Relative Turán Numbers of Hypergraphs

Sam Spiro
UC San Diego

Joint with Jiaxi Nie and Jacques Verstraëte

Turán Numbers

This talk concerns r-uniform hypergraphs H (or r-graphs for short).

Turán Numbers

This talk concerns r-uniform hypergraphs H (or r-graphs for short). This is a set of vertices $V(H)$ together with a set $E(H)$ of r-element subsets of $V(H)$ called edges.

Turán Numbers

This talk concerns r-uniform hypergraphs H (or r-graphs for short). This is a set of vertices $V(H)$ together with a set $E(H)$ of r-element subsets of $V(H)$ called edges. For example, here is a 3 -graph on 6 vertices with 3 edges.

Turán Numbers

Let \mathcal{F} be a family of r-graphs. A hypergraph H is said to be \mathcal{F}-free if it contains no $F \in \mathcal{F}$ as a subgraph.

Turán Numbers

Let \mathcal{F} be a family of r-graphs. A hypergraph H is said to be \mathcal{F}-free if it contains no $F \in \mathcal{F}$ as a subgraph. We define the Turán number (or extremal number) ex (n, \mathcal{F}) to be the maximum number of edges in an \mathcal{F}-free r-graph on n vertices.

Turán Numbers

Let \mathcal{F} be a family of r-graphs. A hypergraph H is said to be \mathcal{F}-free if it contains no $F \in \mathcal{F}$ as a subgraph. We define the Turán number (or extremal number) ex (n, \mathcal{F}) to be the maximum number of edges in an \mathcal{F}-free r-graph on n vertices.

Theorem (Mantel, 1907)

$$
\operatorname{ex}\left(n, C_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor
$$

Turán Numbers

Let \mathcal{F} be a family of r-graphs. A hypergraph H is said to be \mathcal{F}-free if it contains no $F \in \mathcal{F}$ as a subgraph. We define the Turán number (or extremal number) ex (n, \mathcal{F}) to be the maximum number of edges in an \mathcal{F}-free r-graph on n vertices.
Theorem (Mantel, 1907)

$$
\operatorname{ex}\left(n, C_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Theorem (Erdős-Stone-Simonovits, 1946)

If F is a graph with $\chi(F)=k$, then

$$
\operatorname{ex}(n, F)=\left(\frac{k-2}{k-1}+o(1)\right)\binom{n}{2}
$$

Turán Numbers

Mantel's theorem determines ex $\left(n, C_{3}\right)$; what happens for triangle-free hypergraphs?

Turán Numbers

Mantel's theorem determines ex $\left(n, C_{3}\right)$; what happens for triangle-free hypergraphs? Define the loose ℓ-cycle C_{ℓ}^{r} be the r-graph with e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} such that $e_{i} \cap e_{i+1}=\left\{v_{i}\right\}$ and $e_{i} \cap e_{j}=\emptyset$ otherwise. For example, here is C_{3}^{3}.

Turán Numbers

Theorem (Frankl-Füredi, 1987)

For $r \geq 3$ and n sufficiently large,

$$
\operatorname{ex}\left(n, C_{3}^{r}\right)=\binom{n-1}{r-1}
$$

with the extremal example being the star $S_{n, r}$ which has all r-sets containing a common vertex.

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H.

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H. For example, $\mathrm{ex}\left(K_{n}^{r}, \mathcal{F}\right)=\mathrm{ex}(n, \mathcal{F})$.

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H. For example, $\operatorname{ex}\left(K_{n}^{r}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

Given some \mathcal{F}, we wish to determine general lower bounds for ex (H, \mathcal{F}) in terms of $e(H)$ and parameters of H.

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H. For example, $\operatorname{ex}\left(K_{n}^{r}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

Given some \mathcal{F}, we wish to determine general lower bounds for ex (H, \mathcal{F}) in terms of $e(H)$ and parameters of H. One parameter that we will not use is the order of H.

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H. For example, $\operatorname{ex}\left(K_{n}^{r}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

Given some \mathcal{F}, we wish to determine general lower bounds for ex (H, \mathcal{F}) in terms of $e(H)$ and parameters of H. One parameter that we will not use is the order of H. Indeed, if $m \cdot H$ is m disjoint copies of H, then we have

$$
\frac{\mathrm{ex}(m \cdot H, \mathcal{F})}{e(m \cdot H)}=\frac{\operatorname{ex}(H, \mathcal{F})}{e(H)}
$$

Relative Turán Numbers

Given a family of r-graphs \mathcal{F} and an r-graph H, we define the relative Turán number $\operatorname{ex}(H, \mathcal{F})$ to be the maximum number of edges in an \mathcal{F}-free subgraph of H. For example, $\operatorname{ex}\left(K_{n}^{r}, \mathcal{F}\right)=\operatorname{ex}(n, \mathcal{F})$.

