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Introduction

Last week

, Anthony told us about sunflowers and applications to
computer science. Today we’ll talk a bit more about the details of
the recent breakthrough of Alweiss, Lovett, Wu, and Zhang related
to sunflowers.
Recall that a hypergraph or set system H is a collection of sets
called edges. The hypergraph is said to be r -uniform if every edge
has size exactly r .

A hypergraph S = {S1, . . . ,Sp} is called a p-sunflower if there
exists a set K called the kernel such that Si ∩ Sj = K for all i 6= j .
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Introduction

Theorem (Erdős-Rado)

For all r , p, there exists a constant f (r , p) = (pr)r such that any
r -uniform hypergraph H with more than f (r , p) edges contains a
p-sunflower.

Conjecture (Sunflower Conjecture)

For all p there exists a constant c = c(p) such that any r -uniform
hypergraph H with more than c r edges contains a p-sunflower.

Theorem (Alweiss-Lovett-Wu-Zhang; Rao;
Bell-Chueluecha-Warnke)

There exists a constant C > 0 such that for all r , p, any r -uniform
hypergraph H with more than (Cp log r)r edges contains a
p-sunflower.
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Introduction

To prove this result, we will need to prove results about
hypergraphs whose edges are “spread out.”

To this end, given a
set of vertices A, define the degree d(A) to be the number of
edges of H which contain A. Given some 0 < q < 1, we say that a
hypergraph is q-spread if d(A) ≤ q|A||H|, i.e. any set of k vertices
is contained in at most a qk proportion of the edges of H.

Theorem (Frankston-Kahn-Narayanan-Park)

Let H be an r -uniform q-spread hypergraph with vertex set V .
There exists an absolute constant C0 such that if W is a uniformly
random set of size Cq log r · |V | chosen from V with C ≥ C0, then

Pr[W contains an edge of H] ≥ 1− C0

C log r
.

I.e. a random set of proportion q log r is likely to contain an edge.
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Applications

Theorem

Let Gn,m be a graph with n vertices and m edges chosen uniformly
at random. There exists a constant K such that if m ≥ Kn log n
and n is even, then Gn,m contains a perfect matching with high
probability.

Roughly this says Gn,p with p � log n/n contains a perfect
matching with high probability.
Let H be the hypergraph with vertex set E (Kn) where each
hyperedge S is a perfect matching of Kn.
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Applications

Note that |H| = n!
(n/2)!2n/2

, and for A ⊆ E (Kn) we have

d(A) =
(n − 2|A|)!

(n/2− |A|)!2n/2−|A|
≤ (en/2)−|A||H|.

This implies that H is (en/2)−1-spread. It is also (n/2)-uniform
and has a ground set V = E (Kn) of size

(n
2

)
. Applying the

theorem, a set of size roughly n−1 log(n/2)
(n
2

)
≈ n log n edges of

Kn is very likely to contain a hyperedge, i.e. a perfect
matching.
This result easily extends to perfect matchings in random r -uniform
hypergraphs (which was previously thought to be much harder!)
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Applications

We just found the threshold for Gn,m to contain a perfect
matching.

A similar argument can be used to find the threshold for
Gn,m to contain any (fixed) subgraph F (e.g. F = K3).

Proposition

Let F be an graph and define

t(F ) = max

{
|E (F ′)|
|V (F ′)|

: F ′ ⊆ F

}
.

There exists a constant C (F ) such that if m ≥ C (F )n2−1/t(F ),
then Gn,m contains a copy of F with high probability.

It’s not hard to prove this with a slightly fiddily second moment
argument, but with spread hypergraphs the proof is much cleaner.
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Applications

Let H be the hypergraph on E (Kn) whose hyperedges correspond
to copies of F . Note that each set A ⊆ E (Kn) of positive degree in
H corresponds to some subgraph FA ⊆ F with |E (FA)| = |A|

, and
in this case(

d(A)

|H|

)1/|A|

≤

(
n|V (F )|−|V (FA)|(

n
|V (F )|

) )1/|A|

≈ n−|V (FA)|/|E(FA)|.

Thus H is q-spread with

q = max{n−|V (F ′)|/|E(F ′)| : F ′ ⊆ F} = n−1/t(F ).

Plugging this into the theorem gives the result.
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Applications

Theorem

There exists a constant C such that if H is an r -graph with more
than (Cp log r)r edges, then H contains a p-sunflower.

We prove the result by induction on r , the r = 1 case being trivial.
Let H be an r -graph with at least this many edges. If H is not
q-spread with q = (Cp log r)−1, then there exists some A ⊆ V (H)
such that d(A) ≥ (Cp log r)r−|A|

So by induction, the (r − |A|)-uniform hypergraph
H′ = {S \ A : A ⊆ S ∈ H} contains a sunflower {S1, . . . ,Sp},
which means H contains the sunflower {S1 ∪ A, . . . ,Sp ∪ A}.
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Thus we can assume H is q-spread, and further that the size of the
vertex set V of H is a multiple of 2p.

