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0 Overview and Basic Definitions

These notes are intended for a graduate course in graph theory which assumes the reader is
already familiar with basic graph theory terms and definitions (see also Section 0.1 for a recap
of these definitions). You should expect many typos and missing references.

The first half of these notes centers on two of the main areas of modern graph theory: extremal
graph theory and structural graph theory. Broadly speaking, extremal graph theory ask ques-
tions of the form: how “large” can a graph be if it satisfies a certain property? Structural graph
theory, on the other hand, broadly speaking aims to characterize families of graphs which sat-
isfy a certain property. It is worth noting that the exact line between these two areas is rather
vague, so some topics may have crossover between each other. It should also be said that I am
an extremal graph theorist, so there will certainly be a bias these topics.

The second half of the text centers around “bonus” material which delves into specific methods
for solving graph theory problems, as well as auxiliary topics which could be entire courses on
their own.

0.1 Very Basic Graph Theory Definitions

Here we briefly recall the basic definitions and notations for graphs that we use throughout the
text.

The Essentials:

A graph G is a pair of sets (V| E) with E a set of 2-element subsets of V| i.e. E C
{{z,y} : xz,y € V, x # y}. The set V is called the vertex set of G and its elements are
called vertices, while the set E is called the edge set of G and its elements are called edges.
We will typically denote edges {x,y} by the simpler notation xy.

Eg ({1,2,3,4},{12,23,13,14}) is a graph. Often it’s easier to depict graphs by pictures
(and how exactly we draw the picture doesn’t matter).

e Throughout this text we will only consider finite graphs, ie graphs with |V| < oo, though
we emphasize that interesting things can be said regarding infinite graphs.

e Throughout this text we will almost always work with graphs without repeated edges (ie
E is a set rather than a multiset) and graphs without oriented edges (ie each edge is an

unordered pair of vertices, meaning zy = yzx).

e We will often write V(G) and E(G) to denote the vertex and edge sets of a graph G, and
we write v(G) = |V(G)| and e(G) = |E(G)].

e We say two vertices z, y are adjacent or neighbors if zy € E(G), and we sometimes denote
this be writing x ~ y.

e Given a vertex z we define the neighborhood of x by N(x) = {vertices that are adjacent
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to x in G'}. We define the degree of x by deg(z)

= |N(z)|. Whenever the graph G is not
clear from context we will write Ng(z) and degq(z).

e We say that a graph G' = (V’, E') is a subgraph of another graph G = (V, E) it V! C V
and F' C E. In this case we write G’ C G.

e We say two graphs G, H are isomorphic if there exists a bijection ¢ : V(G) — V(H) such
that z,y € V(G) are adjacent in G if and only if ¢(z), ¢(y) € V(H) are adjacent in H for
all z,y.

Paths and Connectivity:

e A path in a graph G is sequence of distinct adjacent vertices (z1,s,...,2;), and we say
such a path is a path from x; to x; and that it has length t — 1 (i.e. the length of the path
is the number of edges it has).

e A graph is connected if for any two pair of vertices there exists a path from z to y.

e The distance between two vertices z,y, denoted dist(x,y), is the length of the shortest
path from z to y (with dist(z,y) = oo if no such path exists).

Graph Operations and Subgraphs

e Given a set S and an integer k, we let (*Z) denote the set of all subsets of S of size k. For
example, our definition of a graph is equivalent to saying that £ C (‘2/)

e Given a graph G we define its complement G to be the graph obtained by replacing all
edges with non-edges and vice versa. That is, G is the graph with vertex set V(G) and
edge set (V(ZG)) \ E(G).

e Given a graph G and a set of vertices S C V(G), we define G — S to be the graph
obtained by deleting S and all edges incident to it. That is, V(G — S) = V(G) \ S and
E(G-S)=EG)\{e:enS #0}. If S = {x} then we will denote this simply by G — x.
Similarly if xy is an edge of G we define G — zy to be the graph obtained by deleting the
edge xy.

e A subgraph G’ C G is said to be induced if it is of the form G — S for some set of vertices
S. Given a set of vertices V' we will sometimes write G[V] to be the induced subgraph
with vertex set V, i.e. G[V] =G -V (G)\ V.

e A subgraph G’ C G is called spanning if V(G') = V(G).

Independent Sets and Colorings



e A set of vertices I is independent if no two vertices =,y € I are adjacent to each other.

e A graph is bipartite if there exists a partition of V(G) into two independent sets.

e Given a graph G and an integer k, a proper k-coloring is a map ¢ : V(G) — [k] with the
property that adjacent vertices z,y € V(G) have ¢(x) # ¢(y). The smallest k for which
G has a proper k-coloring is called the chromatic number of G and is denoted x(G).