Given some \mathcal{F}, we wish to determine general lower bounds for ex (H, \mathcal{F}) in terms of $e(H)$ and parameters of H. One parameter that we will not use is the order of H. Indeed, if $m \cdot H$ is m disjoint copies of H, then we have

$$
\frac{\operatorname{ex}(m \cdot H, \mathcal{F})}{e(m \cdot H)}=\frac{\operatorname{ex}(H, \mathcal{F})}{e(H)}
$$

so morally speaking the relative Turán problem is the same for H and $m \cdot H$ despite their number of vertices being incomparable.

Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree $\Delta(H)=\Delta$.

Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree $\Delta(H)=\Delta$. For example, if $H=K_{n}$ we find

$$
\operatorname{ex}(H, \mathcal{F})=\operatorname{ex}(n, \mathcal{F})
$$

Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree $\Delta(H)=\Delta$. For example, if $H=K_{n}$ we find

$$
\operatorname{ex}(H, \mathcal{F})=\operatorname{ex}(n, \mathcal{F}) \approx \operatorname{ex}(n, \mathcal{F}) n^{-2} \cdot e(H)
$$

Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree $\Delta(H)=\Delta$. For example, if $H=K_{n}$ we find

$$
\operatorname{ex}(H, \mathcal{F})=\operatorname{ex}(n, \mathcal{F}) \approx \operatorname{ex}(n, \mathcal{F}) n^{-2} \cdot e(H) \approx \operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2} \cdot e(H)
$$

Relative Turán Numbers

A more robust statistic than the order of H is its maximum degree $\Delta(H)=\Delta$. For example, if $H=K_{n}$ we find
$\operatorname{ex}(H, \mathcal{F})=\operatorname{ex}(n, \mathcal{F}) \approx \operatorname{ex}(n, \mathcal{F}) n^{-2} \cdot e(H) \approx \operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2} \cdot e(H)$.
In particular, the best general bound we could hope to prove for graphs is

$$
\operatorname{ex}(H, \mathcal{F})=\Omega\left(\operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2}\right) \cdot e(H)
$$

Relative Turán Numbers

Conjecture (Foucaud-Krivelevich-Perarnau, 2014)
Fix some family of graphs \mathcal{F}. Then for all H with $\Delta(H)=\Delta$,

$$
\operatorname{ex}(H, \mathcal{F})=\Omega\left(\operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2}\right) \cdot e(H)
$$

Relative Turán Numbers

Conjecture (Foucaud-Krivelevich-Perarnau, 2014)
Fix some family of graphs \mathcal{F}. Then for all H with $\Delta(H)=\Delta$,

$$
\operatorname{ex}(H, \mathcal{F})=\Omega\left(\operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2}\right) \cdot e(H)
$$

That is, they conjectured that K_{n} is the "worst host" for every family of graphs \mathcal{F}.

Relative Turán Numbers

Conjecture (Foucaud-Krivelevich-Perarnau, 2014)

Fix some family of graphs \mathcal{F}. Then for all H with $\Delta(H)=\Delta$,

$$
\operatorname{ex}(H, \mathcal{F})=\Omega\left(\operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2}\right) \cdot e(H)
$$

That is, they conjectured that K_{n} is the "worst host" for every family of graphs \mathcal{F}.

Theorem (Perarnau-Reed, 2014)

The above conjecture is true for any F of diameter at most 3, for $\left\{C_{3}, \ldots, C_{\ell}\right\}$, and several other families of graphs.

Relative Turán Numbers

Conjecture (Foucaud-Krivelevich-Perarnau, 2014)

Fix some family of graphs \mathcal{F}. Then for all H with $\Delta(H)=\Delta$,

$$
\operatorname{ex}(H, \mathcal{F})=\Omega\left(\operatorname{ex}(\Delta, \mathcal{F}) \Delta^{-2}\right) \cdot e(H)
$$

That is, they conjectured that K_{n} is the "worst host" for every family of graphs \mathcal{F}.

