Triangle-Free Subgraphs of Hypergraphs

Jiaxi Nie, Sam Spiro*, Jacques Verstraete

Introduction

Given an r-graph F, we define the Turán number ex (n, F) to be the maximum number of edges in an F-free subgraph of $K_{n}^{(r)}$.

Introduction

Given an r-graph F, we define the Turán number ex (n, F) to be the maximum number of edges in an F-free subgraph of $K_{n}^{(r)}$.

Theorem (Mantel, 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor .
$$

Introduction

Given an r-graph F, we define the Turán number ex (n, F) to be the maximum number of edges in an F-free subgraph of $K_{n}^{(r)}$.

Theorem (Mantel, 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor
$$

What about triangle-free hypergraphs?

Introduction

Define the (loose) triangle T^{r} be the r-graph on three edges e_{1}, e_{2}, e_{3} with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$ three distinct vertices.

Introduction

Define the (loose) triangle T^{r} be the r-graph on three edges e_{1}, e_{2}, e_{3} with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$ three distinct vertices. For example, here is T^{3}.

Introduction

Define the (loose) triangle T^{r} be the r-graph on three edges e_{1}, e_{2}, e_{3} with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$ three distinct vertices. For example, here is T^{3}.

Observe that for $r \geq 3, T^{r}$ is r-partite.

Introduction

Theorem (Frankl-Füredi, 1987)

For $r \geq 3$ and n sufficiently large,

$$
\operatorname{ex}\left(n, T^{r}\right)=\binom{n-1}{r-1}
$$

with the extremal example being the star $S_{n, r}$ which has all r-sets containing 1 .

Introduction

Given r-graphs H, F, we define the generalized Turán number ex (H, F) to be the maximum number of edges in an F-free subgraph of H.

Introduction

Given r-graphs H, F, we define the generalized Turán number ex (H, F) to be the maximum number of edges in an F-free subgraph of H. For example ex $\left(K_{n}^{(r)}, F\right)=\operatorname{ex}(n, F)$.

Introduction

Given r-graphs H, F, we define the generalized Turán number ex (H, F) to be the maximum number of edges in an F-free subgraph of H. For example ex $\left(K_{n}^{(r)}, F\right)=\operatorname{ex}(n, F)$.

Observe that if F is not r-partite, then

$$
e x(H, F) \geq e(H) / r!
$$

Introduction

Given r-graphs H, F, we define the generalized Turán number ex (H, F) to be the maximum number of edges in an F-free subgraph of H. For example ex $\left(K_{n}^{(r)}, F\right)=\operatorname{ex}(n, F)$.

Observe that if F is not r-partite, then

$$
\mathrm{ex}(H, F) \geq e(H) / r!
$$

so in terms of order of magnitude the main case of interest is when F is r-partite.

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general?

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
\operatorname{ex}\left(H, T^{3}\right)=\Theta\left(n^{2}\right)
$$

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
\operatorname{ex}\left(H, T^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(n^{-1}\right) e(H)
$$

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
\operatorname{ex}\left(H, T^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(n^{-1}\right) e(H)=\Theta\left(\Delta^{-1 / 2}\right) e(H)
$$

where $\Delta=\binom{n-1}{2}$ is the maixmum degree of H.

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
\operatorname{ex}\left(H, T^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(n^{-1}\right) e(H)=\Theta\left(\Delta^{-1 / 2}\right) e(H)
$$

where $\Delta=\binom{n-1}{2}$ is the maixmum degree of H. It turns out that this is essentially sharp.

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
e x\left(H, T^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(n^{-1}\right) e(H)=\Theta\left(\Delta^{-1 / 2}\right) e(H)
$$

where $\Delta=\binom{n-1}{2}$ is the maixmum degree of H. It turns out that this is essentially sharp.

Theorem (Nie-S.-Verstraete, 2020)

For any 3-graph H with maximum degree at most Δ, we have

$$
\operatorname{ex}\left(H, T^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)
$$

Introduction

What can be said about ex $\left(H, T^{3}\right)$ in general? For $H=K_{n}^{(3)}$,

$$
\operatorname{ex}\left(H, T^{3}\right)=\Theta\left(n^{2}\right)=\Theta\left(n^{-1}\right) e(H)=\Theta\left(\Delta^{-1 / 2}\right) e(H)
$$

where $\Delta=\binom{n-1}{2}$ is the maixmum degree of H. It turns out that this is essentially sharp.

