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Define the Turán number ex(n,F ) to be the maximum number of edges
that an F -free graph on n vertices can have.

Theorem (Mantel 1907)

ex(n,K3) =
⌊
n2/4

⌋
.

Theorem (Erdős-Stone 1946)

ex(n,F ) =

(
1− 1

χ(F )− 1
+ o(1)
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n

2

)
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Let Gn,p be the random graph on n vertices where each edge is included
independently and with probability p.

Let ex(Gn,p,F ) be the maximum
number of edges that an F -free subgraph of Gn,p can have. For example,

ex(Gn,1,F ) = ex(n,F ),

and with high probability

p · ex(n,F ) . ex(Gn,p,F ) . p

(
n

2

)
.

The lower bound is tight when p = 1. The upper bound is tight if p is
“small.”
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with the lower bound tight for p = 1 and the upper bound tight for
p � n−1/2.

Theorem (Frankl-Rödl 1986)

Whp,

ex(Gn,p,K3) ∼ 1

2
p

(
n

2

)
p � n−1/2.

Theorem (Conlon-Gowers, Schacht 2010)

Whp,

ex(Gn,p,F ) = p ·
(

1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
p � n−1/m2(F ),

where m2(F ) = max{ e(F
′)−1

v(F ′)−2 : F ′ ⊆ F}.
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What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

ex(Gn,p,F ) =

{
Θ(p · ex(n,F )) p � n−1/m2(F ),

(1 + o(1))p
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)
p � n−1/m2(F ).

This conjecture turns out to be completely false!
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Plot of ex(Gn,p,C4) (Füredi 1991)



Conjecture (McKinley-S.)

If F is a graph with ex(n,F ) = Θ(nα) for some α ∈ (1, 2], then whp

ex(Gn,p,F ) = max{Θ(pα−1nα), n2−1/m2(F )(log n)O(1)},

provided p � n−1/m2(F ).

Theorem (Nie-S. 2023 (Informal))

This conjecture (essentially) implies Sidorenko’s conjecture.
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Theorem (Morris-Saxton 2013)
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Theorem (Kővari-Sós-Turán 1954)

ex(n,Ks,t) = O(n2−1/s).

Theorem (Morris-Saxton 2013)

ex(Gn,p,Ks,t) = O(p1−1/sn2−1/s) for p large.

Moreover, this bound is tight whenever ex(n,Ks,t) = Θ(n2−1/s).
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Theorem (Jiang-Longbrake 2022)

If F satisfies “mild conditions”, then

ex(Gn,p,F ) = O(p1−m
∗
2 (F )(2−α)nα) for p large,

where m∗2(F ) = max{ e(F
′)−1

v(F ′)−2 : F ′ ( F , e(F ′) ≥ 2}.
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Theorem (Corsten-Tran 2021)

ex(Gn,p, θa,b) = O(p
2
ab n1+1/b) for p large.

Note: our conjecture predicts p
1
b n1+1/b.
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If T ` is the “`th power of a balanced tree” and ` is sufficiently large, then

ex(n,T `) = Ω(n2−ρ(T )).
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`) = Ω(p1−ρ(T )n2−ρ(T )),
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Hypergraphs



Theorem (S.-Verstraëte 2021)

Let K r
s1,...,sr denote the complete r -partite r -graph with parts of sizes

s1, . . . , sr . There exist constants β1, β2, β3, γ depending on s1, . . . , sr such
that, for sr sufficiently large in terms of s1, . . . , sr−1, we have whp

ex(G r
n,p,K

r
s1,...,sr ) =


Θ (pnr ) n−r � p ≤ n−β1 ,

nr−β1+o(1) n−β1 ≤ p ≤ n−β2(log n)γ ,

Θ(p1−β3nr−β3) n−β2(log n)γ ≤ p ≤ 1.



Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Many hypergraphs fail to have a flat middle range. More precisely, any
hypergraph which isn’t Sidorenko fails to have a flat middle range.
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We define the loose cycle C r
` to be the r -uniform hypergraph obtained by

inserting r − 2 distinct vertices into each edge of the graph cycle C`.
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Theorem (Nie-S.-Verstaëte 2020; Nie 2023)

For r ≥ 3, if p � n−r+3/2 then whp

ex(G r
n,p,C

r
3 ) = max{p

1
2r−3 n2+o(1), pnr−1+o(1)}.

Picture due to Jiaxi Nie.



Theorem (Mubayi-Yepremyan 2020; Nie 2023)

For r ≥ 4, if p � n−r+1+ 1
2`−1 then whp

ex(G r
n,p,C

r
2`) = max{n1+

1
2`−1 , pnr−1}.

It’s suspected that this continues to hold for r = 3, but there is a gap for
medium values of p.

Bounds also are known for Berge cycles, but the bounds are significantly
weaker (S.-Verstraëte; Nie).
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Theorem (Nie-S. 20XX (Informal))

If F is a graph and one has upper bounds for ex(Gn,p,F ), then one can
prove corresponding bounds for ex(G r

n,p,F
+r ).

Here F+r is the r -graph obtained by inserting r − 2 new vertices inside
each edge.

Corollary

We have tight bounds for ex(G r
n,p,K

+r
s,t ) if r ≥ s + 2.
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