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The Maximum Number of Appearances of a
Word in a Grid

Gregory Patchell and Sam Spiro

Abstract. How can you fill a 3 × 3 grid with the letters A and M so that the word “AMM”
appears as many times as possible in the grid? More generally, given a word w of length n,
how can you fill an n × n grid so that w appears as many times as possible? We solve this
problem exactly for several families of words, and we asymptotically solve this problem in
higher-dimensional grids.

1. INTRODUCTION. Consider the following problem. You have been asked to ad-
vertise The American Mathematical Monthly using a 3× 3 grid. Specifically, you are
asked to fill in the squares of the grid with A’s and M’s to maximize the number of
times the word “AMM” appears along a horizontal, vertical, or diagonal line; and we
will also count a line if it includes the word written backwards.

Given this task, you might think for a bit and come up with a number of designs
that seem to do well. Maybe your first thought is to fill in the squares as in Figure 1,
which has 5 instances of the word “AMM.”

Figure 1. A 3x3 grid with 5 instances of the word AMM.

However, being the mathematician that you are, you are not convinced that this is
the best you can do. You might think for a bit and come up with more complicated
designs like those in Figure 2, which also all contain 5 copies of the word. Is there a
design giving more than 5 copies of the word AMM?

Of course, once we successfully solve this problem, other organizations are going
to want to hire us for similar advertising jobs. To prepare for these new jobs, we let
[n] = {1, 2, . . . , n} and [n]2 = {(i, j) : i, j ∈ [n]}. We define an n-grid G to be a
function from [n]2 to a set of letters, and we will simply call this a grid whenever n is
understood. Given a word w = w1 · · ·wn and an n-grid G, we say that the ith row of
G contains w if G(i, j) = wj for all 1 ≤ j ≤ n, or if G(i, j) = wn−j+1 for all 1 ≤
j ≤ n. We similarly define what it means for the ith column ofG to containw, as well
as for the diagonals of G to contain w. We let f(w,G) be the total number of rows,
columns, and diagonals of G containing w, and we define f(w) = maxG f(w,G),
where the maximum ranges over all n-grids G. More generally, ifW is a set of words
of length n, we define f(W, G) to be the number of rows, columns, and diagonals of
G containing some w ∈ W , and we similarly define f(W).
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Figure 2. Several grids with 5 instances of AMM.

We note that determining which grids G satisfy f(W, G) = f(W) can be seen as
a generalization of a classical problem concerning Latin squares. In our language, a
Latin square is an n-grid G such that every row and column of G contains a permuta-
tion of the elements of [n]; see Figure 3 for an example.

Figure 3. A (diagonal) Latin square.

If both diagonals ofG also contain a permutation on [n] (as is the case in Figure 3),
we call G a diagonal Latin square. Observe that G being a diagonal Latin square is
equivalent to having f(P, G) = 2n+ 2 where P is the set of all permutations of [n].
Thus grids G with f(W, G) = f(W) whereW is a set of words can be viewed as a
generalization of diagonal Latin squares. Much more can be said about Latin squares;
see, for example, [4, 5, 6, 8, 10, 11].

In this paper we focus primarily on the problem of determining f(w) for a single
word w, and even this humble task seems to be difficult to solve in general. Neverthe-
less, we are able to compute f(w) exactly for several natural choices of words w.

As a point of reference, for all words w of length n, we will show that

n+ 2 ≤ f(w) ≤ 2n+ 2.

This lower bound tends to be closer to the truth when w has no letter appearing many
times, or when w is symmetric.

Theorem 1. If w is a word of length n ≥ 2 such that each letter occurs at most n/4
times, then

f(w) = n+ 2.
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Moreover, for infinitely many n ≥ 2 there exists a word w of length n such that every
letter occurs at most 1 + n/4 times and such that f(w) > n+ 2.

Theorem 2. If w is a word of length n ≥ 2 such that wi = wn−i+1 for all i, then

f(w) = max{n, 2k}+ 2,

where k is the maximum number of times any letter appears in w.

Conversely, when a word is “anti-symmetric,” the upper bound tends to be closer to
the truth.

Proposition 1. If w is a word of length n ≥ 2 using only two letters, and if wi 6=
wn−i+1 for all i, then

f(w) = 2n.

This together with Theorem 2 gives the following peculiar result, which demon-
strates how sensitive f(w) can be to the symmetries of w.

Corollary 1. Let w be the word of length n ≥ 2 defined by w = AMAM · · · . Then

f(w) =

{
n+ 2 n odd,
2n n even.

And of course, we also compute f(AMM). More generally, we prove the follow-
ing, where by AkMn−k we mean the word which starts with k copies of the letter A
followed by n− k copies of the letter M.

Theorem 3. Let w = AkMn−k with 1 ≤ k ≤ n/2 and n ≥ 2. Then

f(w) = max{2(n− k) + 1, 4k}.

In particular, taking n = 3, k = 1 shows that indeed f(AMM) = 5.
We consider a generalization of this problem to higher-dimensional grids, which

might be useful, for example, if the AMM wanted to expand its readership to 4-
dimensional beings. We formally make our definitions in Section 3. Informally, we let
f(w, d) be the maximum number of lines a d-dimensional n-grid can have which con-
tainw. We recall the notation f ∼ g for functions f, g to mean that limd→∞

f(d)

g(d)
= 1.

With this in mind, we have the following.

Theorem 4. Let w be a word of length n ≥ 2. If wi = wn−i+1 for all i, then

f(w, d) ∼ 1

2
(n+ 2)d,

and otherwise

f(w, d) ∼ 1

4
(n+ 2)d.

As a point of reference, it is well-known that d-dimensional n-grid contains roughly
1
2
(n + 2)d total lines [3]. Thus, despite the fact that f(w, 2) can be quite small for

January 2014] NUMBER OF APPEARANCES OF A WORD IN A GRID 3



Mathematical Assoc. of America American Mathematical Monthly 121:1 February 18, 2021 1:58 a.m. output.tex page 4

symmetric words, in higher-dimensional grids we can make it so that almost every
line contains a copy of w.