Theorem (Perarnau-Reed, 2014)

The above conjecture is true for any F of diameter at most 3, for $\left\{C_{3}, \ldots, C_{\ell}\right\}$, and several other families of graphs.

Somewhat surprisingly they were able to prove these bounds despite us not knowing what ex (n, \mathcal{F}) is for many of these cases.

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general.

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general. If every element of \mathcal{F} is not r-partite, then $\operatorname{ex}(H, \mathcal{F}) \geq(1+o(1)) \pi(\mathcal{F}) e(H)$, so the interest is in families of r-partite r-graphs.

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general. If every element of \mathcal{F} is not r-partite, then $\operatorname{ex}(H, \mathcal{F}) \geq(1+o(1)) \pi(\mathcal{F}) e(H)$, so the interest is in families of r-partite r-graphs. For example, we have

$$
\operatorname{ex}\left(K_{n}^{3}, C_{3}^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(\Delta^{-1 / 2}\right) \cdot e\left(K_{n}^{3}\right)
$$

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general. If every element of \mathcal{F} is not r-partite, then $\operatorname{ex}(H, \mathcal{F}) \geq(1+o(1)) \pi(\mathcal{F}) e(H)$, so the interest is in families of r-partite r-graphs. For example, we have

$$
\operatorname{ex}\left(K_{n}^{3}, C_{3}^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(\Delta^{-1 / 2}\right) \cdot e\left(K_{n}^{3}\right)
$$

so we might expect that one can prove a corresponding lower bound for all such H.

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general. If every element of \mathcal{F} is not r-partite, then $\mathrm{ex}(H, \mathcal{F}) \geq(1+o(1)) \pi(\mathcal{F}) e(H)$, so the interest is in families of r-partite r-graphs. For example, we have

$$
\operatorname{ex}\left(K_{n}^{3}, C_{3}^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(\Delta^{-1 / 2}\right) \cdot e\left(K_{n}^{3}\right)
$$

so we might expect that one can prove a corresponding lower bound for all such H.

Theorem (Nie-S.-Verstraëte, 2020)

For any 3-graph H with maximum degree at most Δ, we have

$$
\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} \cdot e(H)
$$

Relative Turán Numbers

One might also conjecture that for hypergraphs the worst host is K_{n}^{r} in general. If every element of \mathcal{F} is not r-partite, then $\mathrm{ex}(H, \mathcal{F}) \geq(1+o(1)) \pi(\mathcal{F}) e(H)$, so the interest is in families of r-partite r-graphs. For example, we have

$$
\operatorname{ex}\left(K_{n}^{3}, C_{3}^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(\Delta^{-1 / 2}\right) \cdot e\left(K_{n}^{3}\right)
$$

so we might expect that one can prove a corresponding lower bound for all such H.

Theorem (Nie-S.-Verstraëte, 2020)

For any 3-graph H with maximum degree at most Δ, we have

$$
\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} \cdot e(H)
$$

To find a large triangle-free subgraph of H, we will use a triangle-free 3-graph J as a "template."

Random Homomorphisms and C_{3}^{3}

Let $\chi: V(H) \rightarrow V(J)$ be chosen uniformly at random.

Random Homomorphisms and C_{3}^{3}

Let $\chi: V(H) \rightarrow V(J)$ be chosen uniformly at random. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$, i.e. if $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, then $\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\} \in E(J)$.

Random Homomorphisms and C_{3}^{3}

Let $\chi: V(H) \rightarrow V(J)$ be chosen uniformly at random. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$, i.e. if $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, then $\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\} \in E(J)$.

Unfortunately H^{\prime} typically won't be triangle-free even if J is.

Random Homomorphisms and C_{3}^{3}

Let $\chi: V(H) \rightarrow V(J)$ be chosen uniformly at random. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$, i.e. if $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, then $\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\} \in E(J)$. Unfortunately H^{\prime} typically won't be triangle-free even if J is. Indeed, if $\{1,2,3\} \in E(J)$ then a triangle in H will survive if it's given the following assignment

Random Homomorphisms and C_{3}^{3}

Random Homomorphisms and C_{3}^{3}

Redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$

Random Homomorphisms and C_{3}^{3}

Redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Random Homomorphisms and C_{3}^{3}

Redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. This solves the previous issue, but there are still issues that can happen.