Theorem (Nie-S.-Verstraete, 2020)

For any 3-graph H with maximum degree at most Δ, we have

$$
\operatorname{ex}\left(H, T^{3}\right) \geq \Delta^{-1 / 2-o(1)} e(H)
$$

To find a large triangle-free subgraph of H, we will use a triangle-free 3-graph J as a "template."

Random Homomorphisms

Let $\chi: V(H) \rightarrow V(J)$ be a chosen uniformly at random.

Random Homomorphisms

Let $\chi: V(H) \rightarrow V(J)$ be a chosen uniformly at random. For $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, let $\chi(e):=\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\}$.

Random Homomorphisms

Let $\chi: V(H) \rightarrow V(J)$ be a chosen uniformly at random. For $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, let $\chi(e):=\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\}$. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$.

Random Homomorphisms

Let $\chi: V(H) \rightarrow V(J)$ be a chosen uniformly at random. For $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, let $\chi(e):=\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\}$. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$. Unfortunately H^{\prime} typically won't be triangle-free even if J is.

Random Homomorphisms

Let $\chi: V(H) \rightarrow V(J)$ be a chosen uniformly at random. For $e=\left\{v_{1}, v_{2}, v_{3}\right\}$, let $\chi(e):=\left\{\chi\left(v_{1}\right), \chi\left(v_{2}\right), \chi\left(v_{3}\right)\right\}$. Let $H^{\prime} \subseteq H$ be the subgraph containing the edges $e \in E(H)$ with $\chi(e) \in E(J)$. Unfortunately H^{\prime} typically won't be triangle-free even if J is. Indeed, if $\{1,2,3\} \in E(J)$ then a triangle in H will survive if it's given the following assignment

Random Homomorphisms

Let's redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$

Random Homomorphisms

Let's redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2') if $f \in E(H)$ with $|e \cap f|=1$, then $\chi(f) \neq \chi(e)$.

Random Homomorphisms

Let's redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2') if $f \in E(H)$ with $|e \cap f|=1$, then $\chi(f) \neq \chi(e)$. For ease of computations we'll actually demand (2) $\chi(f) \nsubseteq \chi(e)$ whenever $|f \cap e|=1$.

Random Homomorphisms

Let's redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2') if $f \in E(H)$ with $|e \cap f|=1$, then $\chi(f) \neq \chi(e)$. For ease of computations we'll actually demand (2) $\chi(f) \nsubseteq \chi(e)$ whenever $|f \cap e|=1$. This solves the previous issue, but there are still issues that can happen.

Random Homomorphisms

Let's redefine $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2') if $f \in E(H)$ with $|e \cap f|=1$, then $\chi(f) \neq \chi(e)$. For ease of computations we'll actually demand (2) $\chi(f) \nsubseteq \chi(e)$ whenever $|f \cap e|=1$. This solves the previous issue, but there are still issues that can happen. For example, if J is the star graph $S_{n, 3}$ on 1 , then a triangle in H will survive if it's given the following assignment

Random Homomorphisms

Random Homomorphisms

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}.

Random Homomorphisms

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}. The solution is to consider a J which forbids other subgraphs so that the above picture can never appear.

Random Homomorphisms

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}. The solution is to consider a J which forbids other subgraphs so that the above picture can never appear.

Theorem (Ruzsa-Szemerédi, 1978)

For all t there exists a 3-graph R_{t} on t vertices which is triangle-free with $t^{2-o(1)}$ edges

Random Homomorphisms

It turns out that we can't get around this issue by putting stronger restrictions on the edges of H^{\prime}. The solution is to consider a J which forbids other subgraphs so that the above picture can never appear.

Theorem (Ruzsa-Szemerédi, 1978)

For all t there exists a 3-graph R_{t} on t vertices which is triangle-free with $t^{2-o(1)}$ edges which is linear.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (if $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$, then $\left|\chi\left(e_{1}\right)\right|<3$).

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (if $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$, then $\left|\chi\left(e_{1}\right)\right|<3$). Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (if $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$, then $\left|\chi\left(e_{1}\right)\right|<3$). Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (if $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$, then $\left|\chi\left(e_{1}\right)\right|<3$). Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$. Thus $\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)=\left\{\chi\left(x_{i j}\right)\right\}$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and $(2) \chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Claim

H^{\prime} is triangle-free.
Assume $e_{1}, e_{2}, e_{3} \in H^{\prime}$ forms a triangle with $e_{i} \cap e_{j}=\left\{x_{i j}\right\}$. Note that $\chi\left(x_{i j}\right) \in \chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)$, and that these vertices must be distinct (if $\chi\left(x_{12}\right)=\chi\left(x_{13}\right)$, then $\left|\chi\left(e_{1}\right)\right|<3$). Further, $\left|\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)\right| \neq 2,3$. Thus $\chi\left(e_{i}\right) \cap \chi\left(e_{j}\right)=\left\{\chi\left(x_{i j}\right)\right\}$. Thus $\chi\left(e_{1}\right), \chi\left(e_{2}\right), \chi\left(e_{3}\right)$ is a T^{3} in R_{t}, a contradiction.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2)
$\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$?

