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The game starts with an initially empty graph G on n vertices.
Max and Mini alternate turns adding a new edge to G, with the
only restriction being that neither play can add an edge that would
create some F € F as a subgraph in G. The game ends when no
more edges can be added to G (that is, when G is F-saturated).

When the game ends, Max gets a point for every edge in G at the
end of the game and Mini loses a point for every edge in G. Thus
Max wants the game to last as long as possible, while Mini wants
the game to end as quickly as possible.
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The F-saturation game

Example: the {C3}-saturation game. Max goes first.

The graph is now Cs-saturated so the game ends. Max gets 4
points (the best he could possibly do) and Mini loses 4 points.



The F-game saturation number

Let satg(F; n) denote the number of edges in G at the end of the
JF-saturation game when both players play optimally. The goal is to
find this value, which is known as the F-game saturation number.



The F-game saturation number

Let satg(F; n) denote the number of edges in G at the end of the
JF-saturation game when both players play optimally. The goal is to
find this value, which is known as the F-game saturation number.

n—1<satgs({G};n) < L%nﬂ.
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The F-game saturation number

Theorem (Furedi-Reimer-Sersess, 1992)

satg({Gs};n) > %n log n+ o(nlog n).

Theorem (Biré-Horn-Wildstrom, 2014)

satg({Gslin) < oor i + (i)

These are the only known bounds for the triangle-free game. Our
goal is to establish a lower bound for a related game, namely the
{ G5, Cs}-saturation game. Key idea: Max can force the graph to
be bipartite throughout this game.
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The { G, Cs}-saturation game

In general, let X' denote X after t edges have been added in the

game, e.g. G! denotes the graph after t edges have been played,

e’ denotes the edge added at time t, etc. Max wishes to end each

of his turns such that G! satisfies the following conditions.

(1*) G' contains exactly one non-trivial connected component, and
this component is bipartite with biparittion Ut U V.

Identify two adjacent vertices u € Ut, v € V. Let

Uf = U*\ N(v)* and V{ = V*\ N(u)" (the bad vertices).

2*%) Every vertex of Ut U V! is adjacent to a vertex in
( y ]
N(u)t U N(v)t.

How can Max play so that he can achieve this?
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The { G, Cs}-saturation game

Inductively assume that Max plays so G!~2 satisfies (1*) and (2%).
What if et~ = v/v/, v/, v/ € VI72?

u N(v)! Uf



The { G, Cs}-saturation game

Let t be such that G* satisfies (1*) and (2*). Then U1 and

V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.



The { G, Gs}-saturation game

Lemma

Let t be such that G* satisfies (1*) and (2*). Then U1 and
V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.

Proof.

U* and V' are independent sets since G satisfies (1*). Assume
ettl = v/v/ with v/, v/ € V1.



The { G, Gs}-saturation game

Lemma

Let t be such that G* satisfies (1*) and (2*). Then U1 and
V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.

Proof.

U* and V' are independent sets since G satisfies (1*). Assume
et™ = v/v/ with v/, v € V. By (2*) there exists u', u” € N(v)*
that are neighbors of v/ and v".



The { G, Gs}-saturation game

Lemma

Let t be such that G* satisfies (1*) and (2*). Then U1 and
V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.

Proof

U* and V' are independent sets since G satisfies (1*). Assume
et™ = v/v/ with v/, v € V. By (2*) there exists u', u” € N(v)*
that are nelghbors of v/ and v". If v/ = u”, then G'*! contains
the 3-cycle v/u'v”, otherwise it contains the 5-cycle v/u'vu”v".



The { G, Gs}-saturation game

Lemma

Let t be such that G* satisfies (1*) and (2*). Then U1 and
V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.

Proof

U* and V' are independent sets since G satisfies (1*). Assume
et™ = v/v/ with v/, v € V. By (2*) there exists u', u” € N(v)*
that are nelghbors of v/ and v". If v/ = u”, then G'*! contains
the 3-cycle v/u'v”, otherwise it contains the 5-cycle v/u'vu”v".
These cycles are forbldden, a contradiction. [



The { G, Gs}-saturation game

Lemma

Let t be such that G* satisfies (1*) and (2*). Then U1 and
V't are independent sets for any valid choice of et*1 in the
{Gs, Cs}-saturation game for k > 2.

Proof

U* and V' are independent sets since G satisfies (1*). Assume
et™ = v/v/ with v/, v € V. By (2*) there exists u', u” € N(v)*
that are nelghbors of v/ and v". If v/ = u”, then G'*! contains
the 3-cycle v/u'v”, otherwise it contains the 5-cycle v/u'vu”v".
These cycles are forbldden, a contradiction. [

Given this lemma, Mini can only do Internal, Outside, and Add to
U/V moves, so Max can indeed play so that (1*) and (2*) are
maintained.
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The { G, Cs}-saturation game

With this strategy Max can play so that the game stays bipartite,
but he can’t control how large the parts are at the end. Solution:
use a stronger induction.
(3%) bzu = IVéI + (IUZI - 2IVZI) <0,

by = [Up| + (IV*| = 2|UT]) < 0.
The idea with this property is that |[U*| and | V| are always within
a factor of two of each other. Further, if |U*| is much larger than
|VE|, then there must be few bad V[ vertices.

If Mini does an Internal or Outside move then Max acts as he did
before, and with this bfj, bf/ don't increase. However, Max has to
be more careful when Mini plays an Add to U move.



The { G, Cs}-saturation game

Case 1: Ut < 2|vitY.

N(v)* U

N(u)* Vi

by = V| + (JU"] = 2|V7]) =0,
by = [Up| + (IV*] = 2]U"[) = 5.