Let V1, . . . ,V2p be a
random partition of V such that each Vi ⊆ V has size (2p)−1|V |.
This means that each Vi is a uniformly chosen set of V of size
(2p)−1|V | = 1

2Cq log(r)|V |.

Let 1i be the indicator variable for Vi containing an edge of H. By
the theorem, we have Pr[1i = 1] ≥ 1

2 provided C is sufficiently
large. In this case, E[

∑
1i ] ≥ p, and hence there exists some

partition V1, . . . ,V2p such that
∑

1i ≥ p, which in particular
means there exist p disjoint edges of H. Thus H contains a
sunflower, a contradiction.
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Proof of Main Theorem

The main strategy is that we iteratively generate log r random sets
Wi of size q|V |, we then win if the following holds:

Lemma

If H is a q-spread r -uniform hypergraph and you randomly choose a
set W ⊆ V (H) of size q|V |, then it’s very likely that almost every
S ∈ H has at least half its vertices covered, i.e. |S \W | ≤ r/2.

Let’s just pretend this is true for a second.
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Let H2 = {S1 \W1 : S1 ∈ H1, |S1 \W1| ≤ r/2}. Similarly
define W2 to be a random set of size q|V | and
H3 = {S2 \W2 : S2 ∈ H2, |S2 \W2| ≤ r/4} and so on.

By the “lemma”, H2 will basically contain as many edges as
H1, so d(A) ≤ q−|A||H| ≈ q−|A||H2|, i.e. H2 is basically
q-spread and (r/2)-uniform. By the “lemma” again, H3 has
basically as many edges as H2 and is q-spread and
(r/4)-uniform.

After about log r steps, Hi is going to have some empty edges,
i.e. there exists S ∈ H such that S ⊆W1 ∪W2 · · · ∪Wi .

The set W = W1 ∪W2 · · · ∪Wi is basically a random set of
size q log r |V |, so we conclude that a set of this size is likely
to contain an edge of H.
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Proof of Main Theorem

Given an r -uniform hypergraph H, say that a pair of sets (S ,W )
with S ∈ H is good if there exists some edge S ′ ⊆ S ∪W with
|S ′ \W | ≤ r/2 and that it’s bad otherwise

It turns out that the same approach as before works as long as
almost all pairs (S ,W ) are good (e.g. we let H2 have edge set
S ′ \W1 as opposed to S \W1).
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Lemma (Not False)

Let H be an r -uniform n-vertex hypergraph on V which is
q-spread. If p = Cq, then

∣∣∣∣{(S ,W ) : S ∈ H, W ∈
(
V

pn

)
, (S ,W ) is bad

}∣∣∣∣ ≤ 3(C/2)−r/4|H|
(
n

pn

)

I.e. for large C almost every pair (S ,W ) is such that there exists
S ′ ⊆ S ∪W with |S ′ \W | ≤ r/2.

For t ≤ r , define

Bt = {(S ,W ) : S ∈ H, W ∈
(
V

pn

)
, (S ,W ) is bad, |S ∩W | = t}.

Observe that the quantity we wish to bound is
∑

t |Bt |, so it
suffices to bound each term of this sum.
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Proof of Main Theorem

At this point we need to count the number of elements in Bt , and
there are several natural approaches that could be used.

One way
would be to first pick any S ∈ H and then count how many W
satisfy (S ,W ) ∈ Bt . Another approach would be to pick any set Z
of size |S ∪W | and then bound how many S ,W ⊆ Z have
(S ,W ) ∈ Bt . For some pairs the first approach is more efficient,
and for others the second is. In particular, the second approach
will be more effective whenever Z = S ∪W contains few elements
of Bt .
With this in mind, we (somewhat imprecisely) say that a bad pair
(S ,W ) is pathological if the number of bad pairs in S ∪W is
larger than some quantity N to be determined later.
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Proof of Main Theorem

Let w := pn − t.
Claim: The number of (S ,W ) ∈ Bt which are non-pathological is
at most (

n

r + w

)
N

(
r

t

)
.

We identify each of the non-pathological pairs (S ,W ) by
specifying S ∪W , then S , then S ∩W . Observe that S ∪W is a
non-pathological set of size r + w , and in particular there are at
most

( n
r+w

)
ways to make this first choice. Fix such a

non-pathological set Z of size r + w . Because Z is
non-pathological, there are at most N choices for S such that
(S ,Z \ S) is bad. Given S , there are at most

(r
t

)
choices for

S ∩W . Multiplying the number of choices at each step gives the
stated result.
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Claim: The number of (S ,W ) ∈ Bt which are pathological is at
most

|H| ·
(
r

t

)
· 2(C/2)−r/2|H|

(w+r
r

)(n
r

)
N

(
n − r

w

)
.

