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Define the Turán number ex(n,F ) to be the maximum number of edges
that an F -free graph on n vertices can have.

Theorem (Mantel 1907)

ex(n,K3) =
⌊
n2/4

⌋
.

Theorem (Erdős-Stone 1946)

ex(n,F ) =

(
1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
.
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Let Gn,p be the random graph on n vertices where each edge is included
independently and with probability p.

Let ex(Gn,p,F ) be the maximum
number of edges that an F -free subgraph of Gn,p can have. For example,

ex(Gn,1,F ) = ex(n,F ),

and with high probability

p · ex(n,F ) . ex(Gn,p,F ) . p

(
n

2

)
.

The lower bound is tight when p = 1. The upper bound is tight if p is
“small.”
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with the lower bound tight for p = 1 and the upper bound tight for
p � n−1/2.

Theorem (Frankl-Rödl 1986)

Whp,

ex(Gn,p,K3) ∼ 1

2
p

(
n

2

)
p � n−1/2.

Theorem (Conlon-Gowers, Schacht 2010)

Whp,

ex(Gn,p,F ) = p ·
(

1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
p � n−1/m2(F ),

where m2(F ) = max{ e(F
′)−1

v(F ′)−2 : F ′ ⊆ F}.



1

2
p

(
n

2

)
. ex(Gn,p,K3) . p

(
n

2

)
,

with the lower bound tight for p = 1 and the upper bound tight for
p � n−1/2.

Theorem (Frankl-Rödl 1986)
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What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

ex(Gn,p,F ) =

{
Θ(p · ex(n,F )) p � n−1/m2(F ),

(1 + o(1))p
(n
2

)
p � n−1/m2(F ).

This conjecture turns out to be completely false!
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Plot of ex(Gn,p,C4) (Füredi 1991)



Conjecture (McKinley-S.)

If F is a graph with ex(n,F ) = Θ(nα) for some α ∈ (1, 2], then whp

ex(Gn,p,F ) = max{Θ(pα−1nα), n2−1/m2(F )(log n)O(1)},

provided p � n−1/m2(F ).



Theorem (Kővari-Sós-Turán 1954)

ex(n,Ks,t) = O(n2−1/s).

Theorem (Morris-Saxton 2013)

ex(Gn,p,Ks,t) = O(p1−1/sn2−1/s) for p large.

Moreover, this bound is tight whenever ex(n,Ks,t) = Θ(n2−1/s).
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Theorem (Bukh-Conlon 2015)

If T ` is the “`th power of a balanced tree with density b/a”, then
ex(n,T `) = Ω(n2−a/b) if ` is sufficiently large.

Theorem (S. 2022)

ex(Gn,p,T
`) = Ω(p1−a/bn2−a/b).
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Theorem (Jiang-Longbrake 2022)

If F satisfies “mild conditions”, then

ex(Gn,p,F ) = O(p1−m
∗
2 (F )(2−α)nα) for p large,

where m∗2(F ) = max{ e(F
′)−1

v(F ′)−2 : F ′ ( F , e(F ′) ≥ 2}.



Hypergraphs



Hypergraphs

Theorem (S.-Verstraëte 2021)

Let K r
s1,...,sr denote the complete r -partite r -graph with parts of sizes

s1, . . . , sr . There exist constants β1, β2, β3, γ depending on s1, . . . , sr such
that, for sr sufficiently large in terms of s1, . . . , sr−1, we have whp

ex(G r
n,p,K

r
s1,...,sr ) =


Θ (pnr ) n−r � p ≤ n−β1 ,

nr−β1+o(1) n−β1 ≤ p ≤ n−β2(log n)γ ,

Θ(p1−β3nr−β3) n−β2(log n)γ ≤ p ≤ 1.



Hypergraphs

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Any hypergraph which is not Sidorenko fails to have a flat middle range.
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Hypergraphs
We define the loose cycle C r

` to be the r -uniform hypergraph obtained by
inserting r − 2 distinct vertices into each edge of the graph cycle C`.

Theorem (Nie-S.-Verstaëte 2020; Nie 2023)

For r ≥ 3, if p � n−r+3/2 then whp

ex(G r
n,p,C

r
3 ) = max{p

1
2r−3 n2+o(1), pnr−1+o(1)}.