Forests and Trees

e A graph is a forest if it contains no cycles (i.e. no subgraph isomorphic to a cycle graph
Cy). A tree is a forest which is connected.

e A vertex of degree 0 is called an isolated vertez. A vertex of degree 1 (especially in the
context of trees and forests) is called a leaf.

0.2 Common Graph Families and Parameters

We record notation for graphs that will appear throughout the text.

e K, denotes the n-vertex complete graph, i.e. the unique n-vertex graph with all (g) edges.

e K, denotes the complete bipartite graph which has s vertices in one part and ¢ vertices
in the other.

e (, denotes the cycle graph of length /.

e P. denotes the path graph with r vertices (NOTE: some authors would denote this by
P._1).

We record notation for graph parameters that will appear throughout the text, where here G
denotes an arbitrary graph.

e )(G) is the minimum degree of G, i.e. 0(G) = min,ey () deg(x).
e A(G) is the maximum degree of G, i.e. A(G) = max ey () deg(z).

e a(G) is the independence number of GG, which is the largest size of an independent set of

G.

e \(G) is the chromatic number of G, which is the smallest integer k such that G has a
proper k-coloring.



0.3 Asymptotic Notation

Eventually in the text it will be convenient for us to make use of the following asymptotic
notation which we record here for ease of reference. We emphasize that this notation will be
redefined when it first appears in the text, so there is no need to memorize this right now.

Let f(n),g(n) be two functions.

e We write f(n) = O(g(n)) if there exists a constant C' > 0 such that f(n) < Cg(n) for all
n.

o We write f(n) = Q(g(n)) if there exists a constant ¢ > 0 such that f(n) < cg(n) for all n.

e We write f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)). In this case we say that
f, g have the same order of magnitude.

e We write f(n) ~ g(n) if lim,_, % = 1. In this case we say that f, g are asymptotic to
each other.
f(n

o(g(n)) if lim, s oy = 0. In particular, writing f(n) = o(1) means

N

e We write f(n) =
lim,, o f(n) =0.

0.4 Inequalities

Many proofs in extremal combinatorics rely on basic inequalities from analysis. Here we record
the most important of these that we will use.

Theorem (Cauchy-Schwarz Inequality). If zq,...,z, and y1,...,y, are real numbers, then

n n 1/2 n 1/2
S < (z ) (zyz)
=1 =1 =1

Personally, we like to remember the statement of Cauchy-Schwarz by noting that it follows from
the vector equality (x,y) = cos@ ||x]| ||y| where € is the angle between the vectors x,y.

For the next inequality, recall that a function ¢ : R — R is convex if for all 0 < ¢ < 1 and
x,y € R we have ¢(tzx + (1 — t)y) < td(x) + (1 — t)d(y).

Theorem (Jensen’s Inequality). If ¢ is a convex function and z1,...,x, € R, then
Z o(z;) > no (nl Z xl> )
i=1 i=1

That is, this sum is minimized when each z; is equal to their average n=' > zy. We note for
x) - z(x—1)--(z—t+1)

] o is convex.

later that for any integer ¢ > 1, the function (



0.5 Exercises

Each chapter will end with a set of exercises. Following the notation of Stanley, we will add
numbers after each exercise to indicate the problem’s rough level of difficulty as follows:

e [1] problems are elementary and routine requiring little to no thought,

e [2] problems have simple solutions (though that does not necessarily mean it is easy to
find such a solution!),

e [3] problems tend to have involved solutions,

e [4] problems have extremely difficult solutions (to the extent that such questions should
never be used in a classroom setting),

e [5] problems are unsolved open problems.

Additionally, plus and minus symbols may be used to indicate higher or lower levels of difficulty
for the problem. For example, a [2+] problem might have a simple solution that’s pretty
challenging to find, while a [3-] problem might have an involved solution that’s actually not too
hard to work out. Ultimately, all of the ratings that I give are only rough estimates and the
reader may find a given [3] problem easier to solve than a [2-] depending on the circumstances.

With that preamble out of the way, we begin with some “elementary” (though not necessarily
easy) graph theory problems.

1. (Handshaking Lemma) Prove that every graph G has 3~ i) deg(z) = 2¢e(G) [2-].

2. Prove that every graph G with v(G) > 2 contains two vertices with the same degree [2-].
3. Prove that for every graph G, either G or its complement G is connected [2-].

4. Prove that a graph is bipartite if and only if it contains no odd cycles [2-].

5. Prove that for every graph G, the set of edges E(G) can be partitioned into cycles if and
only if every very vertex of G has even degree [2+].