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}
$$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)}
$$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$.

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}
$$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}=\Delta^{-1 / 2-o(1)} .
$$

Random Homomorphisms

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ be chosen randomly. Define $H^{\prime} \subseteq H$ to have the edges $e \in E(H)$ such that (1) $\chi(e) \in E(J)$, and (2) $\chi(f) \nsubseteq \chi(e)$ for any $f \in E(H)$ with $|e \cap f|=1$. We know H^{\prime} is triangle-free, but how many edges does it have (in expectation)?
Let $e \in E(H)$. What's the probability that $e \in E\left(H^{\prime}\right)$? The probability e satisfies (1) is

$$
e(J) \cdot 3!/ t^{3}=t^{-1-o(1)} .
$$

Given this, the probability that an edge $f \in E(H)$ with $|e \cap f|=1$ has $\chi(f) \subseteq \chi(e)$ is $(3 / t)^{2}$. There are at most 3Δ edges f like this, so taking a union bound we see that the probability that (2) is satisfied is at least $1-3 \Delta(3 / t)^{2}$. If we take $t=9 \Delta^{1 / 2}$ this probability is at least $\frac{1}{2}$, thus

$$
\operatorname{Pr}\left[e \in E\left(H^{\prime}\right)\right] \geq t^{-1-o(1)} \cdot \frac{1}{2}=\Delta^{-1 / 2-o(1)} .
$$

Linearity of expectation then gives $\mathbb{E}\left[e\left(H^{\prime}\right)\right] \geq \Delta^{-1 / 2-o(1)} e(H)$.

Random Homomorphisms

What happens with larger r ?

Random Homomorphisms

What happens with larger r ?
Theorem (Erdős-Frankl-R odl, 1986)
For all t there exists an r-graph R_{t}^{r} on t vertices which is triangle-free, has $t^{2-o(1)}$ edges, and is linear.

Random Homomorphisms

What happens with larger r ?

Theorem (Erdős-Frankl-R odl, 1986)

For all t there exists an r-graph R_{t}^{r} on t vertices which is triangle-free, has $t^{2-o(1)}$ edges, and is linear.

Theorem (Nie-S.-Verstraete, 2020)
If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, T^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} e(H)
$$

Random Homomorphisms

Theorem (Nie-S.-Verstraete, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, T^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} e(H)
$$

Random Homomorphisms

Theorem (Nie-S.-Verstraete, 2020)

If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, T^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} e(H)
$$

Is this best possible?

Random Homomorphisms

Theorem (Nie-S.-Verstraete, 2020)
If H is an r-graph with maximum degree Δ, then

$$
\operatorname{ex}\left(H, T^{r}\right) \geq \Delta^{-\frac{r-2}{r-1}-o(1)} e(H)
$$

Is this best possible?

Proposition (Nie-S.-Verstraete, 2020)

There exists an r-graph H with

$$
\operatorname{ex}\left(H, T^{r}\right)=O\left(\Delta^{-1 / 2}\right) e(H)
$$

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge.

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!).

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$, so we want to show that ex $\left(H, T^{r}\right)=O\left(n^{2}\right)$.

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$, so we want to show that ex $\left(H, T^{r}\right)=O\left(n^{2}\right)$.

Let $H^{\prime} \subseteq H$ be T^{r}-free.

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$, so we want to show that ex $\left(H, T^{r}\right)=O\left(n^{2}\right)$.

Let $H^{\prime} \subseteq H$ be T^{r}-free. Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting any edge containing two vertices which have codegree at most $2 r$.

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$, so we want to show that ex $\left(H, T^{r}\right)=O\left(n^{2}\right)$.

Let $H^{\prime} \subseteq H$ be T^{r}-free. Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting any edge containing two vertices which have codegree at most $2 r$. Note that $e\left(H^{\prime}\right)-e\left(H^{\prime \prime}\right) \leq\binom{ n}{2} \cdot 2 r$.