Determining f(w, d) exactly for all d seems very difficult in general. Remarkably,
we can do this for certain anti-symmetric words, namely those mentioned in Proposi-
tion 1.

Theorem 5. If w is a word of length n ≥ 2 using only two letters, and such that
wi 6= wn−i+1 for all i, then for all d,

f(w, d) =
1

4
((n+ 2)d − (n− 2)d).

Another natural generalization of this problem is to bound the maximum number
of times a word w of length k can appear in an (n, d)-grid with k ≤ n, which we
denote by f(w, n, d). Even in the d = 2 case and for simple words we do not have
asymptotic formulas for f(w, n, d), though we are able to obtain some reasonable
asymptotic bounds. We briefly discuss these results in Section 4.

2. WORDS ON A PLANE.

General lower bounds. From now on, whenever we have a word w, we assume it is
of length n and that n ≥ 2. We first consider basic constructions of grids to give lower
bounds on f(w). The simplest such result is the following.

Lemma 1. For all w,

f(w) ≥ n+ 2.

For example, Figure 4 demonstrates how we can achieve 5 lines for w = ABC.

Figure 4. A 3× 3 grid with 5 instances of the word ABC.

Proof. Let G be the grid that has G(i, j) = wj for all i, j. Then every row and diag-
onal of G contains w, so f(w) ≥ f(w,G) ≥ n+ 2.

We can improve upon this bound by exploiting certain structures of the given word
w. For example, we have the following.

Lemma 2. Let w be a word such that some letter A appears k times. Then

f(w) ≥ 2k + 1.

Further, if wi = wn−i+1 whenever wi = A, then

f(w) ≥ 2k + 2.
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Figure 5(a) gives an example of the construction of Lemma 2 with the word BAACA
and Figure 5(b) does the same with the word ABACA. Note that the latter grid achieves
its target word ABACA in both of its diagonals while the former does not.

Figure 5. (a) A grid with 7 copies of BAACA. (b) A grid with 8 copies of ABACA.

Proof. Let I be the set of indices with wi = A (this corresponds to I = {2, 3, 5} in
Figure 5(a) and I = {1, 3, 5} in Figure 5(b)). Define the grid G by setting G(i, j) =
wj whenever i ∈ I and G(i, j) = wi otherwise. That is, we write out w along each
row corresponding to I , and we then try to do this along each column. By construction,
the ith row of G contains w whenever i ∈ I , and also G(i, i) = wi for all i. If i ∈ I ,
we claim that the ith column also contains w, that is, G(j, i) = wj for all j. This is
immediate if j /∈ I; otherwise G(j, i) = wi = A = wj . Thus in total we have that
f(w) ≥ f(w,G) ≥ 2|I|+ 1 = 2k + 1.

If wi = wn−i+1 for all i ∈ I , then we claim that G(i, n − i + 1) = wi for all i.
This is immediate if i /∈ I , and otherwiseG(i, n− i+ 1) = wn−i+1 = A = wi. This
gives an extra diagonal containing w, proving the second bound.

While Lemma 2 gives a small gain when w is somewhat symmetric, we can often
do much better if the word is anti-symmetric.

Lemma 3. Let w be a word and A, M two letters used in w. Define

T = {i : wi = A, wn−i+1 = M},

and let t = |T |. Then

f(w) ≥ 4t.

Moreover, if w only uses the letters A and M, then

f(w) ≥ n+ t.

Figure 6(a) gives the 4t construction and Figure 6(b) gives the n+ t construction
for the word AMAAM. In this example, T = {1, 4} and X is an arbitrary letter.

Proof. Define S = {i : wn−i+1 = A, wi = M}, and note that by definition this set is
disjoint from T . Furthermore, |S| = t since i ∈ T if and only if n− i+ 1 ∈ S. Let
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Figure 6. (a) A grid with 4 · 2 copies of AMAAM. (b) A grid with 5 + 2 copies of AMAAM.

G be the grid with

G(i, j) =



wj i ∈ T,
wi j ∈ T,
wn−j+1 i ∈ S,
wn−i+1 j ∈ S,
X otherwise,

where X is an arbitrary letter. It is not difficult to see that this grid is well-defined when
either i, j ∈ T or i, j ∈ S (since wi = wj and wn−i+1 = wn−j+1 in these cases). If,
say, i ∈ T and j ∈ S, then wn−i+1 = M = wj , so it is well-defined in this case as
well. By construction, every row and column corresponding to T and S contains w, so
f(w) ≥ f(w,G) ≥ 4t.

If w consists of only A’s and M’s, then we define the grid G by G(i, j) = wj
if wi = A and G(i, j) = wn−j+1 otherwise. By construction, all of the n rows of
G contain w written forwards or backwards. We also claim for i ∈ T that the ith
column of G contains w. Indeed, for such i, if wj = A then G(j, i) = wi = A = wj ,
and otherwise G(j, i) = wn−i+1 = M = wj . Thus for every i ∈ T , G(j, i) = wj , so
each of these columns contains w and we have f(w) ≥ f(w,G) ≥ n+ t.

General upper bounds. Because there are 2n + 2 lines in an n-grid, we have
f(w) ≤ 2n + 2 for all w. This bound is sharp when w is the constant word An.
We can slightly improve this bound for nonsymmetric words.

Lemma 4. Let w be a word such that wi 6= wn−i+1 for some i. Then

f(w) ≤ 2n.

Proof. Let G be an n-grid and define

Q = {(i, i), (i, n− i+ 1), (n− i+ 1, i), (n− i+ 1, n− i+ 1)},

Q+ = {s ∈ Q : G(s) = wi}, Q− = {s ∈ Q : G(s) = wn−i+1}.

Given two distinct q, q′ ∈ Q, let `q,q′ be the unique line of G containing q and q′.
Observe that this line can contain w only if either q ∈ Q+ and q′ ∈ Q− or the other
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way around. Thus out of the 6 lines `q,q′ , the number of these that can contain w is at
most

|Q+||Q−| ≤
(
1

2
|Q|
)2

= 4.

In particular, at least two of the 2n+ 2 lines of G cannot contain w, giving the result.

