Random Turán Problems

Sam Spiro, Rutgers University

Define the Turán number ex (n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Define the Turán number ex (n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Theorem (Mantel 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Define the Turán number ex (n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Theorem (Mantel 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Theorem (Erdős-Stone 1946)

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}
$$

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p.

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let ex $\left(G_{n, p}, F\right)$ be the maximum number of edges that an F-free subgraph of $G_{n, p}$ can have.

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let ex $\left(G_{n, p}, F\right)$ be the maximum number of edges that an F-free subgraph of $G_{n, p}$ can have. For example,

$$
\operatorname{ex}\left(G_{n, 1}, F\right)=\operatorname{ex}(n, F)
$$

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let ex $\left(G_{n, p}, F\right)$ be the maximum number of edges that an F-free subgraph of $G_{n, p}$ can have. For example,

$$
\operatorname{ex}\left(G_{n, 1}, F\right)=\operatorname{ex}(n, F)
$$

and with high probability

$$
p \cdot \operatorname{ex}(n, F) \lesssim \operatorname{ex}\left(G_{n, p}, F\right) \lesssim p\binom{n}{2} .
$$

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let ex $\left(G_{n, p}, F\right)$ be the maximum number of edges that an F-free subgraph of $G_{n, p}$ can have. For example,

$$
\operatorname{ex}\left(G_{n, 1}, F\right)=\operatorname{ex}(n, F)
$$

and with high probability

$$
p \cdot \operatorname{ex}(n, F) \lesssim \operatorname{ex}\left(G_{n, p}, F\right) \lesssim p\binom{n}{2} .
$$

The lower bound is tight when $p=1$.

Let $G_{n, p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $\operatorname{ex}\left(G_{n, p}, F\right)$ be the maximum number of edges that an F-free subgraph of $G_{n, p}$ can have. For example,

$$
\operatorname{ex}\left(G_{n, 1}, F\right)=\operatorname{ex}(n, F)
$$

and with high probability

$$
p \cdot \operatorname{ex}(n, F) \lesssim \operatorname{ex}\left(G_{n, p}, F\right) \lesssim p\binom{n}{2} .
$$

The lower bound is tight when $p=1$. The upper bound is tight if p is "small."

$$
\frac{1}{2} p\binom{n}{2} \lesssim \operatorname{ex}\left(G_{n, p}, K_{3}\right) \lesssim p\binom{n}{2}
$$

with the lower bound tight for $p=1$ and the upper bound tight for $p \ll n^{-1 / 2}$.

$$
\frac{1}{2} p\binom{n}{2} \lesssim \operatorname{ex}\left(G_{n, p}, K_{3}\right) \lesssim p\binom{n}{2}
$$

with the lower bound tight for $p=1$ and the upper bound tight for $p \ll n^{-1 / 2}$.

Theorem (Frankl-Rödl 1986)
Whp,

$$
\operatorname{ex}\left(G_{n, p}, K_{3}\right) \sim \frac{1}{2} p\binom{n}{2} \quad p \gg n^{-1 / 2} .
$$

$$
\frac{1}{2} p\binom{n}{2} \lesssim \operatorname{ex}\left(G_{n, p}, K_{3}\right) \lesssim p\binom{n}{2}
$$

with the lower bound tight for $p=1$ and the upper bound tight for $p \ll n^{-1 / 2}$.

Theorem (Frankl-Rödl 1986)
Whp,

$$
\operatorname{ex}\left(G_{n, p}, K_{3}\right) \sim \frac{1}{2} p\binom{n}{2} \quad p \gg n^{-1 / 2} .
$$

Theorem (Conlon-Gowers, Schacht 2010)
Whp,

$$
\operatorname{ex}\left(G_{n, p}, F\right)=p \cdot\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2} \quad p \gg n^{-1 / m_{2}(F)}
$$

where $m_{2}(F)=\max \left\{\frac{e\left(F^{\prime}\right)-1}{v\left(F^{\prime}\right)-2}: F^{\prime} \subseteq F\right\}$.

What happens for bipartite graphs?

