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Introduction

Given an r -graph F , we define the Turán number ex(n,F ) to be

the maximum number of edges in an F -free subgraph of K
(r)
n .

Theorem (Mantel, 1907)

ex(n,K3) =
⌊
n2/4

⌋
.

What about triangle-free hypergraphs?
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Theorem (Frankl-Füredi, 1987)

For r ≥ 3 and n sufficiently large,

ex(n,T r ) =

(
n − 1

r − 1

)
,

with the extremal example being the star Sn,r which has all r -sets
containing 1.
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What can be said about ex(H,T 3) in general?

For H = K
(3)
n ,

ex(H,T 3) = Θ(n2) = Θ(n−1)e(H) = Θ(∆−1/2)e(H),

where ∆ =
(n−1

2

)
is the maixmum degree of H. It turns out that

this is essentially sharp.

Theorem (Nie-S.-Verstraete, 2020)

For any 3-graph H with maximum degree at most ∆, we have

ex(H,T 3) ≥ ∆−1/2−o(1)e(H).

To find a large triangle-free subgraph of H, we will use a
triangle-free 3-graph J as a “template.”
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Let χ : V (H)→ V (J) be a chosen uniformly at random.

For
e = {v1, v2, v3}, let χ(e) := {χ(v1), χ(v2), χ(v3)}. Let H ′ ⊆ H be
the subgraph containing the edges e ∈ E (H) with χ(e) ∈ E (J).
Unfortunately H ′ typically won’t be triangle-free even if J is.
Indeed, if {1, 2, 3} ∈ E (J) then a triangle in H will survive if it’s
given the following assignment
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Let’s redefine H ′ ⊆ H to have the edges e ∈ E (H) such that (1)
χ(e) ∈ E (J)

, and (2’) if f ∈ E (H) with |e ∩ f | = 1, then
χ(f ) 6= χ(e). For ease of computations we’ll actually demand (2)
χ(f ) 6⊆ χ(e) whenever |f ∩ e| = 1. This solves the previous issue,
but there are still issues that can happen. For example, if J is the
star graph Sn,3 on 1, then a triangle in H will survive if it’s given
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It turns out that we can’t get around this issue by putting stronger
restrictions on the edges of H ′. The solution is to consider a J
which forbids other subgraphs so that the above picture can never
appear.

Theorem (Ruzsa-Szemerédi, 1978)

For all t there exists a 3-graph Rt on t vertices which is
triangle-free with t2−o(1) edges which is linear.
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distinct (if χ(x12) = χ(x13), then |χ(e1)| < 3). Further,
|χ(ei ) ∩ χ(ej)| 6= 2, 3. Thus χ(ei ) ∩ χ(ej) = {χ(xij)}. Thus
χ(e1), χ(e2), χ(e3) is a T 3 in Rt , a contradiction.
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Let J = Rt and χ : V (H)→ V (J) be chosen randomly. Define H ′ ⊆ H
to have the edges e ∈ E (H) such that (1) χ(e) ∈ E (J), and (2)
χ(f ) 6⊆ χ(e) for any f ∈ E (H) with |e ∩ f | = 1.

We know H ′ is
triangle-free, but how many edges does it have (in expectation)?

Let e ∈ E (H). What’s the probability that e ∈ E (H ′)? The probability e
satisfies (1) is

e(J) · 3!/t3 = t−1−o(1).

Given this, the probability that an edge f ∈ E (H) with |e ∩ f | = 1 has
χ(f ) ⊆ χ(e) is (3/t)2. There are at most 3∆ edges f like this, so taking
a union bound we see that the probability that (2) is satisfied is at least
1− 3∆(3/t)2. If we take t = 9∆1/2 this probability is at least 1

2 , thus

Pr[e ∈ E (H ′)] ≥ t−1−o(1) · 1

2
= ∆−1/2−o(1).

Linearity of expectation then gives E[e(H ′)] ≥ ∆−1/2−o(1)e(H).
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Random Homomorphisms

What happens with larger r?

Theorem (Erdős-Frankl-R odl, 1986)

For all t there exists an r -graph R r
t on t vertices which is

triangle-free, has t2−o(1) edges, and is linear.

Theorem (Nie-S.-Verstraete, 2020)

If H is an r -graph with maximum degree ∆, then

ex(H,T r ) ≥ ∆−
r−2
r−1
−o(1)e(H).
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There exists an r -graph H with

ex(H,T r ) = O(∆−1/2)e(H).
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Random Homomorphisms

Let H be an r -graph such that every set of 3 vertices is contained
in exactly one edge.