Random Homomorphisms

Let H be an r-graph such that every set of 3 vertices is contained in exactly one edge. These are a special case of Steiner systems (which exist!). Observe that $e(H)=\Theta\left(n^{3}\right)$ and $\Delta=\Theta\left(n^{2}\right)$, so we want to show that ex $\left(H, T^{r}\right)=O\left(n^{2}\right)$.

Let $H^{\prime} \subseteq H$ be T^{r}-free. Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting any edge containing two vertices which have codegree at most $2 r$. Note that $e\left(H^{\prime}\right)-e\left(H^{\prime \prime}\right) \leq\binom{ n}{2} \cdot 2 r$. In particular, $e\left(H^{\prime \prime}\right)=0$ would imply $e\left(H^{\prime}\right)=O\left(n^{2}\right)$.

Random Homomorphisms

H : every 3 -set is in (at most) one edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with $H^{\prime \prime}$ non-empty obtained by deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.

Random Homomorphisms

H : every 3 -set is in (at most) one edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with $H^{\prime \prime}$ non-empty obtained by deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
Start with any edge $e \in E\left(H^{\prime \prime}\right)$, and pick three vertices v_{1}, v_{2}, v_{3}.

Random Homomorphisms

H : every 3 -set is in (at most) one edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with $H^{\prime \prime}$ non-empty obtained by deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
Start with any edge $e \in E\left(H^{\prime \prime}\right)$, and pick three vertices v_{1}, v_{2}, v_{3}. Observe that $e \in E\left(H^{\prime \prime}\right)$ implies that there are many edges in H^{\prime} containing each of these pairs.

Random Homomorphisms

H : every 3 -set is in (at most) one edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with $H^{\prime \prime}$ non-empty obtained by deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
Start with any edge $e \in E\left(H^{\prime \prime}\right)$, and pick three vertices v_{1}, v_{2}, v_{3}. Observe that $e \in E\left(H^{\prime \prime}\right)$ implies that there are many edges in H^{\prime} containing each of these pairs.

Random Homomorphisms

H : every 3 -set is in exactly on edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with H^{\prime} triangle-free and $H^{\prime \prime}$ deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
There exist a set $E_{1} \subseteq E\left(H^{\prime}\right)$ of $2 r+1$ edges containing v_{1}, v_{2}. Pick some $e_{1} \in E_{1}$ not containing v_{3} (which holds for any edge that isn't e).

Random Homomorphisms

H : every 3 -set is in exactly on edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with H^{\prime} triangle-free and $H^{\prime \prime}$ deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
There exist a set $E_{2} \subseteq E\left(H^{\prime}\right)$ of $2 r+1$ edges containing v_{1}, v_{3}. Pick some $e_{2} \in E_{2}$ not containing any other vertex $v \in e_{1}$ (there is at most one such edge for each of the r vertices in e_{1}).

Random Homomorphisms

H : every 3 -set is in exactly on edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with H^{\prime} triangle-free and $H^{\prime \prime}$ deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
There exist a set $E_{3} \subseteq E\left(H^{\prime}\right)$ of $2 r+1$ edges containing v_{2}, v_{3}. Pick some $e_{3} \in E_{2}$ not containing any other vertex $v \in e_{1} \cup e_{2}$ (there is at most one such edge for each of the $2 r$ vertices in $\left.e_{1} \cup e_{2}\right)$.

Random Homomorphisms

H : every 3 -set is in exactly on edge, $H^{\prime \prime} \subseteq H^{\prime} \subseteq H$ with H^{\prime} triangle-free and $H^{\prime \prime}$ deleting edges from H^{\prime} containing pairs in at most $2 r$ edges.
Thus H^{\prime} had a T^{r}, a contradiction, so $H^{\prime \prime}$ must be empty.

Random Hosts

For $r=3$ our lower bound construction is essentially best possible in general.

Random Hosts

For $r=3$ our lower bound construction is essentially best possible in general. Can we do better for specific hosts?

Random Hosts

For $r=3$ our lower bound construction is essentially best possible in general. Can we do better for specific hosts? In particular, what is $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)$?

Random Hosts

For $r=3$ our lower bound construction is essentially best possible in general. Can we do better for specific hosts? In particular, what is $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)$?

Theorem (Nie-S.-Verstraete, 2020)

If $p n^{3} \rightarrow \infty$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right) \geq \min \left\{(1-o(1)) p\binom{n}{3}, p^{1 / 3} n^{2-o(1)}\right\}
$$

Random Hosts

For $r=3$ our lower bound construction is essentially best possible in general. Can we do better for specific hosts? In particular, what is $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)$?