What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

$$
\operatorname{ex}\left(G_{n, p}, F\right)= \begin{cases}\Theta(p \cdot \operatorname{ex}(n, F)) & p \gg n^{-1 / m_{2}(F)}, \\ (1+o(1)) p\binom{n}{2} & p \ll n^{-1 / m_{2}(F)} .\end{cases}
$$

What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

$$
\operatorname{ex}\left(G_{n, p}, F\right)= \begin{cases}\Theta(p \cdot \operatorname{ex}(n, F)) & p \gg n^{-1 / m_{2}(F)}, \\ (1+o(1)) p\binom{n}{2} & p \ll n^{-1 / m_{2}(F)} .\end{cases}
$$

This conjecture turns out to be completely false!

Plot of ex $\left(G_{n, p}, C_{4}\right)$ (Füredi 1991)

Conjecture (McKinley-S.)

If F is a graph with $\operatorname{ex}(n, F)=\Theta\left(n^{\alpha}\right)$ for some $\alpha \in(1,2]$, then whp

$$
\operatorname{ex}\left(G_{n, p}, F\right)=\max \left\{\Theta\left(p^{\alpha-1} n^{\alpha}\right), n^{2-1 / m_{2}(F)}(\log n)^{O(1)}\right\}
$$

provided $p \gg n^{-1 / m_{2}(F)}$.

Theorem (Kővari-Sós-Turán 1954)

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

Theorem (Kővari-Sós-Turán 1954)

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

Theorem (Morris-Saxton 2013)

$$
\operatorname{ex}\left(G_{n, p}, K_{s, t}\right)=O\left(p^{1-1 / s} n^{2-1 / s}\right) \text { for } p \text { large. }
$$

Theorem (Kővari-Sós-Turán 1954)

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

Theorem (Morris-Saxton 2013)

$$
\operatorname{ex}\left(G_{n, p}, K_{s, t}\right)=O\left(p^{1-1 / s} n^{2-1 / s}\right) \text { for } p \text { large. }
$$

Moreover, this bound is tight whenever ex $\left(n, K_{s, t}\right)=\Theta\left(n^{2-1 / s}\right)$.

Theorem (Bondy-Simonovits 1974)

$$
\operatorname{ex}\left(n, C_{2 b}\right)=O\left(n^{1+1 / b}\right)
$$

Theorem (Bondy-Simonovits 1974)

$$
\operatorname{ex}\left(n, C_{2 b}\right)=O\left(n^{1+1 / b}\right)
$$

Theorem (Morris-Saxton 2013)

$$
\operatorname{ex}\left(G_{n, p}, C_{2 b}\right)=O\left(p^{1 / b} n^{1+1 / b}\right) \text { for } p \text { large. }
$$

Theorem (Bondy-Simonovits 1974)

$$
\operatorname{ex}\left(n, C_{2 b}\right)=O\left(n^{1+1 / b}\right)
$$

Theorem (Morris-Saxton 2013)

$$
\operatorname{ex}\left(G_{n, p}, C_{2 b}\right)=O\left(p^{1 / b} n^{1+1 / b}\right) \text { for } p \text { large. }
$$

Moreover, this is tight whenever $\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, \ldots, C_{2 b}\right\}\right)=\Theta\left(n^{1+1 / b}\right)$.

Theorem (Faudree-Simonovits 1974)

$$
\operatorname{ex}\left(n, \theta_{a, b}\right)=O\left(n^{1+1 / b}\right)
$$

Theorem (Faudree-Simonovits 1974)

$$
\operatorname{ex}\left(n, \theta_{a, b}\right)=O\left(n^{1+1 / b}\right) .
$$

Theorem (McKinley-S. 2023)

$$
\operatorname{ex}\left(G_{n, p}, \theta_{a, b}\right)=O\left(p^{1 / b} n^{1+1 / b}\right) \text { for } p \text { large. }
$$

Theorem (Faudree-Simonovits 1974)

$$
\operatorname{ex}\left(n, \theta_{a, b}\right)=O\left(n^{1+1 / b}\right)
$$

Theorem (McKinley-S. 2023)

$$
\operatorname{ex}\left(G_{n, p}, \theta_{a, b}\right)=O\left(p^{1 / b} n^{1+1 / b}\right) \text { for } p \text { large. }
$$

Moreover, this bound is tight whenever a is sufficiently large in terms of b.