Random Homomorphisms and C_{3}^{3}

Redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. This solves the previous issue, but there are still issues that can happen. For example, if J is the star 3 -graph $S_{n, 3}$ with common element 1 , then a triangle in H will survive if it's given the following assignment

Random Homomorphisms and C_{3}^{3}

Random Homomorphisms and C_{3}^{3}

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}.

Random Homomorphisms and C_{3}^{3}

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}. The solution is to consider a J which forbids other subgraphs so that the above picture can never appear.

Random Homomorphisms and C_{3}^{3}

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}. The solution is to consider a J which forbids other subgraphs so that the above picture can never appear.

Theorem (Ruzsa-Szemerédi, 1978)

There exists a t-vertex 3-graph R_{t} with $t^{2-o(1)}$ edges which is triangle-free and which is linear.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (since $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$ implies $\left.\left|\chi\left(e_{1}\right)\right|<3\right)$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (since $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$ implies $\left.\left|\chi\left(e_{1}\right)\right|<3\right)$. Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (since $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$ implies $\left.\left|\chi\left(e_{1}\right)\right|<3\right)$. Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (since $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$ implies $\left.\left|\chi\left(e_{1}\right)\right|<3\right)$. Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$. Thus $\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)=\left\{\chi\left(x_{i j}\right)\right\}$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (since $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$ implies $\left.\left|\chi\left(e_{1}\right)\right|<3\right)$. Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$. Thus $\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)=\left\{\chi\left(x_{i j}\right)\right\}$. Thus $\chi\left(e_{1}\right), \chi\left(e_{2}\right), \chi\left(e_{3}\right)$ is a C_{3}^{3} in R_{t}, a contradiction.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$?

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}
$$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?

Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$.

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}
$$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}=\Delta^{-1 / 2-o(1)} .
$$

Random Homomorphisms and C_{3}^{3}

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) for any $f \in E(H)$ with $|f \cap e|=1$ we have $\chi(f) \neq \chi(e)$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|f \cap e|=1$ has $\chi(f)=\chi(e)$ is at most $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}=\Delta^{-1 / 2-o(1)} .
$$

Linearity of expectation then gives $\mathbb{E}\left[e\left(H^{\prime}\right)\right] \geq \Delta^{-1 / 2-o(1)} e(H)$.

Random Homomorphisms and C_{3}^{3}

Theorem (Nie-S.-Verstraëte, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, C_{3}^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} \cdot e(H)
$$

Random Homomorphisms and C_{3}^{3}

Theorem (Nie-S.-Verstraëte, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, C_{3}^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} \cdot e(H)
$$

Is this best possible?

Random Homomorphisms and C_{3}^{3}

Theorem (Nie-S.-Verstraëte, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, C_{3}^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} \cdot e(H)
$$

Is this best possible?
Proposition (Nie-S.-Verstraëte, 2020)
For $r \geq 3$ there exists an r-graph H with

$$
\operatorname{ex}\left(H, C_{3}^{r}\right)=O\left(\Delta^{-1 / 2}\right) \cdot e(H)
$$

Random Homomorphisms and C_{3}^{3}

Theorem (Nie-S.-Verstraëte, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, C_{3}^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} \cdot e(H)
$$

Is this best possible?
Proposition (Nie-S.-Verstraëte, 2020)
For $r \geq 3$ there exists an r-graph H with

$$
\operatorname{ex}\left(H, C_{3}^{r}\right)=O\left(\Delta^{-1 / 2}\right) \cdot e(H)
$$

In particular, the worst host is not a clique.

Codegrees and $K_{2,2, s}^{3}$

A similar approach can be made to work for other \mathcal{F}.

Codegrees and $K_{2,2, s}^{3}$

A similar approach can be made to work for other \mathcal{F}. For example, let $K_{2,2, s}^{3}$ denote the complete 3-partite 3-graph with parts of sizes 2,2 , and s.

