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Turán Numbers

This talk concerns r -uniform hypergraphs H (or r -graphs for
short).

This is a set of vertices V (H) together with a set E (H) of
r -element subsets of V (H) called edges. For example, here is a
3-graph on 6 vertices with 3 edges.
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Turán Numbers

Let F be a family of r -graphs. A hypergraph H is said to be
F-free if it contains no F ∈ F as a subgraph.

We define the Turán
number (or extremal number) ex(n,F) to be the maximum
number of edges in an F-free r -graph on n vertices.

Theorem (Mantel, 1907)

ex(n,C3) =
⌊
n2/4

⌋
.

Theorem (Erdős-Stone-Simonovits, 1946)

If F is a graph with χ(F ) = k, then

ex(n,F ) =

(
k − 2

k − 1
+ o(1)

)(
n

2

)
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Turán Numbers

Mantel’s theorem determines ex(n,C3); what happens for
triangle-free hypergraphs?

Define the loose `-cycle C r
` be the

r -graph with e1, . . . , e` and distinct vertices v1, . . . , v` such that
ei ∩ ei+1 = {vi} and ei ∩ ej = ∅ otherwise. For example, here is C 3
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Turán Numbers

Theorem (Frankl-Füredi, 1987)

For r ≥ 3 and n sufficiently large,

ex(n,C r
3 ) =

(
n − 1

r − 1

)
,

with the extremal example being the star Sn,r which has all r -sets
containing a common vertex.



Relative Turán Numbers

Given a family of r -graphs F and an r -graph H, we define the
relative Turán number ex(H,F) to be the maximum number of
edges in an F-free subgraph of H.

For example,
ex(K r

n ,F) = ex(n,F).

Given some F , we wish to determine general lower bounds for
ex(H,F) in terms of e(H) and parameters of H. One parameter
that we will not use is the order of H. Indeed, if m ·H is m disjoint
copies of H, then we have

ex(m · H,F)

e(m · H)
=

ex(H,F)

e(H)
,

so morally speaking the relative Turán problem is the same for H
and m · H despite their number of vertices being incomparable.
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Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree
∆(H) = ∆.

For example, if H = Kn we find

ex(H,F) = ex(n,F) ≈ ex(n,F)n−2 · e(H) ≈ ex(∆,F)∆−2 · e(H).

In particular, the best general bound we could hope to prove for
graphs is

ex(H,F) = Ω(ex(∆,F)∆−2) · e(H).
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Conjecture (Foucaud-Krivelevich-Perarnau, 2014)

Fix some family of graphs F . Then for all H with ∆(H) = ∆,

ex(H,F) = Ω(ex(∆,F)∆−2) · e(H).

That is, they conjectured that Kn is the “worst host” for every
family of graphs F .

Theorem (Perarnau-Reed, 2014)

The above conjecture is true for any F of diameter at most 3, for
{C3, . . . ,C`}, and several other families of graphs.

Somewhat surprisingly they were able to prove these bounds
despite us not knowing what ex(n,F) is for many of these cases.
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Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is
K r
n in general.

If every element of F is not r -partite, then
ex(H,F) ≥ (1 + o(1))π(F)e(H), so the interest is in families of
r -partite r -graphs. For example, we have

ex(K 3
n ,C

3
3 ) = Θ(n2) = Θ(∆−1/2) · e(K 3

n ),

so we might expect that one can prove a corresponding lower
bound for all such H.

Theorem (Nie-S.-Verstraëte, 2020)

For any 3-graph H with maximum degree at most ∆, we have

ex(H,C 3
3 ) ≥ ∆−1/2−o(1) · e(H).

To find a large triangle-free subgraph of H, we will use a
triangle-free 3-graph J as a “template.”
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Random Homomorphisms and C 3
3

Let χ : V (H)→ V (J) be chosen uniformly at random.

Let H ′ ⊆ H
be the subgraph containing the edges e ∈ E (H) with χ(e) ∈ E (J),
i.e. if e = {v1, v2, v3}, then {χ(v1), χ(v2), χ(v3)} ∈ E (J).
Unfortunately H ′ typically won’t be triangle-free even if J is.
Indeed, if {1, 2, 3} ∈ E (J) then a triangle in H will survive if it’s
given the following assignment
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and (2) for any f ∈ E (H) with |f ∩ e| = 1 we have χ(f ) 6= χ(e).This

solves the previous issue, but there are still issues that can happen. For

example, if J is the star 3-graph Sn,3 with common element 1, then a

triangle in H will survive if it’s given the following assignment
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3

It turns out that we can’t get around this issue by putting stronger
restrictions on the edges of H ′. The solution is to consider a J
which forbids other subgraphs so that the above picture can never
appear.