Theorem (Bukh-Conlon 2015)
If T^{ℓ} is the " ℓ th power of a balanced tree with density b / a ", then $\operatorname{ex}\left(n, T^{\ell}\right)=\Omega\left(n^{2-a / b}\right)$ if ℓ is sufficiently large.

Theorem (Bukh-Conlon 2015)

If T^{ℓ} is the " ℓ th power of a balanced tree with density b / a ", then ex $\left(n, T^{\ell}\right)=\Omega\left(n^{2-a / b}\right)$ if ℓ is sufficiently large.

Theorem (S. 2022)

$$
\operatorname{ex}\left(G_{n, p}, T^{\ell}\right)=\Omega\left(p^{1-a / b} n^{2-a / b}\right)
$$

Theorem (Jiang-Longbrake 2022)
If F satisfies "mild conditions", then

$$
\operatorname{ex}\left(G_{n, p}, F\right)=O\left(p^{1-m_{2}^{*}(F)(2-\alpha)} n^{\alpha}\right) \text { for } p \text { large }
$$

where $m_{2}^{*}(F)=\max \left\{\frac{e\left(F^{\prime}\right)-1}{v\left(F^{\prime}\right)-2}: F^{\prime} \subsetneq F, e\left(F^{\prime}\right) \geq 2\right\}$.

Hypergraphs

Hypergraphs

Theorem (S.-Verstraëte 2021)

Let $K_{s_{1}, \ldots, s_{r}}^{r}$ denote the complete r-partite r-graph with parts of sizes s_{1}, \ldots, s_{r}. There exist constants $\beta_{1}, \beta_{2}, \beta_{3}, \gamma$ depending on s_{1}, \ldots, s_{r} such that, for s_{r} sufficiently large in terms of s_{1}, \ldots, s_{r-1}, we have whp

$$
\operatorname{ex}\left(G_{n, p}^{r}, K_{s_{1}, \ldots, s_{r}}^{r}\right)= \begin{cases}\Theta\left(p n^{r}\right) & n^{-r} \ll p \leq n^{-\beta_{1}} \\ n^{r-\beta_{1}+o(1)} & n^{-\beta_{1}} \leq p \leq n^{-\beta_{2}}(\log n)^{\gamma} \\ \Theta\left(p^{1-\beta_{3}} n^{r-\beta_{3}}\right) & n^{-\beta_{2}}(\log n)^{\gamma} \leq p \leq 1\end{cases}
$$

Hypergraphs

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Hypergraphs

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))
Any hypergraph which is not Sidorenko fails to have a flat middle range.

Hypergraphs

We define the loose cycle C_{ℓ}^{r} to be the r-uniform hypergraph obtained by inserting $r-2$ distinct vertices into each edge of the graph cycle C_{ℓ}.

Hypergraphs

We define the loose cycle C_{ℓ}^{r} to be the r-uniform hypergraph obtained by inserting $r-2$ distinct vertices into each edge of the graph cycle C_{ℓ}.

Theorem (Nie-S.-Verstaëte 2020; Nie 2023)
For $r \geq 3$, if $p \gg n^{-r+3 / 2}$ then whp

$$
\operatorname{ex}\left(G_{n, p}^{r}, C_{3}^{r}\right)=\max \left\{p^{\frac{1}{2 r-3}} n^{2+o(1)}, p n^{r-1+o(1)}\right\} .
$$

Picture due to Jiaxi Nie.

Hypergraphs

Theorem (Mubayi-Yepremyan 2020; Nie 2023)
For $r \geq 4$, if $p \gg n^{-r+1+\frac{1}{2 \ell-1}}$ then whp

$$
\operatorname{ex}\left(G_{n, p}^{r}, C_{2 \ell}^{r}\right)=\max \left\{n^{1+\frac{1}{2 \ell-1}}, p n^{r-1}\right\}
$$

Hypergraphs

Theorem (Mubayi-Yepremyan 2020; Nie 2023)
For $r \geq 4$, if $p \gg n^{-r+1+\frac{1}{2 \ell-1}}$ then whp

$$
\operatorname{ex}\left(G_{n, p}^{r}, C_{2 \ell}^{r}\right)=\max \left\{n^{1+\frac{1}{2 \ell-1}}, p n^{r-1}\right\}
$$

It's suspected that this continues to hold for $r=3$, but there is a gap for medium values of p.