Codegrees and $K_{2,2, s}^{3}$

A similar approach can be made to work for other \mathcal{F}. For example, let $K_{2,2, s}^{3}$ denote the complete 3-partite 3-graph with parts of sizes 2,2 , and s. If s is sufficiently large it is known that

$$
\operatorname{ex}\left(n, K_{2,2, s}^{3}\right)=\Theta\left(n^{3-1 / 4}\right)=O\left(\Delta^{-1 / 8}\right) \cdot e\left(K_{n}^{3}\right)
$$

Codegrees and $K_{2,2, s}^{3}$

Theorem (S.-Verstraëte, 2020+)

There exists a 3-graph H with maximum degree at most $\Delta \rightarrow \infty$ such that

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=O\left(\Delta^{-1 / 6}\right) \cdot e(H)
$$

Codegrees and $K_{2,2, s}^{3}$

Theorem (S.-Verstraëte, 2020+)

There exists a 3-graph H with maximum degree at most $\Delta \rightarrow \infty$ such that

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=O\left(\Delta^{-1 / 6}\right) \cdot e(H)
$$

Moreover, if s is sufficiently large then for all 3-graphs H with maximum degree at most $\Delta \rightarrow \infty$ we have

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Delta^{-1 / 6-o(1)} \cdot e(H)
$$

Codegrees and $K_{2,2, s}^{3}$

Theorem (S.-Verstraëte, 2020+)

There exists a 3-graph H with maximum degree at most $\Delta \rightarrow \infty$ such that

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=O\left(\Delta^{-1 / 6}\right) \cdot e(H)
$$

Moreover, if s is sufficiently large then for all 3-graphs H with maximum degree at most $\Delta \rightarrow \infty$ we have

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Delta^{-1 / 6-o(1)} \cdot e(H)
$$

The proof of the lower bound requires two cases: one where the host H has small codegrees and one where it has high codegrees.

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach.

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2, s}^{3}-$ free 3 -graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$.

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2,5}^{3}$-free 3-graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$. As before we keep an edge $e \in E(H)$ provided (1) $\chi(e) \in E(J)$

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2,5}^{3}$-free 3-graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$. As before we keep an edge $e \in E(H)$ provided (1) $\chi(e) \in E(J)$ and (2) for any f with $|f \cap e|=\mathbf{2}$ we have $\chi(f) \neq \chi(e)$.

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2, s}^{3}-$ free 3 -graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$. As before we keep an edge $e \in E(H)$ provided (1) $\chi(e) \in E(J)$ and (2) for any f with $|f \cap e|=2$ we have $\chi(f) \neq \chi(e)$.

One can check that with this our subgraph will be $K_{2,2, s}^{3}$-free.

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2, s}^{3}-$ free 3 -graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$. As before we keep an edge $e \in E(H)$ provided (1) $\chi(e) \in E(J)$ and (2) for any f with $|f \cap e|=\mathbf{2}$ we have $\chi(f) \neq \chi(e)$.

One can check that with this our subgraph will be $K_{2,2,5}^{3}-$ free. The condition $|f \cap e|=1$ forced us to take $t \approx \Delta^{1 / 2}$ (because roughly each of the Δ edges intersecting e had probability $1 / t^{2}$ of merging with e).

Codegrees and $K_{2,2, s}^{3}$

Let us first try and adapt our random homomorphism approach. We fix some $K_{2,2, s}^{3}-$ free 3 -graph J on t vertices and randomly choose $\chi: V(H) \rightarrow V(J)$. As before we keep an edge $e \in E(H)$ provided (1) $\chi(e) \in E(J)$ and (2) for any f with $|f \cap e|=\mathbf{2}$ we have $\chi(f) \neq \chi(e)$.

One can check that with this our subgraph will be $K_{2,2,5}^{3}-$ free. The condition $|f \cap e|=1$ forced us to take $t \approx \Delta^{1 / 2}$ (because roughly each of the Δ edges intersecting e had probability $1 / t^{2}$ of merging with e). Our new condition forces $t \approx \Delta_{2}$, the maximum codegree of H.

Codegrees and $K_{2,2, s}^{3}$

Lemma

If H is a 3-graph with maximum codegree at most D and $\operatorname{ex}\left(n, K_{2,2, s}^{3}\right)=\Theta\left(n^{3-1 / 4}\right)$, then

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=\Omega\left(D^{-1 / 4}\right) \cdot e(H)
$$

Codegrees and $K_{2,2, s}^{3}$

Lemma

If H is a 3-graph with maximum codegree at most D and $\operatorname{ex}\left(n, K_{2,2, s}^{3}\right)=\Theta\left(n^{3-1 / 4}\right)$, then

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=\Omega\left(D^{-1 / 4}\right) \cdot e(H)
$$

This will give the correct answer of $\Delta^{-1 / 6} e(H)$ when $D \leq \Delta^{2 / 3}$, but we need a new approach for hosts with large codegrees.

