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Part I: Card Guessing with Feedback



In the “Complete Feedback Model,” we start with a deck of mn cards
where there are n card types each appearing with multiplicity m.
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Let C+m,n and C−m,n be the maximum and minimum expected scores that
the player can get in the complete feedback model.
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Another Game

In the “partial feedback model”, the Guesser guesses the next card and is
only told whether their guess was correct or not. If P+

m,n is the maximum
expected score in this model,

m ≤ P+
m,n ≤ C+m,n = m + on(m).

What happens when n is large?
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Theorem (Diaconis-Graham-He-S., 2020)

For m fixed,

C+m,n ∼ Hm log(n),

C−m,n = Θ(n−1/m),

where Hm is the mth harmonic number.

With this we have the trivial bounds

m ≤ P+
m,n ≤ C+m,n = Om(log n).
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There exist c ,C > 0 such that if n is sufficiently large in terms of m, we
have
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√
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A Partial Proof

Lemma

Assume that we have played in the partial feedback model for t − 1 rounds
such that we have guessed card type i a total of gi times, and let S be the
total number of points scored. Given this, we have

Pr[πt = i ] ≤ m

mn − gi − S
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A Partial Proof

Corollary

P+
m,n ≤ 3m + o(m).

For all i and t, we have

Pr[πt = i ] ≤ m

mn − gi − S
≈ m

mn − gi
,

At most one i is guessed more than mn/2 times. Every other j has
Pr[πt = j ] ≤ 2

n for all t. Thus in expectation at most mn · (2/n) = 2m
cards are guessed correctly from this part, and in total at most 3m are
guessed correctly in expectation.
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Card Guessing

The probability of drawing four aces in a row with a deck shuffled
uniformly at random is 1/270725.

More precisely, we are now considering a two player game played by
Shuffler and Guesser. Let Cm,n(G,S) be the expected number of points
Guesser scores when the two players follow strategies G, S.
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Θm(n−1/m) ≤ Cm,n(G ,Uniform) ≤ Hm log n + om(log n).

Theorem (S., 2021)

There exists a strategy S′ for Shuffler so that

Cm,n(G, S′) ≤ log n + om(log n),

and this bound is best possible.
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Cm,n(G,S′) ≤ log n + om(log n).

A strategy that gives this is the “greedy strategy”, which is such that if
there are r types of cards remaining in the deck, then Shuffler draws each
of these card types with probability r−1. E.g. if the deck has a hundred 1’s
and one 2, we draw a 1 or 2 with probability 1

2 . This gives the desired
bound due to a variant of the coupon collector problem.
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Theorem (S., 2021)

The greedy strategy is the unique strategy that minimizes the number of
correct guesses if Guesser tries to maximize their score.

Interestingly, the greedy strategy is also the “unique” strategy which
maximizes the number of correct guesses if Guesser tries to minimize their
score.
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Future Problems

Problem

Prove non-trivial bounds for the partial feedback model with adversarial
shufflings.

Conjecture

The minimum expected score one can get with partial feedback is
asymptotic to m.
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Part II: Turán’s Problem in Random Graphs



Define the Turán number ex(n,F ) to be the maximum number of edges
that an F -free graph on n vertices can have.

Theorem (Mantel 1907)

ex(n,K3) =
⌊
n2/4

⌋
.

Theorem (Erdős-Stone 1946)

ex(n,F ) =

(
1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
.
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Let Gn,p be the random graph on n vertices where each edge is included
independently and with probability p.

Let ex(Gn,p,F ) be the maximum
number of edges that an F -free subgraph of Gn,p can have. For example,

ex(Gn,1,F ) = ex(n,F ),

and with high probability

p · ex(n,F ) . ex(Gn,p,F ) . p

(
n

2

)
.

The lower bound is tight when p = 1. The upper bound is tight if p is
“small.”
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What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

ex(Gn,p,F ) =

{
Θ(p · ex(n,F )) p � n−1/m2(F ),

(1 + o(1))p
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p � n−1/m2(F ).

This conjecture turns out to be completely false!
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Plot of ex(Gn,p,C4) (Füredi 1991)



Conjecture (McKinley-S.)

If F is a graph with ex(n,F ) = Θ(nα) for some α ∈ (1, 2], then whp

ex(Gn,p,F ) = max{Θ(pα−1nα), n2−1/m2(F )(log n)O(1)},

provided p � n−1/m2(F ).
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ex(Gn,p,Ks,t) = O(p1−1/sn2−1/s) for p large.

Moreover, this bound is tight whenever ex(n,Ks,t) = Θ(n2−1/s).
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Hypergraphs



Theorem (S.-Verstraëte 2021)

Let K r
s1,...,sr denote the complete r -partite r -graph with parts of sizes

s1, . . . , sr . There exist constants β1, β2, β3, γ depending on s1, . . . , sr such
that, for sr sufficiently large in terms of s1, . . . , sr−1, we have whp

ex(G r
n,p,K

r
s1,...,sr ) =


Θ (pnr ) n−r � p ≤ n−β1 ,

nr−β1+o(1) n−β1 ≤ p ≤ n−β2(log n)γ ,

Θ(p1−β3nr−β3) n−β2(log n)γ ≤ p ≤ 1.



Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Many hypergraphs fail to have a flat middle range.
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Other Hypergraph Results

1 Solved for loose triangles (Nie-S.-Verstraëte 2020; Nie 2023)

2 Solved for loose even cycles of uniformity r ≥ 4 (Mubayi-Yepremyan
2020; Nie 2023)

3 (Non-optimal) bounds for Berge cycles (S.-Verstraëte 2021; Nie 2023)

4 *Improved lower bound for non-Sidorenko hypergraphs (Nie-S. 2023)

5 *Lifting upper bounds from graphs to hypergraphs (Nie-S. 20XX++)
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Prove tight bounds for the 3-uniform loose 4-cycle.
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Thanks!
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