Theorem (Ruzsa-Szemerédi, 1978)

There exists a t-vertex 3-graph Rt with t2−o(1) edges which is
triangle-free and which is linear.
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and (2) for any f ∈ E (H) with |f ∩ e| = 1 we have χ(f ) 6= χ(e).

Claim

H ′ is triangle-free.

Assume e1, e2, e3 ∈ H ′ forms a triangle with ei ∩ ej = {xij}. Note
that χ(xij) ∈ χ(ei ) ∩ χ(ej), and that these vertices must be
distinct (since χ(x12) = χ(x13) implies |χ(e1)| < 3). Further,
|χ(ei ) ∩ χ(ej)| 6= 2, 3. Thus χ(ei ) ∩ χ(ej) = {χ(xij)}. Thus
χ(e1), χ(e2), χ(e3) is a C 3

3 in Rt , a contradiction.
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Theorem (Nie-S.-Verstraëte, 2020)

If H is an r-graph with maximum degree ∆, then

ex(H,C r
3 ) ≥ ∆−

r−2
r−1
−o(1) · e(H).

Is this best possible?

Proposition (Nie-S.-Verstraëte, 2020)

For r ≥ 3 there exists an r-graph H with

ex(H,C r
3 ) = O(∆−1/2) · e(H).

In particular, the worst host is not a clique.
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Codegrees and K 3
2,2,s

A similar approach can be made to work for other F .

For example,
let K 3

2,2,s denote the complete 3-partite 3-graph with parts of sizes
2, 2, and s. If s is sufficiently large it is known that

ex(n,K 3
2,2,s) = Θ(n3−1/4) = O(∆−1/8) · e(K 3

n ).
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Codegrees and K 3
2,2,s

Theorem (S.-Verstraëte, 2020+)

There exists a 3-graph H with maximum degree at most ∆→∞
such that

ex(H,K 3
2,2,s) = O(∆−1/6) · e(H).

Moreover, if s is sufficiently large then for all 3-graphs H with
maximum degree at most ∆→∞ we have

ex(H,K 3
2,2,s) ≥ ∆−1/6−o(1) · e(H).

The proof of the lower bound requires two cases: one where the
host H has small codegrees and one where it has high codegrees.
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Codegrees and K 3
2,2,s

Let us first try and adapt our random homomorphism approach.

We fix some K 3
2,2,s -free 3-graph J on t vertices and randomly

choose χ : V (H)→ V (J). As before we keep an edge e ∈ E (H)
provided (1) χ(e) ∈ E (J) and (2) for any f with |f ∩ e| = 2 we
have χ(f ) 6= χ(e).

One can check that with this our subgraph will be K 3
2,2,s -free. The

condition |f ∩ e| = 1 forced us to take t ≈ ∆1/2 (because roughly
each of the ∆ edges intersecting e had probability 1/t2 of merging
with e). Our new condition forces t ≈ ∆2, the maximum codegree
of H.
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Lemma

If H is a 3-graph with maximum codegree at most D and
ex(n,K 3

2,2,s) = Θ(n3−1/4), then

ex(H,K 3
2,2,s) = Ω(D−1/4) · e(H).

This will give the correct answer of ∆−1/6e(H) when D ≤ ∆2/3,
but we need a new approach for hosts with large codegrees.



Codegrees and K 3
2,2,s

Lemma

If H is a 3-graph with maximum codegree at most D and
ex(n,K 3

2,2,s) = Θ(n3−1/4), then

ex(H,K 3
2,2,s) = Ω(D−1/4) · e(H).

This will give the correct answer of ∆−1/6e(H) when D ≤ ∆2/3,
but we need a new approach for hosts with large codegrees.



Codegrees and K 3
2,2,s

Lemma

If H is 3-partite on V1 ∪ V2 ∪ V3 such that every pair in V1 ∪ V2

has codegree 0 or D, then

ex(H,K 3
2,2,s) ≥ Ω(∆−1/2D1/2) · e(H).

Roughly take G to be the graph induced by V1 ∪ V2, find G ′ ⊆ G
which is C4-free (using Perarnau-Reed), and then lift this to a
subgraph in H.
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By losing a o(1) term one can roughly reduce to the case of the
previous lemma.