Next we consider an upper bound that works well when there are not too many
copies of a given letter.

Lemma 5. Let w be a word such that each letter appears at most k times in w. Then

f(w) ≤ max{4k, n}+ 2.

Proof. Let G be a grid and assume f(w,G) > 4k + 2. Let R1 denote the set of
i ∈ [n] such that G(i, j) = wj for all j, R2 the set of i ∈ [n] such that G(i, j) =
wn−j+1 for all j, and similarly defineC1 andC2 for the columns. Note that f(w,G) ≤
|R1| + |R2| + |C1| + |C2| + 2, and because f(w,G) > 4k + 2, one of these sets
must have size at least k + 1. Without loss of generality we can assume that R1 has
this property.

We claim that no column of G contains w. Indeed, in the ith column we have
at least k + 1 different j ∈ R1 such that G(j, i) = wi. However, each letter of w
appears at most k times, so this column cannot contain w. Thus for such a grid we
have f(w,G) ≤ n+ 2.

A similar proof gives strong bounds when a word is very symmetric.

Lemma 6. Let w be a word such that each letter appears at most k times in w and
such that there are s indices i with wi = wn−i+1. Then

f(w) ≤ max{n+ 2k − s, n}+ 2.

Proof. Let G be a grid and define R1, R2, C1, C2 as in the proof of Lemma 5. We can
assume without loss of generality that |R1|+ |R2| ≥ |C1|+ |C2|. If |R1| or |R2| is
strictly larger than k, then no column of G can contain w (since each column would
contain more than k copies of some letter), so f(w) ≤ n + 2 in this case. Thus we
can assume |R1|, |R2| ≤ k.

If |R1| + |R2| > k and i is such that wi = wn−i+1, then the ith column of G
contains more than k copies of the letter wi and hence cannot contain w. Because
there are s such i, we have

f(w,G) ≤ |R1|+ |R2|+ |C1|+ |C2|+ 2 ≤ 2k + n− s+ 2.

Finally, if |R1|+ |R2| ≤ k then also |C1|+ |C2| ≤ k by assumption, and we have
f(w,G) ≤ 2k + 2 ≤ 2k + n− s+ 2, where this last step used s ≤ n.

We claim without proof that the argument used to prove Lemma 5 generalizes as
follows, which could be useful for bounding f(w) for other kinds of words.

Proposition 2. Let w be a word on the letters A1, . . . ,Am such that Ai appears ki
times in w with k1 ≥ k2 ≥ · · · ≥ km. Then for all grids G and all 1 ≤ i ≤ m,

f(w) ≤ max{4ki, n+
∑
j<i

kj}+ 2.
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Note that the i = 1 case is exactly the statement of Lemma 5, and for example the
i = 2 case gives better bounds for f(An/3M2n/3). A similar generalization can be
made for Lemma 6.

Putting the pieces together. In this section we use the lemmas we have developed to
prove our main results for f(w). The first few results are immediate.

Proof of Theorem 1. For the first result, the lower bound follows from Lemma 1 and
the upper bound from Lemma 5. For the second result, take n = 4k for any integer
k ≥ 1. Consider the word w that begins with k + 1 copies of the letter A, that ends
with k + 1 copies of the letter M , and that has 2k − 2 distinct letters in the remaining
positions. Note that each letter in w appears at most k + 1 = n/4 + 1 times. By
Lemma 3, we have

f(w) ≥ 4(k + 1) > 4k + 2 = n+ 2.

Proof of Theorem 2. The lower bounds follow from Lemmas 1 and 2. The upper
bound follows from Lemma 6.

Proof of Proposition 1. The lower bound follows from Lemma 3. The upper bound
follows from Lemma 4.

Computing f(AkMn−k) will be a bit more involved.

Proof of Theorem 3. The lower bounds follow from Lemmas 2 and 3. For the upper
bound, we say that the ith row of a grid is a top row if i ≤ k, a middle row if k <
i < n− k, and a bottom row if i ≥ n− k. We similarly define left, middle, and right
columns. Let G be a grid. An observation that we use throughout this proof is that
if G(i, j) = G(i, j′) with j ≤ k and j′ ≥ n − k, then the ith row cannot contain
w (as we would need one of these entries to be A and the other to be M). Similarly
if G(i, j) = A with k < j < n − k, then the ith row cannot contain w. Analogous
results hold with the roles of columns and rows swapped.

First consider the case that both diagonals ofG containw. By rotatingG, we can as-
sume G(1, 1) = G(1, n) = A and that G(n, 1) = G(n, n) = M. Because G(i, i) =
G(i, n− i+ 1) = A for 1 ≤ i ≤ k, none of the k top rows can contain w, and simi-
larly none of the k bottom rows can contain w. If no row contains w, then f(w,G) ≤
n+ 2. This equals max{4k, 2(n− k) + 1} only when n = 2, k = 1 or n = 3, k =
1, and for any other values it is strictly smaller. Thus we can assume that some number
of the n− 2k middle rows containw, say withG(i, j) = wj for some k < i < n− k
and all j; see Figure 7 for an example. This implies that none of the k left columns
contain w, so in total counting rows, columns, and diagonals we have

f(w,G) ≤ (n− 2k) + (n− k) + 2 ≤ 2(n− k) + 1,

since k ≥ 1.
Now assume exactly one diagonal of G contains w. By rotating G we can assume

that this is the diagonal containing (1, 1) and (n, n) and thatG(1, 1) = A, G(n, n) =
M. If some ith row of G with i ≥ n− k contains w, then we must have G(i, j) = A
for j ≤ k since G(i, i) = M by assumption of the diagonal containing w. Because
G(i, j) = A for all j ≤ k, we conclude that, as in Figure 8, none of the left columns
can contain w if one of the bottom rows contains w. Similarly, either G contains none
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Figure 7. Both diagonals filled in as well as one middle row. Now neither of the two left columns can contain
AAMMM.

of the k right columns or none of the k top rows, so in total we have f(w,G) ≤
2(n− k) + 1.

Figure 8. One diagonal filled in as well as one bottom row. Neither of the left two columns can contain
AAMMM.