Theorem (Nie-S.-Verstraete, 2020)

If $\mathrm{pn}^{3} \rightarrow \infty$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right) \geq \min \left\{(1-o(1)) p\binom{n}{3}, p^{1 / 3} n^{2-o(1)}\right\}
$$

Note that $p^{1 / 3} n^{2} \geq \Delta^{-1 / 2} e\left(G_{n, p}^{3}\right)$, so we get a stronger result in this range.

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges.

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable, so we have to drop the edge merging condition.

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable, so we have to drop the edge merging condition.

More precisely, let $J=R_{t}, \chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$.

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable, so we have to drop the edge merging condition.

More precisely, let $J=R_{t}, \chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$. Note that

$$
\mathbb{E}\left[e\left(H^{\prime}\right)\right] \geq e(H) \cdot 6 e(J) / t^{3}
$$

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable, so we have to drop the edge merging condition.

More precisely, let $J=R_{t}, \chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$. Note that

$$
\mathbb{E}\left[e\left(H^{\prime}\right)\right] \geq e(H) \cdot 6 e(J) / t^{3}=e(H) t^{-1-o(1)}
$$

Random Hosts

To do better than our old approach, we'll have to somehow relax $H^{\prime} \subseteq H$ to create more edges. Using R_{t} doesn't cost us many edges, and we need $\chi(e) \in E(J)$ to get anything reasonable, so we have to drop the edge merging condition.

More precisely, let $J=R_{t}, \chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$. Note that

$$
\mathbb{E}\left[e\left(H^{\prime}\right)\right] \geq e(H) \cdot 6 e(J) / t^{3}=e(H) t^{-1-o(1)}
$$

The key change is that this holds for $t \ll \Delta^{1 / 2}$ since we don't multiply this by $1-27 \Delta t^{-2}$.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J. The probability that this happens is roughly $e(J) t^{-6}=t^{-4-o(1)}$.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J. The probability that this happens is roughly $e(J) t^{-6}=t^{-4-o(1)}$. If H contains $R(H)$ triangles, then in expectation H^{\prime} contains $R(H) t^{-4-o(1)}$ triangles.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J. The probability that this happens is roughly $e(J) t^{-6}=t^{-4-o(1)}$. If H contains $R(H)$ triangles, then in expectation H^{\prime} contains $R(H) t^{-4-o(1)}$ triangles.

Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting an edge from each T^{3} in H^{\prime}.

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J. The probability that this happens is roughly $e(J) t^{-6}=t^{-4-o(1)}$. If H contains $R(H)$ triangles, then in expectation H^{\prime} contains $R(H) t^{-4-o(1)}$ triangles.

Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting an edge from each T^{3} in H^{\prime}. We have that $H^{\prime \prime}$ is triangle-free

Random Hosts

Let $J=R_{t}$ and $\chi: V(H) \rightarrow V(J)$ random, and let $H^{\prime} \subseteq H$ have the edges $e \in E(H)$ with $\chi(e) \in E(J)$, in expectation it has $e(H) t^{-1-o(1)}$ edges.

The issue is that H^{\prime} can contain triangles, and it turns out this happens precisely when all three edges of a triangle in H map to a single edge in J. The probability that this happens is roughly $e(J) t^{-6}=t^{-4-o(1)}$. If H contains $R(H)$ triangles, then in expectation H^{\prime} contains $R(H) t^{-4-o(1)}$ triangles.

Let $H^{\prime \prime} \subseteq H^{\prime}$ be obtained by deleting an edge from each T^{3} in H^{\prime}. We have that $H^{\prime \prime}$ is triangle-free and

$$
\mathbb{E}\left[e\left(H^{\prime \prime}\right)\right] \geq e(H) t^{-1-o(1)}-R(H) t^{-4-o(1)}
$$

Random Hosts

We've just shown that for all t and hosts H,

$$
\operatorname{ex}\left(H, T^{3}\right) \geq e(H) t^{-1-o(1)}-R(H) t^{-4-o(1)} .
$$

Random Hosts

We've just shown that for all t and hosts H,

$$
\operatorname{ex}\left(H, T^{3}\right) \geq e(H) t^{-1-o(1)}-R(H) t^{-4-o(1)} .
$$

For $H=G_{n, p}^{3}$ we have with high probability that $e(H) \approx p n^{3}$ and $R(H) \approx p^{3} n^{6}$.