The { G, Cs}-saturation game

Case 1: UL < 2|vitY,

N(u)* Vi

bt+2 ‘VH_Z’ + (’Ut+2‘ 2‘ Vt+2’) —_ 0'
bt+2 |Ut+2| + (|Vt+2‘ 2|Ut+2|) = _6



The { G, Cs}-saturation game

Case 2: |UtHL| > 2|vitHY,

N(v)* U

N(u)*

by = [Vl + (JU*] = 2|VT]) =0,
by = Ul + (V| =2|U")) = 7.
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Case 2: |UtHL| > 2|vitY,

N(u)*

by 2 = |VE 2+ (JUs+2] 2 Vi) =
bt+2 |Ut+2| + (|Vt+2| 2|Ut+2|) - _7
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The { G, Gs}-saturation game

We conclude that Max can play so that he maintains these
conditions (as long as the graph contains isolated vertices).

Theorem (S., 2019)
satg({Cs, Gs}; n) > 30 + o(n?).

Proof.

Max follows the strategy defined beforehand as long as there exists
isolated vertices in Gt, afterwards he plays arbitrarily. At the end
of the game, G will be a complete bipartite graph with, say,

|V| < |U| <2|V|+1, and hence contains at least 30 + o(n?)
edges. O
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Improving the constant

We've shown that satg({C3, Cs}; n) is quadratic, but what can be
said about the implicit constant?

Theorem (S., 2019)
satg ({Cs, Gs}; n) > 2 n? + o(n?).

Essentially one uses the same strategy as before but with a
stronger induction. Namely, Max maintains the following.

(3%) By = [VE] + (U7 — 3]V —2) <,
b, = U5 + (V¥ - 31U —2) <.
(4%) b}, + bl, < —2.
The main idea is that (4*) guarantees that one of b, b, < —1,

and hence one of the sets Ut, V! can afford to have its structure
disrupted.
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The {Gs, ..., Cyy1}-saturation game

This same proof holds for any set of odd cycles C with (3, G5 € C.
Can Max do better if we forbid larger cycles?

Theorem (S., 2019)
For k > 4,

1

1
Satg({c?n sy C2k+1}; n) > (Z — W) n? + O(nz)7

1 1
satg({Gs, ..., Cokgrtin) < (Z - W) n? + o(n?).

Idea for the lower bound: call a vertex bad if it's roughly distance
k away from u or v (as opposed to those that simply aren't
adjacent to u/v). By being more careful in the previous argument,
and by making a slight tweak to the strategy, one can replace the

% we had before with vy, — 1.
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The {Gs, ..., Cyy1}-saturation game

The upper bound for satg({GCs, ..., Coxy1}; n) is significantly
harder. We've shown that Max can guarantee that G! stays
bipartite, so Mini can’t utilize any strategy that requires her to
create many odd cycles. Conversely, one can show that if Mini
doesn’t try and create any odd cycles, then Max can play so that
G® ends with 1n? edges. Thus any strategy of Mini's giving a
non-trivial bound has to attempt to make odd cycles, while making
sure that the final graph ends up unbalanced if Max stops her from
doing so.

Key idea: Mini will try and grow a bunch of long, edge-disjoint
paths sharing a common endpoint. If she succeeds, she connects
the paths together and forms many Coxy1's. Conversely, if Max
tries to destroy a path, the graph becomes more unbalanced.
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The {G;, ..., Cok:+1}-saturation game

Path Growing Phase 3:

Every time Max destroys paths, |V!| increases while |U!| stays the
same. Thus eventually either |V!| becomes much larger than |U?|
(in which case Mini maintains this), or Mini succeeds in making
many long paths (which eventually she'll connect to form Coxi1's).
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For k > 4,

1 1 1 1
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For all k > 1 there exists a ¢, > 0 such that
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The {Gs, ..., Cyy1}-saturation game

For k > 4,
1 1 2 2 . 1 1 2 2
(Z — w) n"+o(n°) <satg({Gs,..., Coxy1}in) < <Z — W) n”+o(n%).

Conjecture

For all k > 1 there exists a ¢, > 0 such that

sat({C3, ey C2k+1}; n) < (% — Ck) n2 i o(n2).

Conjecture

For all k > 2 and n sufficiently large,

satg({Gs, ..., Cok—1};n) <satg({Gs, ..., Cusr}in).
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The (C \ {G3})-saturation game

Let Coo = {G3, G5, C7,...}. We wish to consider the
(Cx \ {G3})-saturation game.

Theorem (S., 2019)

satg(Coo \ {G3};n) < 2n—2.

This in sharp contrast to the fact that satg(Coo; n) = [ 2n?].

Key idea: Mini can play so that almost every edge of G! lies in a
triangle.



The (C \ {G3})-saturation game

Lemma

If xy and xz are not in triangles, then yz is a legal move in the
(Coo \ {G3})-saturation game.

o
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Lemma

If xy and xz are not in triangles, then yz is a legal move in the
(Coo \ {G3})-saturation game.

y\/z
X

By doing this repeatedly, Mini can guarantee that “most” edges
are in triangles.



The (C \ {G3})-saturation game

If G is a graph where “most” edges are in triangles and G contains
no Cx with k > 5 odd, then G contains no C, with k > 5.
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The (C \ {G3})-saturation game

Lemma

If G is a graph where “most” edges are in triangles and G contains
no Cx with k > 5 odd, then G contains no C, with k > 5.

Lemma
ex({Gs, Co, Gz, ...}, n) < 2n—2.
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The (C \ {G3})-saturation game

Theorem (S., 2019)

satg(Coo \ {G3};n) < 2n—2.

Proof.

Mini plays so that “most” edges are in triangles. This implies that
the graph is Cy-free for all k > 5, and thus has at most 2n — 2
edges at the end of the game. Ol
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