Hypergraphs

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i.

Hypergraphs

Plot of $\operatorname{ex}\left(G_{n, p}^{3}, \mathcal{B}^{3}\left(C_{4}\right)\right)$

S.-Verstraëte 2021; Nie 2023

Hypergraphs

Theorem (Nie-S. 20XX (Informal))
If F is a graph and one has upper bounds for $\operatorname{ex}\left(G_{n, p}, F\right)$, then one can prove corresponding bounds for $\mathrm{ex}\left(G_{n, p}^{r}, \operatorname{Ex}^{r}(F)\right)$ and $\mathrm{ex}\left(G_{n, p}^{r}, \mathcal{B}^{r}(F)\right)$.

Upper Bound Techniques

Upper Bound Techniques

Proof.

Containers.

Upper Bound Techniques

Proof.

Containers.

Proof.

Hypergraph containers.

Lower Bound Techniques

Lower Bound Techniques

$$
e x(p n, F)=\square
$$

Lower Bound Techniques

Lower Bound Techniques

$$
e \times(p n, F)=\square
$$

Sidorenko's Conjecture

Sidorenko's Conjecture

A homomorphism is a map $\phi: V(F) \rightarrow V(H)$ which maps edges to edges.

Sidorenko's Conjecture

A homomorphism is a map $\phi: V(F) \rightarrow V(H)$ which maps edges to edges. Define the homomorphism density

$$
t_{F}(H)=\frac{\# \operatorname{homs} F \rightarrow H}{v(H)^{v(F)}}
$$

Sidorenko's Conjecture

A homomorphism is a map $\phi: V(F) \rightarrow V(H)$ which maps edges to edges. Define the homomorphism density

$$
t_{F}(H)=\frac{\# \operatorname{homs} F \rightarrow H}{v(H)^{v(F)}}
$$

We say that a hypergraph F is Sidorenko if for all r-graphs H, we have

$$
t_{F}(H) \geq t_{K_{r}^{r}}(H)^{e(F)}
$$

Sidorenko's Conjecture

Conjecture (Sidorenko 1986)
A graph F is Sidorenko if and only if F is bipartite.

Sidorenko's Conjecture

Conjecture (Sidorenko 1986)

A graph F is Sidorenko if and only if F is bipartite.
Theorem (Conlon-Lee-Sidorenko 2023)
If F is an r-graph which is not Sidorenko, then there exists $\epsilon=\epsilon(F)>0$ such that

$$
e x(n, F)=\Omega\left(n^{r-\frac{v(F)-r}{e(F)-1}+\epsilon}\right)
$$

Sidorenko's Conjecture

For an r-graph F, define

$$
s(F):=\sup \left\{s: \exists H \neq \emptyset, t_{F}(H)=t_{K_{r}^{r}}(H)^{s+e(F)}\right\}
$$

Sidorenko's Conjecture

For an r-graph F, define

$$
s(F):=\sup \left\{s: \exists H \neq \emptyset, t_{F}(H)=t_{K_{r}^{r}}(H)^{s+e(F)}\right\}
$$

Theorem (Nie-S. 2023)

If F is an r-graph with $e(F) \geq 2$ and $\frac{v(F)-r}{e(F)-1}<r$, then for any
$p=p(n) \geq n^{-\frac{v(F)-r}{e(F)-1}}$, we have whp

$$
\operatorname{ex}\left(G_{n, p}^{r}, F\right) \geq n^{r-\frac{v(F)-r}{e(F)-1}-o(1)}\left(p n^{\frac{v(F)-r}{e(F)-1}}\right)^{\frac{s(F)}{e(F)-1+s(F)}} .
$$

Proof of Main Theorem

Proof of Main Theorem

Let $\operatorname{ex}(G, F)$ be the maximum number of edges in an F-free subgraph of G, and let $\mathcal{N}_{F}(G)$ denote the number of copies of F in G.