Random Hosts

We've just shown that for all t and hosts H,

$$
\mathrm{ex}\left(H, T^{3}\right) \geq e(H) t^{-1-o(1)}-R(H) t^{-4-o(1)} .
$$

For $H=G_{n, p}^{3}$ we have with high probability that $e(H) \approx p n^{3}$ and $R(H) \approx p^{3} n^{6}$. Taking $t \approx p^{2 / 3} n$ (which is at least 1 for $p \gg n^{-3 / 2}$) gives a lower bound of $p^{1 / 3} n^{2-o(1)}$ as desired.

Random Hosts

It turns out that these bounds for $G_{n, p}^{3}$ are essentially tight.

Random Hosts

It turns out that these bounds for $G_{n, p}^{3}$ are essentially tight.
Theorem (Nie-S.-Verstraete, 2020)
If $p n^{3} \rightarrow \infty$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right) \leq \min \left\{(1+o(1)) p\binom{n}{3}, p^{1 / 3} n^{2+o(1)}\right\}
$$

Random Hosts

It turns out that these bounds for $G_{n, p}^{3}$ are essentially tight.
Theorem (Nie-S.-Verstraete, 2020)
If $p n^{3} \rightarrow \infty$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right) \leq \min \left\{(1+o(1)) p\binom{n}{3}, p^{1 / 3} n^{2+o(1)}\right\}
$$

For $p \ll n^{-3 / 2}$ we trivially have at most $\Theta\left(p n^{3}\right)$ edges.

Random Hosts

It turns out that these bounds for $G_{n, p}^{3}$ are essentially tight.
Theorem (Nie-S.-Verstraete, 2020)
If $p n^{3} \rightarrow \infty$, then a.a.s.

$$
\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right) \leq \min \left\{(1+o(1)) p\binom{n}{3}, p^{1 / 3} n^{2+o(1)}\right\}
$$

For $p \ll n^{-3 / 2}$ we trivially have at most $\Theta\left(p n^{3}\right)$ edges. For $p \gg n^{-3 / 2}$ we use the method of hypergraph containers.

Random Hosts

Lemma

For any integer n and positive number t with $12 \leq t \leq\binom{ n}{3} / n^{2}$, there exists a collection \mathcal{C} of subgraphs of K_{n}^{3} such that for some constant c :
(1) For any T^{3}-free subgraph J of K_{n}^{3}, there exists $C \in \mathcal{C}$ such that $J \subset C$.
(2) $|\mathcal{C}| \leq \exp \left(\frac{c \log (t) n^{2}}{\sqrt{t}}\right)$.
(3) For every $C \in \mathcal{C}, e(C) \leq t n^{2}$.

Random Hosts

Lemma

For any integer n and positive number t with $12 \leq t \leq\binom{ n}{3} / n^{2}$, there exists a collection \mathcal{C} of subgraphs of K_{n}^{3} such that for some constant c :
(1) For any T^{3}-free subgraph J of K_{n}^{3}, there exists $C \in \mathcal{C}$ such that $J \subset C$.
(2) $|\mathcal{C}| \leq \exp \left(\frac{c \log (t) n^{2}}{\sqrt{t}}\right)$.
(3) For every $C \in \mathcal{C}, e(C) \leq t n^{2}$.

The key ingredients is the standard container lemma of Balogh, Morris and Samotij; together with a supersaturation result for triangles due to Balogh, Narayanan, and Skokan.

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges.

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{3 / 2} \ll m \ll n^{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{3 / 2} \ll m \ll n^{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

Sketch: apply the previous lemma with $t=n^{4} / m^{2}$ to get

$$
N_{3}(n, m) \leq \exp \left(\frac{c \log (t) n^{2}}{\sqrt{t}}\right) \cdot\binom{t n^{2}}{m}
$$

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{3 / 2} \ll m \ll n^{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

Sketch: apply the previous lemma with $t=n^{4} / m^{2}$ to get

$$
N_{3}(n, m) \leq \exp \left(\frac{c \log (t) n^{2}}{\sqrt{t}}\right) \cdot\binom{t n^{2}}{m} \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{1 / 2} \ll m \ll n^{2}$ with $0<\delta<\frac{1}{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{1 / 2} \ll m \ll n^{2}$ with $0<\delta<\frac{1}{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

To show that $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)<m:=p^{1 / 3} n^{2}$, define X_{m} to be the number of triangle-free subgraphs of $G_{n, p}^{3}$ on m edges.