X ok ok

6. Recall that a graph is d-regular if deg(u) = d for every vertex u. Prove for all integers
0 < d < n that there exists an n-vertex d-regular graph if and only if at least one of d or
n is even [2].

7. A graph is said to have girth g if it contains a cycle of length g and no cycles of shorter
length.



10.

11.

12.

13.

14.

(a) Prove that for all integers d, g > 2, there exists a d-regular graph of girth g [2+].
(b) Prove that if G is a d-regular graph of girth g, then
v(G) <
2
(c) Show that the bound above is tight for d = 3,9 =5 [1+].

Xk ok

Prove that x(G)a(G) < v(G) for all graphs G [2-].

Prove that a(G) > A?éc)ll for all graphs G [2].

Prove that if a graph G is triangle-free (i.e. if G contains no subgraph isomorphic to K3)
then a(G) > /v(G) [2-].

Prove that every tree T' with v(T') > 2 has at least two leaves.

Prove that for every tree T, there exists an ordering of its vertices vy, ..., v, such that for
all 2 <4 < n, there exists an integer j; such that N(v;) N {v1,...,vi1} = {v;, } [1+].

(Helly Theorem for Trees) Let 17" be a tree and 7 a set of subtrees of T' (i.e. a set of
subgraphs of T' which are themselves trees). Prove that if V(T") N V(T") #  for all
T', 7" € T, then there exists a vertex v € (\per V(T") [24].



Part 1

Extremal Graph Theory

As mentioned in the introduction, extremal graph theory broadly speaking asks questions of
the form: how “large” can a graph be if it satisfies a certain property?

What exactly “large” means depends on the type of problem one is considering, with some
popular choices being the number of edges, the number of vertices, and the minimum degree of
the graph in question. Each of these choices (together with an appropriate choice of “property”)
gives rise to three of the main topics of extremal graph theory: Turdn problems, Ramsey
problems, and Dirac problems; see the table below for a brief outline. Each of these types of
problems will be the main topic of focus for the forthcoming chapters.

Measurement Property Type of Problem
Number of edges  + Triangle-free = Turdn Problems: Section 1
Number of vertices + G and G are triangle-free = Ramsey Problems: Section 3
Minimum degree  + non-Hamiltonian = Dirac Problems: Section 2

Figure 1: A table of measures of “largeness”, properties that one can consider, and the problems
that these produce. Note that in each case, the given property is harder to fulfill the “larger”
G is with respect to its measurement, which is a hallmark of a good extremal problem.
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1 Forbidden Subgraphs and Turan Problems

Turan Problems broadly ask: how many edges can an n-vertex graph have if it does not contain
a copy of a given graph F'? Specifically, the we will work with the following throughout this
chapter.

Definition 1. Given two graphs F, G, we say that G is F'-free if G does not contain a subgraph
which is isomorphic to F'. Given an integer n > 1, we define the Turdn number or extremal
number ex(n, F') to be the maximum number of edges that an n-vertex F-free graph can have.

The name of the game now is to try and either determine or bound ex(n, F') for various choices
of F.

1.1 Forbidding C; and Complete Bipartite Graphs

Perhaps the first question we need to answer is: why should we care about Turdn problems in
the first place? There are many possible answers to this question, here are a few of my own
personal reasons:

e They are natural extremal problem to consider.
e They have applications to various areas of mathematics.

e Solutions to Turan problems often use cool and deep results from other areas of mathe-
matics in interesting ways.

e They’re fun!

To try and illustrate these points above, we will begin by studying the Turan problem for
F = C,. Historically, this is the second Turan problem to be considered (we will look at
the first problem in the following section) and was largely solved by Erdés in due to its
connection to a certain problem in number theory.

The Upper Bound. We begin by establishing an upper bound for this Turan number.
Theorem 1.1. We have

nyv4an —3+n
1 :
That is, every n-vertex Cy-free graph has at most this many edges.

eX(n7 04) <

We emphasize that this is not a very pretty looking upper bound; we will address this further
shortly after the proof.

Proof. In order to prove any upper bound for this problem, we need to get some understanding

of what it means for a graph to be Cy-free graph. After thinking about it for long enough,
one might come up with the following observation: a graph is C)-free if and only if every pair
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of distinct vertices u,v has at most one common neighbor, i.e. there is at most one vertex in
N(u) N N(v). Indeed, the existence of two vertices in this set together with u, v would exactly
define a Cy in our graph.