Proof of Main Theorem

Let ex (G, F) be the maximum number of edges in an F-free subgraph of G, and let $\mathcal{N}_{F}(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G)
$$

Proof of Main Theorem

Let ex (G, F) be the maximum number of edges in an F-free subgraph of G, and let $\mathcal{N}_{F}(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Given two r-graphs H, H^{\prime}, we define the tensor product $H \otimes H^{\prime}$ to be r-graph on $V(H) \times V\left(H^{\prime}\right)$ where $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right) \in E\left(H \otimes H^{\prime}\right)$ if and only if $\left(x_{1}, \ldots, x_{r}\right) \in E(H)$ and $\left(y_{1}, \ldots, y_{r}\right) \in E\left(H^{\prime}\right)$.

Proof of Main Theorem

Let ex (G, F) be the maximum number of edges in an F-free subgraph of G, and let $\mathcal{N}_{F}(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Given two r-graphs H, H^{\prime}, we define the tensor product $H \otimes H^{\prime}$ to be r-graph on $V(H) \times V\left(H^{\prime}\right)$ where $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right) \in E\left(H \otimes H^{\prime}\right)$ if and only if $\left(x_{1}, \ldots, x_{r}\right) \in E(H)$ and $\left(y_{1}, \ldots, y_{r}\right) \in E\left(H^{\prime}\right)$. We define the N-fold tensor product $H^{\otimes N}=H \otimes \cdots \otimes H$.

Proof of Main Theorem

Let ex (G, F) be the maximum number of edges in an F-free subgraph of G, and let $\mathcal{N}_{F}(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Given two r-graphs H, H^{\prime}, we define the tensor product $H \otimes H^{\prime}$ to be r-graph on $V(H) \times V\left(H^{\prime}\right)$ where $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right) \in E\left(H \otimes H^{\prime}\right)$ if and only if $\left(x_{1}, \ldots, x_{r}\right) \in E(H)$ and $\left(y_{1}, \ldots, y_{r}\right) \in E\left(H^{\prime}\right)$. We define the N-fold tensor product $H^{\otimes N}=H \otimes \cdots \otimes H$.
Fact: for any r-graphs F, H and $N \geq 1$, we have

$$
t_{F}\left(H^{\otimes N}\right)=t_{F}(H)^{N}
$$

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{\prime}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Let $\phi: V(G) \rightarrow V\left(H^{\otimes N}\right)$ be chosen uniformly at random, and define $G^{\prime} \subseteq G$ by keeping the edges which map bijectively to edges.

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G)
$$

Let $\phi: V(G) \rightarrow V\left(H^{\otimes N}\right)$ be chosen uniformly at random, and define $G^{\prime} \subseteq G$ by keeping the edges which map bijectively to edges.

$$
\mathbb{E}\left[e\left(G^{\prime}\right)\right]=t_{K_{r}^{r}}\left(H^{\otimes N}\right) \cdot e(G)
$$

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Let $\phi: V(G) \rightarrow V\left(H^{\otimes N}\right)$ be chosen uniformly at random, and define $G^{\prime} \subseteq G$ by keeping the edges which map bijectively to edges.

$$
\mathbb{E}\left[e\left(G^{\prime}\right)\right]=t_{K_{r}^{r}}\left(H^{\otimes N}\right) \cdot e(G)=\alpha^{N} \cdot e(G)
$$

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{r}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G)
$$

Let $\phi: V(G) \rightarrow V\left(H^{\otimes N}\right)$ be chosen uniformly at random, and define $G^{\prime} \subseteq G$ by keeping the edges which map bijectively to edges.

$$
\begin{gathered}
\mathbb{E}\left[e\left(G^{\prime}\right)\right]=t_{K_{r}^{\prime}}\left(H^{\otimes N}\right) \cdot e(G)=\alpha^{N} \cdot e(G), \\
\mathbb{E}\left[\mathcal{N}_{F}\left(G^{\prime}\right)\right]=t_{F}\left(H^{\otimes N}\right) \cdot \mathcal{N}_{F}(G)=\beta^{N} \cdot \mathcal{N}_{F}(G)
\end{gathered}
$$

Proof of Main Theorem

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_{r}^{\prime}}(H)=\alpha$ and $t_{F}(H)=\beta$, then for all r-graphs G and integers $N \geq 1$ we have

$$
\operatorname{ex}(G, F) \geq \alpha^{N} e(G)-\beta^{N} \mathcal{N}_{F}(G) .
$$