Picture due to Jiaxi Nie.
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Hypergraphs

Theorem (Mubayi-Yepremyan 2020; Nie 2023)

For r ≥ 4, if p � n−r+1+ 1
2`−1 then whp

ex(G r
n,p,C

r
2`) = max{n1+

1
2`−1 , pnr−1}.

It’s suspected that this continues to hold for r = 3, but there is a gap for
medium values of p.
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Hypergraphs

We say that F is a Berge C` if it has edges e1, . . . , e` and distinct vertices
v1, . . . , v` with vi ∈ ei ∩ ei+1 for all i .



Hypergraphs

Plot of ex(G 3
n,p,B3(C4))

S.-Verstraëte 2021; Nie 2023



Hypergraphs

Theorem (Nie-S. 20XX (Informal))

If F is a graph and one has upper bounds for ex(Gn,p,F ), then one can
prove corresponding bounds for ex(G r

n,p,Ex
r (F )) and ex(G r

n,p,Br (F )).



Upper Bound Techniques



Upper Bound Techniques

Proof.

Containers.

Proof.

Hypergraph containers.



Upper Bound Techniques

Proof.

Containers.

Proof.

Hypergraph containers.
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Lower Bound Techniques



Sidorenko’s Conjecture

A homomorphism is a map φ : V (F )→ V (H) which maps edges to edges.
Define the homomorphism density

tF (H) =
#homs F → H

v(H)v(F )
.

We say that a hypergraph F is Sidorenko if for all r -graphs H, we have

tF (H) ≥ tK r
r
(H)e(F ).
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Sidorenko’s Conjecture

Conjecture (Sidorenko 1986)

A graph F is Sidorenko if and only if F is bipartite.

Theorem (Conlon-Lee-Sidorenko 2023)

If F is an r -graph which is not Sidorenko, then there exists ε = ε(F ) > 0
such that

ex(n,F ) = Ω(n
r− v(F )−r

e(F )−1
+ε

).
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Sidorenko’s Conjecture

For an r -graph F , define

s(F ) := sup{s : ∃H 6= ∅, tF (H) = tK r
r
(H)s+e(F )}.

Theorem (Nie-S. 2023)

If F is an r -graph with e(F ) ≥ 2 and v(F )−r
e(F )−1 < r , then for any

p = p(n) ≥ n
− v(F )−r

e(F )−1 , we have whp

ex(G r
n,p,F ) ≥ n

r− v(F )−r
e(F )−1

−o(1)
(pn

v(F )−r
e(F )−1 )

s(F )
e(F )−1+s(F ) .
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Proof of Main Theorem

Let ex(G ,F ) be the maximum number of edges in an F -free subgraph of
G , and let NF (G ) denote the number of copies of F in G .

Lemma

If F is an r -graph such that there exists an r -graph H with tK r
r
(H) = α

and tF (H) = β, then for all r -graphs G and integers N ≥ 1 we have

ex(G ,F ) ≥ αNe(G )− βNNF (G ).

Given two r -graphs H,H ′, we define the tensor product H ⊗ H ′ to be
r -graph on V (H)× V (H ′) where ((x1, y1), . . . , (xr , yr )) ∈ E (H ⊗ H ′) if
and only if (x1, . . . , xr ) ∈ E (H) and (y1, . . . , yr ) ∈ E (H ′). We define the
N-fold tensor product H⊗N = H ⊗ · · · ⊗ H.
Fact: for any r -graphs F ,H and N ≥ 1, we have

tF (H⊗N) = tF (H)N .
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Proof of Main Theorem

Lemma

If F is an r -graph such that there exists an r -graph H with tK r
r
(H) = α

and tF (H) = β, then for all r -graphs G and integers N ≥ 1 we have

ex(G ,F ) ≥ αNe(G )− βNNF (G ).

Let φ : V (G )→ V (H⊗N) be chosen uniformly at random, and define
G ′ ⊆ G by keeping the edges which map bijectively to edges.

E[e(G ′)] = tK r
r
(H⊗N) · e(G ) = αN · e(G ),

E[NF (G ′)] = tF (H⊗N) · NF (G ) = βN · NF (G ).

One gets the result by deleting an edge from each copy of F in G ′.
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