Finally we assume no diagonal of G contains w. If none of the middle n − 2k
rows or columns contain w, then f(w,G) ≤ 2n − 2(n − 2k) = 4k. If there exists
k < i, i′ < n − k such that both the ith row and i′th column contain w, say with
G(i, j) = G(j, i′) = wj for all j, then, as in Figure 9, none of the k top rows or left
columns can containw, so f(w,G) ≤ 2n− 2k. If none of the n− 2kmiddle columns
containw and if there is some k < i < n− k withG(i, j) = wj for all j, then none of
the k left columns contain w and we have f(w,G) ≤ 2n− (n− 2k)− k = n+ k.
Note that n+ k < 4k when k > n/3 and that n+ k < 2(n− k) + 1 for k ≤ n/3,
so f(w,G) is strictly smaller than the stated upper bound in this case.

Figure 9. Neither of the top two rows and neither of the left two columns can contain AAMMM.
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By analyzing this argument carefully, it is not difficult to characterize all extremal
examples for AkMn−k. In particular, Figure 2 contains all of the extremal constructions
up to rotation and reflection of the grid. Thus, for the advertising job, one can freely
choose whichever design one finds to be the most aesthetically pleasing. We personally
recommend one of the middle grids, as these also contain a copy of the word MAA.

3. HIGHER DIMENSIONS.

Definitions and upper bounds. Given a set S and positive integer d, let Sd denote
the set of sequences of length d where every entry is an element of S. Let~0 denote the
sequence of d zeros, and if x, y ∈ Zd, define (x+ y) ∈ Zd by (x+ y)i = xi + yi.

Given p ∈ [n]d and v ∈ {−1, 0,+1}d with v 6= ~0, we say that ` := {p, p +
v, . . . , p+ (n− 1)v} is a line if each of these elements is in [n]d, and in this case we
say that ` has initial point p and is in direction v. We first make a basic observation
that we use throughout this section.

Lemma 7. Let ` be a line with initial point p in direction v. Then vj = +1 implies
pj = 1 and vj = −1 implies pj = n.

Proof. Because every point of ` is in [n]d, in particular we have pj, pj + (n− 1)vj ∈
[n]. If vj = +1 this is only possible if pj = 1, and similarly vj = −1 implies pj =
n.

The line ` with initial point p in direction v is the same as the line with initial point
p + (n − 1)v and direction −v. To have a unique identification1 for each line, we
say that (p; v) is the canonical pair of the line ` if ` is the line with initial point p in
direction v, and if the first nonzero coordinate of v is +1. We also say that p, v are the
canonical initial point and the canonical direction of this line.

If ` is a line with canonical pair (p; v), then we let `i = p+ (i− 1)v. We define
the weight of a line ` to be the number of nonzero entries in its canonical direction.
Note that there are no lines of weight 0 since we always require v 6= ~0.

For example, when d = 2, the 2n rows and columns are lines of weight 1 with
canonical pairs of the form ((i, 1); (0, 1)) and ((1, i); (1, 0)), and the two diagonals
are lines of weight 2 with canonical pairs ((1, 1); (1, 1)) and ((1, n), (1,−1)). In
particular, there are 2n+ 2 lines when d = 2. The following lemma generalizes these
formulas to higher dimensions.

Lemma 8. Let Lr denote the set of lines in [n]d of weight r and let L =
⋃
r≥1 Lr.

Then for all r ≥ 1,

|Lr| =
(
d

r

)
2r−1nd−r,

|L| = 1

2
((n+ 2)d − nd).

We note that the formula forL in Lemma 8 is known, see, e.g., [2, 9], but we include
its short proof for completeness. Other results concerning combinatorial properties of
lines in higher dimensions can be found in [2, 3, 7], for example.

1This only makes sense for n ≥ 2, as for n = 1 there is only one line, which is a point, so the direction is
not well-defined.
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Proof. Informally, we wish to define a map φ from lines ` to sequences of length d
indicating how the coordinates of elements in ` change as we move along the canonical
direction v. For example, if d = 3 and ` = {(1, 1, n), (2, 1, n − 1), . . . , (n, 1, 1)},
we define φ(`) = (+, 1,−) to indicate that the first coordinate increases as we move
along v, the second stays fixed at 1, and the third coordinate decreases.

To make this precise, let S = {1, 2, . . . , n,+,−}d. We define a map φ : L→ S
as follows. If ` has canonical pair (p; v), we define φ(`)i = pi if vi = 0, φ(`)i = +
if vi = +1, and φ(`)i = − if vi = −1. It is not difficult to see that φ is an injective
map, so it will be enough to determine the cardinality of its image when restricted to
each set Lr.

Define Tr ⊂ S to be the set of sequences with exactly r of its positions equal to ±
and such that the first ± symbol to appear is a +. Because the canonical direction of
a line in Lr has exactly r nonzero coordinates with its first nonzero coordinate equal
to +1, we see that φ(Lr) ⊂ Tr, and it is not difficult to see that every element of Tr
is mapped to be a unique element of φ(Lr). Note that |Tr| =

(
d
r

)
2r−1nd−r, as every

element of Tr can be identified by choosing the r positions that are ±, then choosing
for all but the first of these positions which of the two symbols ± to take on, and then
choosing any element in [n] for each of the remaining positions. This proves the first
result.

The second result follows from the binomial theorem and summing the bound for
each Lr. More directly, φ(L) is the set of sequences with at least one coordinate equal
to± with the first of these being a +. There are (n+ 2)d − nd sequences with at least
one± symbol, and exactly half of these sequences have the first such symbol as +.

We say that G is an (n, d)-grid (or simply a “grid” if n and d are understood) if it
is a function from [n]d to a set of letters. Given a word w of length n and a grid G, we
say that a line ` contains w if either G(`1) · · ·G(`n) = w or G(`n) · · ·G(`1) = w.
We let f(w,G) denote the number of lines containing w in G, and we define

f(w, d) = max
G an (n,d)-grid

f(w,G).

Observe that Lemma 8 immediately gives that f(w, d) ≤ 1
2
((n+ 2)d − nd) for all w

and d. We can improve upon this bound for nonsymmetric words with a generalization
of Lemma 4.