Codegrees and $K_{2,2, s}^{3}$

Lemma

If H is 3-partite on $V_{1} \cup V_{2} \cup V_{3}$ such that every pair in $V_{1} \cup V_{2}$ has codegree 0 or D, then

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Omega\left(\Delta^{-1 / 2} D^{1 / 2}\right) \cdot e(H) .
$$

Codegrees and $K_{2,2, s}^{3}$

Lemma

If H is 3-partite on $V_{1} \cup V_{2} \cup V_{3}$ such that every pair in $V_{1} \cup V_{2}$ has codegree 0 or D, then

$$
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Omega\left(\Delta^{-1 / 2} D^{1 / 2}\right) \cdot e(H)
$$

Roughly take G to be the graph induced by $V_{1} \cup V_{2}$, find $G^{\prime} \subseteq G$ which is C_{4}-free (using Perarnau-Reed), and then lift this to a subgraph in H.

Codegrees and $K_{2,2, s}^{3}$

By losing a o(1) term one can roughly reduce to the case of the previous lemma.

Codegrees and $K_{2,2, s}^{3}$

By losing a o(1) term one can roughly reduce to the case of the previous lemma.

Lemma

If H has maximum codegree D then roughly

$$
\begin{gathered}
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=\Omega\left(D^{-1 / 4}\right) \cdot e(H) \\
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Delta^{-1 / 2-o(1)} D^{1 / 2} \cdot e(H)
\end{gathered}
$$

Codegrees and $K_{2,2, s}^{3}$

By losing a o(1) term one can roughly reduce to the case of the previous lemma.

Lemma

If H has maximum codegree D then roughly

$$
\begin{gathered}
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right)=\Omega\left(D^{-1 / 4}\right) \cdot e(H) \\
\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Delta^{-1 / 2-o(1)} D^{1 / 2} \cdot e(H)
\end{gathered}
$$

This gives $\operatorname{ex}\left(H, K_{2,2, s}^{3}\right) \geq \Delta^{-1 / 6-o(1)} e(H)$, and further shows that if this is sharp the host must have maximum codegree about $\Delta^{2 / 3}$.

Codegrees and $K_{2,2, s}^{3}$

$$
\operatorname{ex}\left(K_{n, n, n^{2}}^{3}, K_{2,2, s}^{3}\right)=O\left(\Delta^{-1 / 6}\right) \cdot e\left(K_{n, n, n^{2}}^{3}\right) .
$$

Other Results：Cycles

Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)
Let $\ell \geq 3$. If H is a 3 -graph with maximum degree at most $\Delta \rightarrow \infty$, then

$$
\operatorname{ex}\left(H, C_{\ell}^{3}\right) \geq \Delta^{-1+\frac{1}{\ell}-o(1)} \cdot e(H)
$$

Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)

Let $\ell \geq 3$. If H is a 3 -graph with maximum degree at most $\Delta \rightarrow \infty$, then

$$
\operatorname{ex}\left(H, C_{\ell}^{3}\right) \geq \Delta^{-1+\frac{1}{\ell}-o(1)} \cdot e(H)
$$

For all even ℓ there exists a 3-graph with maximum degree at most $\Delta \rightarrow \infty$ and

$$
e x\left(H, C_{\ell}^{3}\right) \leq \Delta^{-1+\frac{1}{\ell-1}+o(1)} \cdot e(H)
$$

Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)

Let $\ell \geq 3$. If H is a 3 -graph with maximum degree at most $\Delta \rightarrow \infty$, then

$$
\operatorname{ex}\left(H, C_{\ell}^{3}\right) \geq \Delta^{-1+\frac{1}{\ell}-o(1)} \cdot e(H)
$$

For all even ℓ there exists a 3-graph with maximum degree at most $\Delta \rightarrow \infty$ and

$$
e x\left(H, C_{\ell}^{3}\right) \leq \Delta^{-1+\frac{1}{\ell-1}+o(1)} \cdot e(H)
$$

The upper bound uses a random host and results of Mubayi and Yepremyan.

Other Results: Cycles

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i. Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's.

Figures due to Ruth Luo

Other Results: Cycles

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i. Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's.

Proposition

If $r>\ell$ then $\operatorname{ex}\left(H, \mathcal{B}_{\ell}^{r}\right)=\Omega\left(\Delta^{-1}\right) e(H)$, and this is best possible.