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{1 / 2} \ll m \ll n^{2}$ with $0<\delta<\frac{1}{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

To show that $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)<m:=p^{1 / 3} n^{2}$, define X_{m} to be the number of triangle-free subgraphs of $G_{n, p}^{3}$ on m edges. We have $\mathbb{E}\left[X_{m}\right]=N_{3}(n, m) p^{m} \rightarrow 0$

Random Hosts

Corollary

Let $N_{3}(n, m)$ be the number of triangle-free 3-graphs on n vertices and m edges. Then for $n^{1 / 2} \ll m \ll n^{2}$ with $0<\delta<\frac{1}{2}$, we have

$$
N_{3}(n, m) \leq\left(\frac{n}{m}\right)^{3 m+o(m)}
$$

To show that $\operatorname{ex}\left(G_{n, p}^{3}, T^{3}\right)<m:=p^{1 / 3} n^{2}$, define X_{m} to be the number of triangle-free subgraphs of $G_{n, p}^{3}$ on m edges. We have $\mathbb{E}\left[X_{m}\right]=N_{3}(n, m) p^{m} \rightarrow 0$, so we conclude the result by Markov's inequality.

Random Hosts

These methods generalize to bounding $\operatorname{ex}\left(G_{n, p}^{r}, T^{r}\right)$, but our bounds are not tight.

Random Hosts

These methods generalize to bounding ex $\left(G_{n, p}^{r}, T^{r}\right)$, but our bounds are not tight. Define $f_{r}(x)=\lim \log _{n}\left(\mathbb{E}\left[\operatorname{ex}\left(G_{n, p}^{r}, T^{r}\right)\right] n^{-1}\right)$ for n^{-r+1+x}.

Bounds for $f_{5}(x)$.

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general?

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general? Recall that to adjust our naive approach we had to (1) ensure that certain edges did not merge

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general? Recall that to adjust our naive approach we had to (1) ensure that certain edges did not merge and (2) made sure that our template J avoided sufficiently many subgraphs related to T^{3}.

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general? Recall that to adjust our naive approach we had to (1) ensure that certain edges did not merge and (2) made sure that our template J avoided sufficiently many subgraphs related to T^{3}.

If F is linear, for (1) it's enough to make it so that $e \in H^{\prime}$ has $\chi(f) \nsubseteq \chi(e)$ for $|f \cap e|=1$.

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general? Recall that to adjust our naive approach we had to (1) ensure that certain edges did not merge and (2) made sure that our template J avoided sufficiently many subgraphs related to T^{3}.

If F is linear, for (1) it's enough to make it so that $e \in H^{\prime}$ has $\chi(f) \nsubseteq \chi(e)$ for $|f \cap e|=1$.

For (2), we say that a map $\chi: V(F) \rightarrow V\left(F^{\prime}\right)$ is a local isomorphism if (a) it is a homomorphism with induced map $\chi^{*}: E(F) \rightarrow E\left(F^{\prime}\right)$

Generalizing to other F

What happens if we try and apply these methods to ex (H, F) in general? Recall that to adjust our naive approach we had to (1) ensure that certain edges did not merge and (2) made sure that our template J avoided sufficiently many subgraphs related to T^{3}.

If F is linear, for (1) it's enough to make it so that $e \in H^{\prime}$ has $\chi(f) \nsubseteq \chi(e)$ for $|f \cap e|=1$.

For (2), we say that a map $\chi: V(F) \rightarrow V\left(F^{\prime}\right)$ is a local isomorphism if (a) it is a homomorphism with induced map $\chi^{*}: E(F) \rightarrow E\left(F^{\prime}\right)$ and (b) if $|e \cap f| \neq 0$, then $\chi^{*}(e) \neq \chi^{*}(f)$.

Generalizing to other F

For example, we have local isomorphisms from C_{8} to the following graphs

Generalizing to other F

For example, we have local isomorphisms from C_{8} to the following graphs

We define \mathcal{H}_{F} to be the set of F^{\prime} such that there exists a surjective local isomorphism from F to F^{\prime}.

Generalizing to other F

Assume F if is linear and H a 3-graph with maximum degree Δ.

Generalizing to other F

Assume F if is linear and H a 3-graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well. The $|e \cap f|=1$ condition forced us to take $t \geq \Delta^{1 / 2}$

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well. The $|e \cap f|=1$ condition forced us to take $t \geq \Delta^{1 / 2}$, and similarly this new condition forces us to take $t \geq \Delta_{2}$, the maximum codegree of H.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well. The $|e \cap f|=1$ condition forced us to take $t \geq \Delta^{1 / 2}$, and similarly this new condition forces us to take $t \geq \Delta_{2}$, the maximum codegree of H.
If Δ_{2} isn't much larger than $\Delta^{1 / 2}$, then this gives pretty good bounds.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well. The $|e \cap f|=1$ condition forced us to take $t \geq \Delta^{1 / 2}$, and similarly this new condition forces us to take $t \geq \Delta_{2}$, the maximum codegree of H.
If Δ_{2} isn't much larger than $\Delta^{1 / 2}$, then this gives pretty good bounds. If Δ_{2} is very large, we have to do a different kind of construction, which roughly has us locating a "matching" of 2 -sets which have large codegree.

