},\left\{\mathcal{B}_{2}^{3} \cup \mathcal{B}_{3}^{3} \cup \mathcal{B}_{4}^{3}\right\}\right)\right]$

Open Problems

We have the following bounds for 3-uniform 4-cycles (with figures taken from Mubayi-Yepremyan and S.-Verstraëte, respectively):

$$
\mathbb{E}\left[\operatorname{ex}\left(H_{n, p}^{3}, C_{4}^{3}\right)\right]
$$

If our previous conjecture is true, then we can improve the second upper bound from $p^{1 / 6}$ to $p^{1 / 5}$, but in any case we still have a gap.

Open Problems

The tight cycle T_{ℓ}^{r} is the hypergraph on $\left\{v_{1}, \ldots, v_{\ell}\right\}$ with all edges of the form $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}$.

Open Problems

The tight cycle T_{ℓ}^{r} is the hypergraph on $\left\{v_{1}, \ldots, v_{\ell}\right\}$ with all edges of the form $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}$.

Question

Can one say anything about ex $\left(H_{n, p}^{r}, T_{\ell}^{r}\right)$?

Open Problems

The tight cycle T_{ℓ}^{r} is the hypergraph on $\left\{v_{1}, \ldots, v_{\ell}\right\}$ with all edges of the form $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}$.

Question

Can one say anything about ex $\left(H_{n, p}^{r}, T_{\ell}^{r}\right)$?
This seems tricky because we don't even have good conjectures for ex $\left(n, T_{\ell}^{r}\right)$.

Open Problems

One can extend the method for Berge cycles to Berge theta graphs to graphs which avoid theta graphs, so to get results in this case it suffices to have effective bounds for theta-free graphs.

Open Problems

One can extend the method for Berge cycles to Berge theta graphs to graphs which avoid theta graphs, so to get results in this case it suffices to have effective bounds for theta-free graphs. While there are some results for theta graphs-free graphs on m edges due to Corsten and Tran, they are not tight.

Open Problems

One can extend the method for Berge cycles to Berge theta graphs to graphs which avoid theta graphs, so to get results in this case it suffices to have effective bounds for theta-free graphs. While there are some results for theta graphs-free graphs on m edges due to Corsten and Tran, they are not tight.

Problem

Determine tight bounds for counting theta-free graphs with m edges.

The End

Thank You!