Other Results: Cycles

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i. Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's.

Proposition

If $r>\ell$ then $\operatorname{ex}\left(H, \mathcal{B}_{\ell}^{r}\right)=\Omega\left(\Delta^{-1}\right) e(H)$, and this is best possible.
For the lower bound take a maximal matching of H (which works for almost all \mathcal{F}).

Other Results: Cycles

We say that F is a Berge C_{ℓ} if it has edges e_{1}, \ldots, e_{ℓ} and distinct vertices v_{1}, \ldots, v_{ℓ} with $v_{i} \in e_{i} \cap e_{i+1}$ for all i. Let \mathcal{B}_{ℓ}^{r} denote the set of r-uniform Berge C_{ℓ} 's.

Proposition

If $r>\ell$ then $\operatorname{ex}\left(H, \mathcal{B}_{\ell}^{r}\right)=\Omega\left(\Delta^{-1}\right) e(H)$, and this is best possible.
For the lower bound take a maximal matching of H (which works for almost all \mathcal{F}). The upper bound has H consisting of Δ edges containing a common set of size ℓ.

Other Results: Cycles

Theorem (S.-Verstraëte, 2020+)

If H is a 3-graph with maximum degree at most $\Delta \rightarrow \infty$, then

$$
\begin{aligned}
& \operatorname{ex}\left(H, \mathcal{B}_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} \cdot e(H) \\
& \operatorname{ex}\left(H, \mathcal{B}_{4}^{3}\right) \geq \Delta^{-3 / 4-o(1)} \cdot e(H) \\
& \operatorname{ex}\left(H, \mathcal{B}_{5}^{3}\right) \geq \Delta^{-3 / 4-o(1)} \cdot e(H)
\end{aligned}
$$

If H is a 4-graph with maximum degree at most $\Delta \rightarrow \infty$, then

$$
\operatorname{ex}\left(H, \mathcal{B}_{4}^{4}\right) \geq \Delta^{-5 / 6-o(1)} \cdot e(H)
$$

Moreover, all of these bounds are tight up to a factor of o(1).

Random Hosts

Let $H_{n, p}^{r}$ be the random r-graph on [n] which includes each edge independently with probability p.

Random Hosts

Let $H_{n, p}^{r}$ be the random r-graph on [n] which includes each edge independently with probability p.

Theorem (S.-Verstraëte, 2020+)

If s is sufficiently large, then a.a.s.

$$
\operatorname{ex}\left(H_{n, p}^{3}, K_{2,2, s}^{3}\right)= \begin{cases}\Theta\left(p n^{3}\right) & n^{-3+o(1)} \log n \leq p \leq \\ n^{\frac{1 s-4}{4 s-1}+o(1)} & n^{\frac{-s-1}{4 s-1}} \leq p \leq n^{\frac{-5}{12 s-3}} \\ p^{3 / 4} n^{3-1 / 4+o(1)} & n^{\frac{-5}{12 s-3}} \leq p .\end{cases}
$$

Random Hosts

Theorem (S.-Verstraëte, 2020+)
If $\ell \geq 3$ and $\operatorname{ex}\left(n, \bigcup_{\ell^{\prime}=2}^{\ell} \mathcal{B}_{\ell^{\prime}}^{3}\right) \geq n^{1+1 /\lfloor\ell / 2\rfloor-o(1)}$, then a.a.s.
$\operatorname{ex}\left(H_{n, p}^{3},\left\{\mathcal{B}_{2}^{3}, \ldots, \mathcal{B}_{\ell}^{3}\right\}\right) \leq p^{\frac{1}{3\lfloor\ell / 2\rfloor}} n^{1+1 /\lfloor\ell / 2\rfloor+o(1)}$ for $p \geq n^{-3+\frac{\lfloor\ell / 2\rfloor}{\ell-1}}$,
$\operatorname{ex}\left(H_{n, p}^{3},\left\{\mathcal{B}_{2}^{3}, \ldots, \mathcal{B}_{\ell}^{3}\right\}\right) \geq p^{\frac{1}{2\lfloor\ell / 2\rfloor}} n^{1+1 /\lfloor\ell / 2\rfloor-o(1)}$ for $p \geq n^{-2+\frac{\lfloor\ell / 2\rfloor}{\ell-1}}$.