Generalizing to other F

Assume F if is linear and H a 3 -graph with maximum degree Δ. Take J to be \mathcal{H}_{F}-free on $t=\Delta^{1 / 2}$ vertices. Let $H^{\prime} \subseteq H$ be such that $e \in E\left(H^{\prime}\right)$ when (1) $\chi(e) \in E(J)$ and (2) $\chi(f) \nsubseteq \chi(e)$ when $|e \cap f|=1$. Everything we did before works and can be used to get non-trivial bounds.
If F is not linear, then we have to strengthen (2) to hold when $|e \cap f|=2$ as well. The $|e \cap f|=1$ condition forced us to take $t \geq \Delta^{1 / 2}$, and similarly this new condition forces us to take $t \geq \Delta_{2}$, the maximum codegree of H.
If Δ_{2} isn't much larger than $\Delta^{1 / 2}$, then this gives pretty good bounds. If Δ_{2} is very large, we have to do a different kind of construction, which roughly has us locating a "matching" of 2 -sets which have large codegree. While this second method works for some F, in general we don't know how to get a good construction when Δ_{2} is large.

Generalizing to other F

Theorem (Nie-S.-Verstraete, 2020+)
If s is sufficiently large and H has maximum degree Δ, then

$$
\operatorname{ex}\left(H, K_{2,2, s}\right) \geq \Delta^{-1 / 6-o(1)} e(H)
$$

Generalizing to other F

Theorem (Nie-S.-Verstraete, 2020+)
If s is sufficiently large and H has maximum degree Δ, then

$$
\operatorname{ex}\left(H, K_{2,2, s}\right) \geq \Delta^{-1 / 6-o(1)} e(H) .
$$

Moreover, this bound is best possible up to the $\Delta^{-o(1)}$ factor.

Generalizing to other F

Theorem (Nie-S.-Verstraete, 2020+)

If s is sufficiently large and H has maximum degree Δ, then

$$
\operatorname{ex}\left(H, K_{2,2, s}\right) \geq \Delta^{-1 / 6-o(1)} e(H)
$$

Moreover, this bound is best possible up to the $\Delta^{-o(1)}$ factor.
We note that for s large we have

$$
\operatorname{ex}\left(K_{n}^{(3)}, K_{2,2, s}\right)=\Theta\left(n^{11 / 4}\right)=\Theta\left(\Delta^{-1 / 8}\right) e\left(K_{n}^{(3)}\right)
$$

Generalizing to other F

Theorem (Nie-S.-Verstraete, 2020+)

If s is sufficiently large and H has maximum degree Δ, then

$$
\operatorname{ex}\left(H, K_{2,2, s}\right) \geq \Delta^{-1 / 6-o(1)} e(H)
$$

Moreover, this bound is best possible up to the $\Delta^{-o(1)}$ factor.
We note that for s large we have

$$
\operatorname{ex}\left(K_{n}^{(3)}, K_{2,2, s}\right)=\Theta\left(n^{11 / 4}\right)=\Theta\left(\Delta^{-1 / 8}\right) e\left(K_{n}^{(3)}\right)
$$

so the construction here is not just a clique.

Generalizing to other F

The construction: define $H(n)$ to be the 3-graph on vertex set $\left\{x_{i}: 1 \leq i \leq n^{2}\right\} \cup\left\{y_{i, j}, z_{i, j}: 1 \leq i, j \leq n\right\}$ with all edges of the form $\left\{x_{i}, y_{i^{\prime}, j}, z_{i^{\prime \prime}, j}\right\}$.

Generalizing to other F

The construction: define $H(n)$ to be the 3-graph on vertex set $\left\{x_{i}: 1 \leq i \leq n^{2}\right\} \cup\left\{y_{i, j}, z_{i, j}: 1 \leq i, j \leq n\right\}$ with all edges of the form $\left\{x_{i}, y_{i^{\prime}, j}, z_{i^{\prime \prime}, j}\right\}$.

This turns out to give the desired bounds.

The End

Thank You!