Lemma 9. Let w be a word with wi 6= wn−i+1 for some i. Then

f(w, d) ≤ 1

4
((n+ 2)d − (n− 2)d).

Proof. Without loss of generality we assume that i < n− i+ 1. The proof will pro-
ceed in four steps:

1: We define sets Qp for certain p ∈ [n]d. These Qp correspond to corners of
sub-hypercubes in [n]d, and the p are the “upper-left” corners of these sub-
hypercubes. The Qp sets will partition [n]d.

2: We classify every line in [n]d according to which Qp it intersects. In particular,
we show that for each line there is exactly one p such that the line intersects Qp

twice.
3: We determine an upper bound for the number of lines that can intersect each Qp

in two places and that can contain w.
4: We sum over the upper bounds in Step 3.
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Step 1: Let P be the set of points p ∈ [n]d that do not have any position equal to
n− i+ 1. Let I(p) = {j : pj = i}, and for each p ∈ P , define Qp to be the set of
points p′ ∈ [n]d with p′j = pj if j /∈ I(p) and p′j ∈ {i, n− i+ 1} otherwise. In other
words, Qp is the set of corners of an |I(p)|-dimensional sub-hypercube that has p as
one of its corners.

Note that each p′ ∈ [n]d is in exactly one Qp set, namely for the p that has pj = i
whenever p′j = n− i+ 1 and that has pj = p′j otherwise. Also observe that |Qp| =
2|I(p)|, since each p′ ∈ Qp has p′j ∈ {i, n− i+ 1} for each j ∈ I(p) and this com-
pletely determines p′. In particular, |Qp| = 1 for all p ∈ P such that p has no coordi-
nate equal to i.

Step 2: Let L be the set of lines in [n]d. Given an ` ∈ L with canonical pair (p′; v),
define

φ(`) = {p′ + (i− 1)v, p′ + (n− i)v};

we call these two points the i-dentifiers of `. (For example, the 1-dentifiers of ` are
the endpoints of `.) We claim that φ is a bijection from L to

⋃
p∈P

(
Qp

2

)
, where

(
Qp

2

)
denotes the set of two-element subsets of Qp.

Let ` be a line with canonical pair (p′; v), and define p ∈ [n]d by

pj =

{
p′j vj = 0 and p′j 6= n− i+ 1,

i otherwise.

We have p ∈ P by construction.
If pj 6= i, then by construction we have that pj = p′j and vj = 0. Therefore p′j +

(i− 1)vj = pj.On the other hand, suppose pj = i. Then either vj 6= 0, or vj = 0 and
p′j ∈ {i, n− i + 1}. In the former case, Lemma 7 forces p′j ∈ {1, n} and therefore
p′j + (i− 1)vj ∈ {i, n− i+ 1}. In the latter case, it is clear that p′j + (i− 1)vj =
p′j ∈ {i, n − i + 1}. By definition, this means p′ + (i − 1)v ∈ Qp. Similarly, p′ +
(n− i)v ∈ Qp. Thus φ(`) ∈

(
Qp

2

)
and φ maps to the desired codomain.

The map φ is injective since any two points of ` determine the line. It remains
to prove that φ is surjective. Fix some p ∈ P and {q, q′} ∈

(
Qp

2

)
. Observe that if

qj 6= q′j for some j, then |qj − q′j| = n − 2i + 1. Since q 6= q′, the sequence v =
1

n−2i+1
(q − q′) is a nonzero element of {−1, 0, 1}d, and possibly by relabeling q, q′,

we can assume that the first nonzero coordinate of v is +1. Define the point p′ := q −
(n − i)v. Note that when vj = +1, we have qj = n − i + 1, so p′j = 1. Similarly,
when vj = −1 we have qj = i and p′j = n. Thus p′ + (j − 1)v ∈ [n]d for all 1 ≤
j ≤ n and we have that (p′; v) is the canonical pair of some line `with φ(`) = {q, q′},
proving the surjectivity of the map.

Step 3: Let Lp be the set of lines whose i-dentifiers are in Qp, i.e., Lp is the preim-
age of

(
Qp

2

)
under φ. Let f(w,Lp) be the number of lines of Lp that contain w in G.

Note that φ being a bijection implies that each line belongs to exactly one Lp set, so

f(w,G) =
∑
p

f(w,Lp).

Given p ∈ P , let Q+
p = {q ∈ Qp : G(q) = wi} and Q−p = {q ∈ Qp : G(q) =

wn−i+1}. Because wi 6= wn−i+1 by assumption, for a line ` ∈ Lp to contain w,
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we must have one of its i-dentifiers be in Q+
p and the other in Q−p . Because each

{q, q′} ∈
(
Qp

2

)
is the i-dentifier of a unique line in Lp, we have

f(w,Lp) ≤
∣∣∣∣∣
{
{q, q′} ∈

(
Qp

2

)
: q ∈ Q+

p , q
′ ∈ Q−p

}∣∣∣∣∣
= |Q+

p ||Q−p | ≤
(
1

2
|Qp|

)2

= 4|I(p)|−1,

and in particular this integer is 0 when |I(p)| = 0.
Step 4: Let Pr ⊂ P be the set of p with |I(p)| = r. Note |Pr| =

(
d
r

)
(n− 2)d−r,

as a point in Pr is uniquely determined by first choosing which of its r coordinates
are equal to i, and then each of the remaining coordinates can be any element in [n] \
{i, n− i+ 1}. We conclude that

f(w,G) =

d∑
r=0

∑
p∈Pr

f(w,Lp) ≤
d∑

r=1

(
d

r

)
(n− 2)d−r · 4r−1 =

1

4
((n+ 2)d − (n− 2)d),

where the last step used the binomial theorem.

Lower bounds. We recall a standard combinatorial lemma.

Lemma 10. For d a positive integer and x, y ∈ R, we have

∑
r odd

(
d

r

)
xryd−r =

1

2
((x+ y)d − (−x+ y)d).