These are a special case of Steiner systems
(which exist!). Observe that e(H) = Θ(n3) and ∆ = Θ(n2), so we
want to show that ex(H,T r ) = O(n2).

Let H ′ ⊆ H be T r -free. Let H ′′ ⊆ H ′ be obtained by deleting any
edge containing two vertices which have codegree at most 2r .
Note that e(H ′)− e(H ′′) ≤

(n
2

)
· 2r . In particular, e(H ′′) = 0

would imply e(H ′) = O(n2).
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Random Homomorphisms

H: every 3-set is in (at most) one edge, H ′′ ⊆ H ′ ⊆ H with H ′′

non-empty obtained by deleting edges from H ′ containing pairs in
at most 2r edges.

Start with any edge e ∈ E (H ′′), and pick three vertices v1, v2, v3.
Observe that e ∈ E (H ′′) implies that there are many edges in H ′

containing each of these pairs.
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H: every 3-set is in exactly on edge, H ′′ ⊆ H ′ ⊆ H with H ′

triangle-free and H ′′ deleting edges from H ′ containing pairs in at
most 2r edges.
There exist a set E1 ⊆ E (H ′) of 2r + 1 edges containing v1, v2.
Pick some e1 ∈ E1 not containing v3 (which holds for any edge
that isn’t e).
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H: every 3-set is in exactly on edge, H ′′ ⊆ H ′ ⊆ H with H ′

triangle-free and H ′′ deleting edges from H ′ containing pairs in at
most 2r edges.
Thus H ′ had a T r , a contradiction, so H ′′ must be empty.



Random Hosts

For r = 3 our lower bound construction is essentially best possible
in general.

Can we do better for specific hosts? In particular, what
is ex(G 3

n,p,T
3)?

Theorem (Nie-S.-Verstraete, 2020)

If pn3 →∞, then a.a.s.

ex(G 3
n,p,T

3) ≥ min{(1− o(1))p

(
n

3

)
, p1/3n2−o(1)}.

Note that p1/3n2 ≥ ∆−1/2e(G 3
n,p), so we get a stronger result in

this range.
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n,p), so we get a stronger result in

this range.



Random Hosts

To do better than our old approach, we’ll have to somehow relax
H ′ ⊆ H to create more edges.

Using Rt doesn’t cost us many
edges, and we need χ(e) ∈ E (J) to get anything reasonable, so we
have to drop the edge merging condition.

More precisely, let J = Rt , χ : V (H)→ V (J) random, and let
H ′ ⊆ H have the edges e ∈ E (H) with χ(e) ∈ E (J). Note that

E[e(H ′)] ≥ e(H) · 6e(J)/t3 = e(H)t−1−o(1).

The key change is that this holds for t � ∆1/2 since we don’t
multiply this by 1− 27∆t−2.
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Random Hosts

Let J = Rt and χ : V (H)→ V (J) random, and let H ′ ⊆ H have
the edges e ∈ E (H) with χ(e) ∈ E (J), in expectation it has
e(H)t−1−o(1) edges.

The issue is that H ′ can contain triangles, and it turns out this
happens precisely when all three edges of a triangle in H map to a
single edge in J. The probability that this happens is roughly
e(J)t−6 = t−4−o(1). If H contains R(H) triangles, then in
expectation H ′ contains R(H)t−4−o(1) triangles.

Let H ′′ ⊆ H ′ be obtained by deleting an edge from each T 3 in H ′.
We have that H ′′ is triangle-free and

E[e(H ′′)] ≥ e(H)t−1−o(1) − R(H)t−4−o(1).
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Random Hosts

We’ve just shown that for all t and hosts H,

ex(H,T 3) ≥ e(H)t−1−o(1) − R(H)t−4−o(1).

For H = G 3
n,p we have with high probability that e(H) ≈ pn3 and

R(H) ≈ p3n6. Taking t ≈ p2/3n (which is at least 1 for
p � n−3/2) gives a lower bound of p1/3n2−o(1) as desired.
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Random Hosts

It turns out that these bounds for G 3
n,p are essentially tight.

Theorem (Nie-S.-Verstraete, 2020)

If pn3 →∞, then a.a.s.

ex(G 3
n,p,T

3) ≤ min{(1 + o(1))p

(
n

3

)
, p1/3n2+o(1)}.