Lemma

If H has maximum codegree D then roughly

ex(H,K 3
2,2,s) = Ω(D−1/4) · e(H),

ex(H,K 3
2,2,s) ≥ ∆−1/2−o(1)D1/2 · e(H)

This gives ex(H,K 3
2,2,s) ≥ ∆−1/6−o(1)e(H), and further shows that

if this is sharp the host must have maximum codegree about ∆2/3.
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Lemma

ex(K 3
n,n,n2 ,K

3
2,2,s) = O(∆−1/6) · e(K 3

n,n,n2).



Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)

Let ` ≥ 3. If H is a 3-graph with maximum degree at most
∆→∞, then

ex(H,C 3
` ) ≥ ∆−1+

1
`
−o(1) · e(H).

For all even ` there exists a 3-graph with maximum degree at most
∆→∞ and

ex(H,C 3
` ) ≤ ∆−1+

1
`−1

+o(1) · e(H).

The upper bound uses a random host and results of Mubayi and
Yepremyan.
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Let ` ≥ 3. If H is a 3-graph with maximum degree at most
∆→∞, then

ex(H,C 3
` ) ≥ ∆−1+

1
`
−o(1) · e(H).

For all even ` there exists a 3-graph with maximum degree at most
∆→∞ and

ex(H,C 3
` ) ≤ ∆−1+

1
`−1

+o(1) · e(H).

The upper bound uses a random host and results of Mubayi and
Yepremyan.



Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)
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Other Results: Cycles

We say that F is a Berge C` if it has edges e1, . . . , e` and distinct
vertices v1, . . . , v` with vi ∈ ei ∩ ei+1 for all i . Let Br` denote the
set of r -uniform Berge C`’s.

Proposition

If r > ` then ex(H,Br`) = Ω(∆−1)e(H), and this is best possible.

For the lower bound take a maximal matching of H (which works
for almost all F). The upper bound has H consisting of ∆ edges
containing a common set of size `.
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Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)

If H is a 3-graph with maximum degree at most ∆→∞, then

ex(H,B33) ≥ ∆−1/2−o(1) · e(H),

ex(H,B34) ≥ ∆−3/4−o(1) · e(H),

ex(H,B35) ≥ ∆−3/4−o(1) · e(H).

If H is a 4-graph with maximum degree at most ∆→∞, then

ex(H,B44) ≥ ∆−5/6−o(1) · e(H).

Moreover, all of these bounds are tight up to a factor of o(1).



Random Hosts

Let H r
n,p be the random r -graph on [n] which includes each edge

independently with probability p.

Theorem (S.-Verstraëte, 2020+)

If s is sufficiently large, then a.a.s.

ex(H3
n,p,K

3
2,2,s) =


Θ(pn3) n−3+o(1) log n ≤ p ≤ n−

−s−1
4s−1 ,

n
11s−4
4s−1

+o(1) n
−s−1
4s−1 ≤ p ≤ n

−5
12s−3 ,

p3/4n3−1/4+o(1) n
−5

12s−3 ≤ p.
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Random Hosts

Theorem (S.-Verstraëte, 2020+)

If ` ≥ 3 and ex(n,
⋃`

`′=2 B3`′) ≥ n1+1/b`/2c−o(1), then a.a.s.

ex(H3
n,p, {B32, . . . ,B3`}) ≤ p

1
3b`/2c n1+1/b`/2c+o(1) for p ≥ n−3+

b`/2c
`−1 ,

ex(H3
n,p, {B32, . . . ,B3`}) ≥ p

1
2b`/2c n1+1/b`/2c−o(1) for p ≥ n−2+

b`/2c
`−1 .

Note that the girth problem is trivial for general hosts since
sunflowers give ex(H,Br2) = O(∆−1)e(H).
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Random Hosts

Theorem (S.-Verstraëte, 2020+)

We have a.a.s.

ex(H r
n,p, {Br2, Br3}) =

{
Θ(pnr ) n−3+o(1) ≤ p ≤ n−r+3/2,

p
1

2r−3 n2+o(1) n−r+3/2 ≤ p.

The same lower bound holds for forbidding Br3 or C r
3 , but we do

not have tight upper bounds when r > 3.
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Some Open Problems

Is the o(1) term in the bound ex(H,C 3
3 ) ≥ ∆−1/2−o(1)e(H)

necessary?

Obtain tighter bounds for ex(H,C r
` ), maybe by looking at

ex(H r
n,p,C

r
` ).

Obtain tighter bounds for ex(H r
n,p,
⋃

`′≤` Br`).

Prove bounds for your favorite family of hypergraphs F .
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sspiro@ucsd.edu

www.admonymous.co/samspiro

Link also on my website.

https://www.admonymous.co/samspiro


The End

Thank You!