Proof. Using the binomial theorem, we see that the right-hand side of this equation is
equal to

1

2

∑
r

(
d

r

)(
xryd−r − (−x)ryd−r

)
=
∑
r odd

(
d

r

)
xryd−r.

With this we can prove our exact result for anti-symmetric words in all dimensions.

Proof of Theorem 5. The upper bound follows from Lemma 9. For simplicity we de-
note the two letters of w by ±1 and we assume w1 = +1. Let I denote the set of
i such that wi = +1, so that wi = −1 for all i /∈ I . Given a point p ∈ [n]d, define
σI(p) = |{i : pi ∈ I}|, and define the grid G by G(p) = (−1)σI (p).

We claim that every line of G of odd weight contains w. Indeed, let ` be a line of
odd weight r with canonical pair (p; v), and recall that `i := p+ (i− 1)v. Let us first
assume σI(`1) is even, so that G(`1) = +1 = w1. Inductively assume G(`i) = wi.
Note that as we go from `i to `i+1, a total of r coordinates will change, each going
from either i to i+ 1 or from n− i+ 1 to n− i, with all other coordinates remaining
the same. If wi+1 = wi, then we either have i, i+ 1 ∈ I or n− i+ 1, n− i ∈ I , and
in either case we have σI(`i+1) = σI(`i) and G(`i+1) = wi = wi+1, as desired. If
instead wi+1 6= wi, then either i, n − i + 1 ∈ I or i + 1, n − i ∈ I . Depending on
the case, we have σI(`i+1) = σI(`i) ± r. Thus G(p) = wi(−1)r = −wi = wi+1,
where we used the assumption that r has odd weight. Essentially the same proof works
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when σI(`1) is odd, but with our reading the words backwards instead of forwards. By
Lemmas 8 and 10 we have

f(w) ≥ f(w,G) ≥ 1

2

∑
r odd

(
d

r

)
2rnd−r =

1

4
((n+ 2)d − (n− 2)d).

The idea of the proof of Theorem 4 is as follows. Define

πi(p) := |{j : pj = i}|, τi(p) := πi(p) + πn−i+1(p).

By looking at the problem through a probabilistic lens, one can show that with high
probability a random line of [n]d has weight roughly 2d

n+2
. Moreover, for any point p

on this line, with high probability there is a unique i ≤ dn/2e such that τi(p) ≈ 4d
n+2

with πj(p) ≈ d
n+2

for all j 6= i, n− i+ 1. Motivated by this, if w is symmetric, we
will define our grid G by setting G(p) = wi whenever there is a unique i ≤ dn/2e
with τi(p) large. This will give us almost every line for symmetric words.

To get the bound for nonsymmetric words, we further need to decide whether a
point p with τi(p) ≈ 4d

n+2
should be assigned to wi or wn−i+1. We will make this

decision based on the parity of

σ(p) :=
∑
i≤n/2

πi(p).

Note that this is a special case of the function σI(p) used in the proof of Theorem 5
with I = [n/2] (and in fact, any such σI can be used to give the desired result). The
reason we make this definition is because of the following.

Lemma 11. Let (p; v) be the canonical pair of a line ` of odd weight. Then

σ(p) ≡ σ(p+ (i− 1)v) mod 2 i ≤ bn/2c ,
σ(p) 6≡ σ(p+ (i− 1)v) mod 2 i > dn/2e .

Heuristically this says that we can use the parity of σ(p) to determine whether we
are on the “left” or “right” side of our desired line. We note that for n odd, this lemma
says nothing about i = (n+ 1)/2. This is fine because we can arbitrarily assign this
point to be on the left or right side of the line since wi = wn−i+1 in this case.

Proof. Let π′j(p) = |{k : pk = j, vk = 0}|. Thus for all i, πj(p + (i − 1)v) will
always be at least π′j(p) (since these positions stay fixed for all i) plus any of the
positions that are made equal to j due to moving along v. By Lemma 7, if vk = +1
then (p+ (i− 1)v)k = i, and if vk = −1 then (p+ (i− 1)v)k = n− i+ 1. Thus
if r is the weight of ` and s is the number of positions k with vk = +1, we have

πj(p+ (i− 1)v) = π′j(p) if j 6= i, n− i+ 1,

πi(p+ (i− 1)v) = π′i(p) + s,

πn−i+1(p+ (i− 1)v) = π′n−i+1(p) + r − s.

In particular, every term of σ(p+ (i− 1)v) =
∑

j≤n/2 πj(p+ (i− 1)v) will equal
π′j(p) except for j = min{i, n− i+ 1}, at which point it is equal to either π′j(p) + s
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or π′j(p) + r − s depending on which value j takes. Thus for i ≤ bn/2c (and in
particular for i = 1), we have

σ(p+ (i− 1)v) = s+
∑
j≤n/2

π′j(p) = σ(p),

and this second equality shows that, for i > dn/2e, we have

σ(p+ (i− 1)v) = r − s+
∑
j≤n/2

π′j(p) = r − 2s+ σ(p).

Because r is odd, this last quantity is of different parity from σ(p).

We now begin the setup for the formal proof of Theorem 4. Let w be a word of
length n ≥ 3 and define

c :=
3.9d

n+ 2
, k :=

2.3d

n+ 2
.

We say that a point p is a counter-point if

c < τ1(p) < 1.1c and

.99(d− τ1(p))
n− 2

≤ πi(p) ≤
1.01(d− τ1(p))

n− 2
for all 1 < i < n.

We define the grid Gw on points p with σ(p) odd as follows. Gw(p) = w1 if p is a
counter-point, Gw(p) = wi if τ1(p) ≤ c and if τi(p) ≥ k for a unique 1 < i ≤ n/2,
andGw(p) is assigned arbitrarily for all other points with σ(p) odd. If σ(p) is even we
letGw(p) = wn if p is a counter-point,Gw(p) = wn−i+1 if τ1(p) ≤ c and τi(p) ≥ k
for a unique 1 < i ≤ n/2, and Gw(p) is assigned arbitrarily for all other points.

Our first goal is to show that most lines whose endpoints are counter-points contain
the word w. To do this, we use a version of the Chernoff bound which can be found in
[1], for example.