For p � n−3/2 we trivially have at most Θ(pn3) edges. For
p � n−3/2 we use the method of hypergraph containers.
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Random Hosts

Lemma

For any integer n and positive number t with 12 ≤ t ≤
(n
3

)
/n2,

there exists a collection C of subgraphs of K 3
n such that for some

constant c :

(1) For any T 3-free subgraph J of K 3
n , there exists C ∈ C such

that J ⊂ C .

(2) |C| ≤ exp
(
c log(t)n2√

t

)
.

(3) For every C ∈ C, e(C ) ≤ tn2.

The key ingredients is the standard container lemma of Balogh,
Morris and Samotij; together with a supersaturation result for
triangles due to Balogh, Narayanan, and Skokan.
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Random Hosts

Corollary

Let N3(n,m) be the number of triangle-free 3-graphs on n vertices
and m edges.

Then for n3/2 � m� n2, we have

N3(n,m) ≤
( n

m

)3m+o(m)
.

Sketch: apply the previous lemma with t = n4/m2 to get

N3(n,m) ≤ exp

(
c log(t)n2√

t

)
·
(
tn2

m

)
≤

( n

m

)3m+o(m)
.
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Random Hosts

Corollary

Let N3(n,m) be the number of triangle-free 3-graphs on n vertices
and m edges. Then for n1/2 � m� n2 with 0 < δ < 1

2 , we have

N3(n,m) ≤
( n

m

)3m+o(m)
.

To show that ex(G 3
n,p,T

3) < m := p1/3n2, define Xm to be the
number of triangle-free subgraphs of G 3

n,p on m edges. We have
E[Xm] = N3(n,m)pm → 0, so we conclude the result by Markov’s
inequality.
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Random Hosts

These methods generalize to bounding ex(G r
n,p,T

r ), but our
bounds are not tight.

Define fr (x) = lim logn(E[ex(G r
n,p,T

r )]n−1)
for n−r+1+x .

Bounds for f5(x).
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Generalizing to other F

What happens if we try and apply these methods to ex(H,F ) in
general?

Recall that to adjust our naive approach we had to (1)
ensure that certain edges did not merge and (2) made sure that
our template J avoided sufficiently many subgraphs related to T 3.

If F is linear, for (1) it’s enough to make it so that e ∈ H ′ has
χ(f ) 6⊆ χ(e) for |f ∩ e| = 1.

For (2), we say that a map χ : V (F )→ V (F ′) is a local
isomorphism if (a) it is a homomorphism with induced map
χ∗ : E (F )→ E (F ′) and (b) if |e ∩ f | 6= 0, then χ∗(e) 6= χ∗(f ) .
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Generalizing to other F

For example, we have local isomorphisms from C8 to the following
graphs

•
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We define HF to be the set of F ′ such that there exists a
surjective local isomorphism from F to F ′.
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Generalizing to other F

Assume F if is linear and H a 3-graph with maximum degree ∆.

Take J
to be HF -free on t = ∆1/2 vertices. Let H ′ ⊆ H be such that e ∈ E (H ′)
when (1) χ(e) ∈ E (J) and (2) χ(f ) 6⊆ χ(e) when |e ∩ f | = 1. Everything
we did before works and can be used to get non-trivial bounds.

If F is not linear, then we have to strengthen (2) to hold when
|e ∩ f | = 2 as well. The |e ∩ f | = 1 condition forced us to take t ≥ ∆1/2,
and similarly this new condition forces us to take t ≥ ∆2, the maximum
codegree of H.

If ∆2 isn’t much larger than ∆1/2, then this gives pretty good bounds. If
∆2 is very large, we have to do a different kind of construction, which
roughly has us locating a “matching” of 2-sets which have large
codegree. While this second method works for some F , in general we
don’t know how to get a good construction when ∆2 is large.
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Generalizing to other F

Theorem (Nie-S.-Verstraete, 2020+)

If s is sufficiently large and H has maximum degree ∆, then

ex(H,K2,2,s) ≥ ∆−1/6−o(1)e(H).

Moreover, this bound is best possible up to the ∆−o(1) factor.

We note that for s large we have

ex(K
(3)
n ,K2,2,s) = Θ(n11/4) = Θ(∆−1/8)e(K

(3)
n ),

so the construction here is not just a clique.
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Generalizing to other F

The construction: define H(n) to be the 3-graph on vertex set
{xi : 1 ≤ i ≤ n2} ∪ {yi ,j , zi ,j : 1 ≤ i , j ≤ n} with all edges of the
form {xi , yi ′,j , zi ′′,j}.

This turns out to give the desired bounds.
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The End

Thank You!