Let $\phi: V(G) \rightarrow V\left(H^{\otimes N}\right)$ be chosen uniformly at random, and define $G^{\prime} \subseteq G$ by keeping the edges which map bijectively to edges.

$$
\begin{aligned}
\mathbb{E}\left[e\left(G^{\prime}\right)\right] & =t_{K_{r}^{\prime}}\left(H^{\otimes N}\right) \cdot e(G)=\alpha^{N} \cdot e(G), \\
\mathbb{E}\left[\mathcal{N}_{F}\left(G^{\prime}\right)\right] & =t_{F}\left(H^{\otimes N}\right) \cdot \mathcal{N}_{F}(G)=\beta^{N} \cdot \mathcal{N}_{F}(G) .
\end{aligned}
$$

One gets the result by deleting an edge from each copy of F in G^{\prime}.

Further Results

$$
s(F):=\sup \left\{s: \exists H \neq \emptyset, t_{F}(H)=t_{K_{F}^{\prime}}(H)^{s+e(F)}\right\} .
$$

Further Results

$$
s(F):=\sup \left\{s: \exists H \neq \emptyset, t_{F}(H)=t_{K_{F}^{\prime}}(H)^{s+e(F)}\right\} .
$$

Given a k-graph F, its expansion $\operatorname{Ex}^{r}(F)$ is defined by inserting $r-k$ new vertices into each edge of F.

Further Results

Theorem (Nie-S. 2023)
If F is a k-graph which contains K_{k+1}^{k} as a subgraph, then

$$
s\left(\operatorname{Ex}^{r}(F)\right) \geq \frac{1}{r-k}
$$

In particular, $\mathrm{Ex}^{r}(F)$ is not Sidorenko.

Further Results

Theorem (Nie-S. 2023)
If F is a k-graph which contains K_{k+1}^{k} as a subgraph, then

$$
s\left(\operatorname{Ex}^{r}(F)\right) \geq \frac{1}{r-k}
$$

In particular, $\mathrm{Ex}^{r}(F)$ is not Sidorenko.

Theorem (Nie-S. 2023)

$$
s\left(\operatorname{Ex}^{r}(F)\right) \leq \frac{v(F)-k}{v(F)-k+(r-k)(s(F)+e(F)-1)} \cdot s(F)
$$

In particular, expansions of Sidorenko hypergraphs are Sidorenko.

Open Problems

Theorem (Nie-S. 2023)
Expansions of Sidorenko hypergraphs are Sidorenko.

Open Problems

Theorem (Nie-S. 2023)
Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \geq 2$ such that $\mathrm{Ex}^{r}(F)$ is Sidorenko.

Open Problems

Theorem (Nie-S. 2023)
Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \geq 2$ such that $\operatorname{Ex}^{r}(F)$ is Sidorenko.

Question

Is it true that F is Sidorenko if and only if there exists an expansion $\mathrm{Ex}^{r}(F)$ which is Sidorenko?

Open Problems

Theorem (Nie-S. 2023)
Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \geq 2$ such that $\mathrm{Ex}^{r}(F)$ is Sidorenko.

Question

Is it true that F is Sidorenko if and only if there exists an expansion $\mathrm{Ex}^{r}(F)$ which is Sidorenko? In particular, are all expansions of non-bipartite graphs not Sidorenko?

Open Problems

Problem

Determine $s\left(C_{2 \ell+1}^{r}\right)$.

Open Problems

Problem

Determine $s\left(C_{2 \ell+1}^{r}\right)$.

We know

$$
r^{-2 \ell} \ll s\left(C_{2 \ell+1}^{r}\right) \leq \frac{2 \ell-1}{r-2} .
$$

Open Problems

Problem

Determine $s\left(C_{2 \ell+1}^{r}\right)$.
We know

$$
r^{-2 \ell} \ll s\left(C_{2 \ell+1}^{r}\right) \leq \frac{2 \ell-1}{r-2} .
$$

Our best guess is

$$
s\left(C_{2 \ell+1}^{r}\right)=\frac{\ell}{(r-1) \ell-1} .
$$