The general strategy is to identify these pairs by first specifying
S ∈ H, then S ∩W , then W \S . The first two steps can happen in
|H| ·

(r
t

)
ways. To count the remaining choices for W \ S , we upper

bound the probability that a random set of this form is pathological
and bad. Observe that the probability that this happens is at most

Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

(if (S ,W ) is bad then every S ′ ⊆ S ∪W satisfies |S ′ ∩ S | ≥ r/2).
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Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

.

For any j ≥ r/2, the number of S ′ with |S ′ ∩ S | = j ≥ r/2 is at
most ∑

B⊆S :|B|=j

d(B) ≤
(
r

j

)
qj |H| ≈ qj |H|,

and one can work out that the probability that a given S ′ is in
S ∪W is about (Cq)−j , so putting things together gives the
claim.

We can now pick N so that the estimates of these two claims are
about the same, and in total this shows there are few bad pairs,
proving the lemma (and hence the theorem).



Proof of Main Theorem

Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

.

For any j ≥ r/2, the number of S ′ with |S ′ ∩ S | = j ≥ r/2 is at
most ∑

B⊆S :|B|=j

d(B)

≤
(
r

j

)
qj |H| ≈ qj |H|,

and one can work out that the probability that a given S ′ is in
S ∪W is about (Cq)−j , so putting things together gives the
claim.

We can now pick N so that the estimates of these two claims are
about the same, and in total this shows there are few bad pairs,
proving the lemma (and hence the theorem).



Proof of Main Theorem

Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

.

For any j ≥ r/2, the number of S ′ with |S ′ ∩ S | = j ≥ r/2 is at
most ∑

B⊆S :|B|=j

d(B) ≤
(
r

j

)
qj |H| ≈ qj |H|

,

and one can work out that the probability that a given S ′ is in
S ∪W is about (Cq)−j , so putting things together gives the
claim.

We can now pick N so that the estimates of these two claims are
about the same, and in total this shows there are few bad pairs,
proving the lemma (and hence the theorem).



Proof of Main Theorem

Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

.

For any j ≥ r/2, the number of S ′ with |S ′ ∩ S | = j ≥ r/2 is at
most ∑

B⊆S :|B|=j

d(B) ≤
(
r

j

)
qj |H| ≈ qj |H|,

and one can work out that the probability that a given S ′ is in
S ∪W is about (Cq)−j , so putting things together gives the
claim.

We can now pick N so that the estimates of these two claims are
about the same, and in total this shows there are few bad pairs,
proving the lemma (and hence the theorem).



Proof of Main Theorem

Pr[#{S ′ ⊆ S∪W : |S ′∩S | ≥ r/2} ≥ N] ≤ E[#{S ′ ⊆ S ∪W : |S ′ ∩ S | ≥ r/2}]
N

.

For any j ≥ r/2, the number of S ′ with |S ′ ∩ S | = j ≥ r/2 is at
most ∑

B⊆S :|B|=j

d(B) ≤
(
r

j

)
qj |H| ≈ qj |H|,

and one can work out that the probability that a given S ′ is in
S ∪W is about (Cq)−j , so putting things together gives the
claim.

We can now pick N so that the estimates of these two claims are
about the same, and in total this shows there are few bad pairs,
proving the lemma (and hence the theorem).



Further Results

Theorem (Frankston-Kahn-Naryanan-Park)

If H is q-spread and r -uniform, then a random set of size
� q log r · |V | contains an edge of H with high probability.

This result can be sharp (e.g. for perfect matchings in random
graphs).

Theorem (Kahn-Naryanan-Park)

If H is the hypergraph encoding squares of Hamiltonian cycles of
Kn, then one can remove the log r term.

The proof is remarkably similar to the proof we just outlined, so
it’s perhaps natural to ask if we can (1) generalize when we can
drop the log r term, and (2) try and find some interpolation
between these two proof methods.
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Further Results

We say that a hypergraph H is (q; r1, r2, . . . , r`)-spread with
r1 > r2 > · · · > r` if it’s r1-uniform and for every A ⊆ V with
|A| = ri and j ≥ ri+1 ∑

B⊆A:|B|=j

d(B) ≤ qj |H|.

Basically, not too many edges intersect sets of size ri in at least
ri+1 vertices.

Proposition

We have the following.

(a) If H is (q; r1, . . . , r`, 1)-spread, then it is q-spread.

(b) If H is q-spread and r -uniform, then it is
(4q; r , r/2, . . . , 1)-spread.
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Further Results

Theorem (S.)

If H is (q; r1, r2, . . . , r`, 1)-spread, then a random set of size q`|V |
is very likely to contain an edge of H.

The proof is basically the same as before, except now instead of
going from edges of size r , r/2, r/4, . . . we do r1, r2, r3, . . . (and the
definition is designed precisely so that the proof still works). This
theorem succeeds in recovering/interpolating between basically all
previously known results.
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The End

Thank You!
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