Lemma 12 (Chernoff bound). Let Bin(n, p) denote a binomial random variable
with n trials and probability p, i.e., Pr[Bin(n, p) = k] =

(
n
k

)
pk(1− p)n−k. Then for

all λ > 0 we have

Pr[|Bin(n, p)− pn| > λpn] ≤ 2e−λ
2pn/2.

That is, with high probability binomial variables are close to their expectation.

Lemma 13. Let w be a word of length n ≥ 3 and p a counter-point with τ1(p) = r.
Then the number of lines ` inGw that have initial point p and that containw is at least
(1 − 2e−c/10000)2r−1. If wi = wn−i+1 for all i, then the number of lines is at least
(1− 2e−c/10000)2r.

Note that in the statement of the lemma we do not require p to be a canonical initial
point.

Proof. Let S ⊂ [d] be a set of coordinates with |S| = s ≥ .49r such that j ∈ S im-
plies pj ∈ {1, n}. Note that there are exactly

(
r
s

)
ways to choose such a set S with

|S| = s by the hypothesis τ1(p) = r. Given such an S, we form a line `S with initial
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point p and direction v defined by vj = 0 if j /∈ S, and otherwise vj = +1 if pj = 1
and vj = −1 if pj = n.

For any i and j 6= 1, n, i, we have

τj(p+ (i− 1)v) = τj(p) ≤ 2.02
d− r
n− 2

< 2.02
d− c
n− 2

=
2.02d

n+ 2
· n− 1.9

n− 2
≤ 2.222d

n+ 2
< k,

where the first equality used similar reasoning as in the proof of Lemma 11, the first
two inequalities used the definition of counter-points and j 6= 1, n, and the penultimate
inequality used the fact that n ≥ 3. We also have for i 6= 1, n that

τi(p+ (i− 1)v) = τi(p) + s ≥ 1.98
d− r
n− 2

+ .49r.

Because c < r < 1.1c, this implies

τi(p+ (i− 1)v) >
1.98(d− 1.1c) + 0.49c(n− 2)

n− 2

=
d

n+ 2

3.891n− 8.3562

n− 2

≥ 3.3168d

n+ 2
> k.

Finally, because r < 1.1c, we have for i 6= 1, n,

τ1(p+ (i− 1)v) = r − s ≤ 0.51r < c.

Thus Gw(p+ (i− 1)v) ∈ {wi, wn−i+1} for all i (this holds for i = 1, n because p
is a counter-point), with the exact value depending on the parity of σ(p+ (i− 1)v).
If wi = wn−i+1 for all i, then `S contains w. If w is not symmetric and `S is of odd
weight, then by Lemma 11 we will either have σ(p+ (i− 1)v) = wi for all i if σ(p)
is odd, or σ(p + (i − 1)v) = wn−i+1 for all i otherwise. In either case `S contains
the word, so we conclude that `S always contains w if it has odd weight.

It remains to count how many lines contain w in each of these cases. For the non-
symmetric case, each set S of odd size s ≥ .49r gives a distinct line `S containing w.
Using Lemmas 10 and 12, we find that the number of such lines is

∑
s≥.49r, s odd

(
r

s

)
= 2r−1 −

∑
s<.49r, s odd

(
r

s

)

≥ 2r−1 − 2r
∑
s<.49r

(
r

s

)
2−r

= 2r−1 − 2r · Pr[Bin(r, .5) < .49r]

= 2r−1 − 2r−1 · Pr[|Bin(r, .5)− .5r| > .01r]

≥ (1− 2e−r/10000)2r−1 ≥ (1− 2e−c/10000)2r−1.
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The analysis for the symmetric case is essentially identical, the only difference being
that we sum over all s ≥ .49r regardless of its parity.

We next wish to show that there are many counter-points.

Lemma 14. Let w be a word of length n ≥ 3. For c < r < 1.1c, the number of
counter-points with τ1(p) = r is at least

(1− 2de−d/40000(n+2))

(
d

r

)
2r(n− 2)d−r.

Proof. Uniformly at random choose a point with τ1(p) = r by first uniformly choos-
ing a set J ⊂ [d] of size r and uniformly assigning pj ∈ {1, n} for all j ∈ J , and then
uniformly choosing pj ∈ {2, . . . , n− 1} for all other j.

Note that for j 6= 1, n the distribution of πj(p) is exactly Bin(d − r, 1
n−2), and

thus the probability that any πj(p) is outside the range .99(d−r)
n−2 and 1.01(d−r)

n−2 is at
most 2e−(d−r)/20000(n−2) by Lemma 12. Because r < 1.1c and n ≥ 3,

d− r
n− 2

>
d− 1.1 3.9

n+2
d

n− 2
=
d(n+ 2)− 4.29d

(n− 2)(n+ 2)
=

d(n− 2.29)

(n+ 2)(n− 2)

≥ 0.71 · d

n+ 2
≥ 0.5 · d

n+ 2
.

Therefore the probability that any πj(p) is outside the range .99(d−r)
n−2 and 1.01(d−r)

n−2 is
at most 2e−(d−r)/20000(n−2) ≤ 2e−d/40000(n+2). By the union bound, the probability
that none of the πj(p) are outside this range, and hence the probability that p is a
counter-point, is at least 1− 2de−d/40000(n+2).

Because we chose p uniformly among all points with τ1(p) = r, and because the
number of such points is exactly

(
d
r

)
2r(n− 2)d−r, we conclude that

|{p : τ1(p) = r, p counter-point}|(
d
r

)
2r(n− 2)d−r

≥ 1− 2de−d/40000(n+2),

which gives the desired result.

We are now ready to prove Theorem 4.

Proof of Theorem 4. For n = 2, one can either have a word of the form w = AA (in
which case the grid that always maps to A has every line containing w), or of the form
w = AM (in which case Theorem 5 applies and gives the desired bound). From now
on we assume n ≥ 3.