Random Hosts

Theorem (S.-Verstraëte, 2020+)

If $\ell \geq 3$ and $\operatorname{ex}\left(n, \bigcup_{\ell^{\prime}=2}^{\ell} \mathcal{B}_{\ell^{\prime}}^{3}\right) \geq n^{1+1 /\lfloor\ell / 2\rfloor-o(1)}$, then a.a.s.

$$
\begin{aligned}
& \operatorname{ex}\left(H_{n, p}^{3},\left\{\mathcal{B}_{2}^{3}, \ldots, \mathcal{B}_{\ell}^{3}\right\}\right) \leq p^{\frac{1}{3 \ell / 2\rfloor}} n^{1+1 /\lfloor\ell / 2\rfloor+o(1)} \text { for } p \geq n^{-3+\frac{\lfloor\ell / 2\rfloor}{\ell-1}}, \\
& \operatorname{ex}\left(H_{n, p}^{3},\left\{\mathcal{B}_{2}^{3}, \ldots, \mathcal{B}_{\ell}^{3}\right\}\right) \geq p^{\frac{1}{2\lfloor\ell / 2\rfloor}} n^{1+1 /\lfloor\ell / 2\rfloor-o(1)} \text { for } p \geq n^{-2+\frac{\lfloor\ell / 2\rfloor}{\ell-1}} .
\end{aligned}
$$

Note that the girth problem is trivial for general hosts since sunflowers give ex $\left(H, \mathcal{B}_{2}^{r}\right)=O\left(\Delta^{-1}\right) e(H)$.

Random Hosts

Theorem (S.-Verstraëte, 2020+)
We have a.a.s.

$$
\operatorname{ex}\left(H_{n, p}^{r},\left\{\mathcal{B}_{2}^{r}, \mathcal{B}_{3}^{r}\right\}\right)= \begin{cases}\Theta\left(p n^{r}\right) & n^{-3+o(1)} \leq p \leq n^{-r+3 / 2} \\ p^{\frac{1}{2 r-3}} n^{2+o(1)} & n^{-r+3 / 2} \leq p\end{cases}
$$

Random Hosts

Theorem (S.-Verstraëte, 2020+)

We have a.a.s.

$$
\operatorname{ex}\left(H_{n, p}^{r},\left\{\mathcal{B}_{2}^{r}, \mathcal{B}_{3}^{r}\right\}\right)= \begin{cases}\Theta\left(p n^{r}\right) & n^{-3+o(1)} \leq p \leq n^{-r+3 / 2} \\ p^{\frac{1}{r-3}} n^{2+o(1)} & n^{-r+3 / 2} \leq p\end{cases}
$$

The same lower bound holds for forbidding \mathcal{B}_{3}^{r} or C_{3}^{r}, but we do not have tight upper bounds when $r>3$.

Some Open Problems

Some Open Problems

- Is the $o(1)$ term in the bound $\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)$ necessary?

Some Open Problems

- Is the $o(1)$ term in the bound $\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)$ necessary?
■ Obtain tighter bounds for $\operatorname{ex}\left(H, C_{\ell}^{r}\right)$, maybe by looking at $\mathrm{ex}\left(H_{n, p}^{r}, C_{\ell}^{r}\right)$.

Some Open Problems

- Is the $o(1)$ term in the bound $\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)$ necessary?
■ Obtain tighter bounds for $\operatorname{ex}\left(H, C_{\ell}^{r}\right)$, maybe by looking at ex $\left(H_{n, p}^{r}, C_{\ell}^{r}\right)$.
- Obtain tighter bounds for ex $\left(H_{n, p}^{r}, \bigcup_{\ell^{\prime} \leq \ell} \mathcal{B}_{\ell}^{r}\right)$.

Some Open Problems

- Is the o(1) term in the bound $\operatorname{ex}\left(H, C_{3}^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)$ necessary?
■ Obtain tighter bounds for ex $\left(H, C_{\ell}^{r}\right)$, maybe by looking at ex $\left(H_{n, p}^{r}, C_{\ell}^{r}\right)$.
- Obtain tighter bounds for ex $\left(H_{n, p}^{r}, \bigcup_{\ell^{\prime} \leq \ell} \mathcal{B}_{\ell}^{r}\right)$.

■ Prove bounds for your favorite family of hypergraphs \mathcal{F}.

How'd This Go?

sspiro@ucsd.edu

www.admonymous.co/samspiro

Link also on my website.

The End

Thank You!

