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Let G, be the random graph on n vertices where each edge is included
independently and with probability p. Let ex(Gp p, F) be the maximum
number of edges that an F-free subgraph of G, , can have. For example,

ex(Gp1, F) =ex(n, F),

and with high probability

prex(n F) S (6o F) £ (5 ).

The lower bound is tight when p = 1. The upper bound is tight if p is
“small.”
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Theorem (Frankl-Rodl 1986)
Whp,

1 /n
ex(Gp p, K3) ~ 2p(2) p>n /2

Theorem (Conlon-Gowers, Schacht 2010)
Whp,

(1o g —~1/my(F)
ex(Gnp, F)=p (1 X(F)_1+o(1)> <2> p>n ,

e(F')—1
v(F')—2

where ma(F) = max{

. F' C F}.
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What happens for bipartite graphs?

If F is a bipartite graph which is not a forest, then whp

O(p-ex(n,F)) p> n~t/mF),
(L+0(1)p(5) p< nY/mlF)

ex(Gpp, F) = {

This conjecture turns out to be completely false!
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Plot of ex(Gnp, C4) (Fiiredi 1991)
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eX(Gn7p, F) = max{@(paflna), nzfl/mZ(F)(k)g n)O(l)}’

provided p > n=1/m(F)

Theorem (Nie-S. 2023 (Informal))

This conjecture (essentially) implies Sidorenko’s conjecture.
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Theorem (Bondy-Simonovits 1974)

ex(n, Cop) = O(n*+1/P),

Theorem (Morris-Saxton 2013)

ex(Gp,p, Cop) = O(pl/bn1+1/b) for p large.

Moreover, this is tight whenever ex(n,{Cs, Cs, ..., Gop}) = ©(n'T1/b).




Theorem (Jiang-Longbrake 2022)

If F satisfies “mild conditions”, then

ex(Gpp, F) = O(pl_mz(F)(2_a)no‘) for p large,

where m3(F) = max{ i%i‘:g:; :F'CF, e(F") >2}.
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Theorem (Corsten-Tran 2021)

ex(Gn,p,0ap) = O(p% n1+1/b) for p large.

. . 1
Note: our conjecture predicts psntt1/b,
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Theorem (Faudree-Simonovits 1974)

ex(n,0,p) = O(n**1/).

)

Theorem (McKinley-S. 2023)

For a > 100,
ex(Gpp,0ap) = O(p%nlﬂ/b) for p large.

Moreover, this bound is tight whenever a is sufficiently large in terms of b.
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If T® is the “¢th power of a balanced tree” and ¢ is sufficiently large, then

ex(n, TY) = Q(n?(M).

— < N MW

Theorem (S. 2022)

eX(Gn,p, Tf) _ Q(plfp(T)n%p(T)),

provided ¢ is sufficiently large.
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Proof.
Containers.

Proof.

Hypergraph containers.
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(Mt

ex(tn, F)=



Lower Bound Techniques
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Theorem (S.-Verstraéte 2021)

Let K, s denote the complete r-partite r-graph with parts of sizes
S1,...,Sr. There exist constants 31, B2, 83,7 depending on s1,...,s, such
that, for s, sufficiently large in terms of sy, ...,s,_1, we have whp
© (pn") "< p<nh
ex(Gp py Kyy,..5) = 4 Pl nP < p < n(logn),
O(p*Pn"=5%) n~P2(logn)’ < p < 1.
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Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Many hypergraphs fail to have a flat middle range. More precisely, any
hypergraph which isn't Sidorenko fails to have a flat middle range.







We define the loose cycle C; to be the r-uniform hypergraph obtained by
inserting r — 2 distinct vertices into each edge of the graph cycle C,.



Theorem (Nie-S.-Verstaéte 2020; Nie 2023)

Forr >3, if p>> n~"t3/2 then whp

ex(G) ,, C5) = maX{pTl—Z% p+ol) ppr—i+o(l)y

7p’

e

Picture due to Jiaxi Nie.
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Theorem (Mubayi-Yepremyan 2020; Nie 2023)

1
Forr >4, if p> n T then whp

ex(G,, Cr):max{nHﬁ n~1}
n,ps =20 P .

It’s suspected that this continues to hold for r = 3, but there is a gap for
medium values of p.

Bounds also are known for Berge cycles, but the bounds are significantly
weaker (S.-Verstraéte; Nie).
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Theorem (Nie-S. 20XX (Informal))

If F is a graph and one has upper bounds for ex(Gp p, F), then one can
prove corresponding bounds for ex(Gy, ,, F*").

Here F' is the r-graph obtained by inserting r — 2 new vertices inside
each edge.

Corollary

We have tight bounds for ex(G}, ,, KJ'[) if r > s 4 2.
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Problem

Prove tight bounds for the 3-uniform loose 4-cycle.

Problem

Prove tight bounds for subdivisions of complete bipartite graphs.
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