Consider Gw as defined above. By using Lemmas 13 and 14 (and noting that the
former lemma double counts lines since we do not consider canonical initial points),
we find

f(w,G) ≥ 1

2

∑
c<r<1.1c

(1− 2de−d/40000(n+2))

(
d

r

)
2r(n− 2)d−r(1− 2ec/10000)2r−1
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= (1− 2de−d/40000(n+2))(1− 2ec/10000)
1

4
(n+ 2)d

∑
c<r<1.1c

(
d

r

)(
4

n+ 2

)r (
n− 2

n+ 2

)d−r

Note that this sum is equal to

Pr

[
c < Bin

(
d,

4

n+ 2

)
< 1.1c

]
≥ Pr

[
3.9d

n+ 2
< Bin

(
d,

4

n+ 2

)
<

4.1d

n+ 2

]
,

where we used 4.1 < 3.9 · 1.1. By Lemma 12, this is greater than 1− 2e−d/800(n+2).
Hence

f(w,G) ≥ (1− 2de−d/40000(n+2))(1− 2ec/10000)(1− 2e−d/800(n+2))
1

4
(n+ 2)d.

Using this lower bound (and the fact that c→∞ as d→∞), as well as Lemma
9, we conclude for nonsymmetric words that f(w,G) ∼ 1

4
(n + 2)d. For symmetric

words, we use the symmetric case of Lemma 13 and an analogous argument to con-
clude the desired result.

4. A FEW SHORT WORDS ON SHORT WORDS. In this section, we informally
discuss results for words of length k in (n, d)-grids. We define ` to be a line of length
k in the obvious way, and, similarly for an (n, d)-grid G, we define what it means for
this line to contain a word w of length k in a manner analogous to what we did before.
We let f(w, n, d) = maxG f(w,G). One can show that the total number of lines in
[n]d of length k is exactly

1

2
((3n− 2k + 2)d − nd).

The proof is essentially the same as that of Lemma 8. The main difference is that
before if we had φ(`)i = + we knew that pi = 1, but now it could be any value that
is at most n − k + 1. Thus, instead of writing +, we should use the symbol p+i to
specify this information, and similarly one should use p−i instead of −.

Note that if k is much smaller than n and d is fixed, then asymptotically this number
is 3d−1

2
nd. This can be seen more directly by choosing a random point p in [n]d and

observing that with high probability, p is one of the two endpoints of a line in direction
v for all of the 3d − 1 possible nonzero directions v.

For the rest of this section we focus primarily on the case d = 2, with many of these
ideas carrying over to larger d. The best generic bounds we have in this case are the
following.

Theorem 6. If w is a word of length k, then

f(w, n, 1) · (3n− 4k) ≤ f(w, n, 2) ≤ f(w, n, 1) · 2n+ 4
n∑
i=k

f(w, i, 1).

Note that if f(w, n, 1) ∼ αn and k is much smaller than n, then asymptotically
the lower bound is 3αn2 and the upper bound is 4αn2, so this essentially solves the
problem within a factor of 4/3 for all words w.

Proof. Let G be an (n, 2)-grid. By definition, the number of copies of w that G con-
tains in its first row is at most f(w, n, 1), so in total the total number of copies it
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contains in its rows is at most f(w, n, 1) · n. The same result holds for the number
of copies of w appearing in a column. Similarly there are (at most) four “maximal”
diagonal lines in G of length i for any i ≥ k, see Figure 10, and within each of these
diagonals, G contains at most f(w, i, 1) copies of w. As every line of length k ap-
pears in a row, column, or maximal diagonal of length at least k, we conclude the
upper bound.

Figure 10. Dashed lines showing the four maximal diagonals of lengths 2 and 3 in a 5× 5 grid.

For the lower bound, let G′ be an (n, 1)-grid that contains f(w, n, 1) copies of w.
Define G(i, j) = G′(j). Observe then that the total number of copies of w appearing
in rows is exactly f(w, n, 1) · n. Moreover, if v = (0, 1) and p = (i, j) with k ≤ i ≤
n− k is such that the line with initial point p and direction v contains w in G, then
so do the lines with initial points p in directions v′ = (1, 1) and v′′ = (−1, 1). This
gives an extra count of f(w, n, 1) · 2(n− 2k), as desired.

For example, if w′ is the word of length k ≥ 2 with k distinct letters, we claim that
f(w′, n, 1) ≈ n/(k − 1). Forw′ = ABCD, the corresponding lower bound construc-
tion looks like Figure 11:

Figure 11. A one-dimensional grid giving the maximum number of instances of the word ABCD.

In this grid, almost every copy of A and D is one of the two endpoints of two lines
containing w′, so the total number of lines containing w′ is roughly the number of
times A and D appear in this grid. It is not hard to see that this happens for roughly
one third of the positions in G, and a similar construction proves the lower bound of
our claim for all k. For the upper bound, we have f(w′, k, 1) = 1, and it is not difficult
to see that for all n,

f(w′, n+ k − 1, 1) ≤ f(w′, n, 1) + 1,

as the first n letters of an (n + k − 1, 1)-grid contain at most f(w′, n, 1) copies of
w′ and at most one of the last k − 1 positions can be the endpoint of at most one line
containing w′.

This claim together with Theorem 6 gives that f(w′, n, 2) is roughly between
3

k−1n
2 and 4

k−1n
2 when w′ is a word on k distinct letters, and in general we do not

know what the correct answer is for this very simple family of words, though we sus-
pect that the lower bound is closer to the truth.
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Conjecture 1. If w′ is the word of length k ≥ 2 consisting of distinct letters, then

f(w′, n, 2) ∼ 3

k − 1
n2.

In fact, it may be that f(w, n, 2) ∼ f(w, n, 1) · 3n for any fixed word w.

5. APPENDIX. In order to get a better feel for the problem in higher dimensions,
Figure 12 shows one of the three (up to rotation and reflection) optimal AMM grids
for d = 3. More precisely it displays an “unfolded” two-dimensional version of the
grid. To recover the three-dimensional grid, one can cut out the diagram and fold it
into a cube along the gray lines (where the center of the cube is assumed to be M).
There are 28 instances of AMM in this cube — can you see them all?

Figure 12. An unfolded 3× 3× 3 grid giving the maximum number of instances of AMM.
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