Now, a priori, it is not immediate how to use the fact that pairs of vertices have at most one
common neighbor to bound the number of edges in our graph. However, one can use it to
bound the number of some other object which is “almost” an edge. Namely, let

P={({u,v},2) e V(G)? :u~x~v, usuvl,

which essentially just encodes the set of P3’s in G. Note that each element of P can be
uniquely identified by picking two distinct vertices to play the roles of u,v together with a
common neighbor of these vertices to play the role of x. As such, we have

PI=S V@ vel < Y 1= ()
uFv u,v

with the inequality using that our graph is Cy-free. Now, we got the first equality above by
identifying each element of P by its first and last vertices u, v and then picking some common
neighbor z. Alternatively, we could identify each element of P by specifying its middle vertex
x together with two distinct neighbors u, v of . As such, we also have

where this inequality used Jensen’s inequality together with the fact that (g) is a convex func-
tion, and the last equality used that ) deg(z) = 2¢(G). Comparing this to the upper bound

for |P| we found above gives
n~t-2e(G) n
< 1

(2¢(G))(2n""e(G) — 1) < n(n — 1).

This in turn is equivalent to having

or equivalently

4e(G)* — 2ne(G) —n*(n —1) <0,

and solving this exactly gives the desired bound on e(G).

O

While the bound of Theorem 1.1 is truly the best we can do using our approach, it is often not
a good idea in extremal combinatorics to do things so precisely.

Mantra 1. It is often better to use (slightly) “wastefull” bounds in extremal combinatorics to
have cleaner proofs and theorem statements.

12



Knowing when exactly and how to derive such “crude” bounds is an important skill to have
in extremal combinatorics, since in practice we do not know a priori if the approach we are
currently playing around with is going to give something useful in the end, and until that point
it is a bad idea to harp over minute details in the argument.

For example, let us consider the point in the proof where we reached (1). Here an expert might
simplify their lives by observing that simple inequalities for binomial coefficients yield

and rearranging this gives
n~12e(G) — 1 < n'?

and hence )
e(G) < §n3/2 + n.

Note that this is extremely close to the optimal bound we get in Theorem 1.1. In particular,
one can show that both bounds are ultimately of the form ex(n,Cy) < %n3/ 2 4+ Cn for some
sufficiently large constant C. This means that our weakening above captures the “main part”
of the bound from Theorem 1.1, in the sense that for n very large the two numbers are very
close to each other.

It will be useful going forward to develop notation to measure more precisely what exactly we
mean by “very close to each other”.

Definition 2. Let f(n), g(n) be two functions.

e We write f(n) = O(g(n)) if there exists a constant C' > 0 such that f(n) < Cg(n) for all
n. In particular, our remark in the paragraph above is equivalent to saying that our two
bounds give' ex(n, Cy) < $n%2 + O(n).

o We write f(n) = Q(g(n)) if there exists a constant ¢ > 0 such that f(n) < cg(n) for all n.
Whenever we write this, we will often implicitly assume that we consider n large enough
so that f(n) > 0. For example, if we write ex(n, F') = Q(1) we will implicitly be assuming
n > 2.s

o We write f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)). In this case we say that
f, g have the same order of magnitude.

e We write f(n) ~ g(n) if lim, . 2~ = 1. In this case we say that f, g are asymptotic to

f(n)
g(n)
each other.

LA very persnickety reader might object that actually this doesn’t exactly agree with the definition given:
the real thing that should be written is ex(n,Cy) — 2n3/2 = O(n) and the “algebra” of moving 3n3/2 to the
other side is not actually valid. It is, however, common practice in the field to use these somewhat imprecise
notational implementations in order to make statements easier to read and write, which is the ultimate goal of
introducing this in the first place.
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o We write f(n) = o(g(n)) if lim, % = 0. In particular, writing f(n) = o(1) means

lim, . f(n) =0.

—

Applications. Theorem 1.1 has a number of applications to other areas of mathematics. We
will consider one quick example from discrete geometry.

Let P be a set of points of R? and let £ be a set of lines in R2. We say that a point p € P
and a line ¢ € L are incident if p lies on the line £. We let I(P, L) to denote the number of
pairs (p,¢) € P x L with p and ¢ incident. A natural extremal question to ask is: what is the
maximum number of incidences that a given number of points and line can obtain? Trivially
one can do no better than n?, but it is not so immediate how to improve this. We will be able
to achieve such an improvement using our Turdn result Theorem 1.1.

Corollary 1.2. If P is a set of n points in R? and if L is a set of n lines in R?, then

I(P, L) = O(n?).

Proof. As is often the case for applications, we begin by defining an auxiliary graph related to
our problem at hand. To this end, define a bipartite graph G whose vertex set is P U L where
we have p ~ ¢ if and only if p and ¢ are incident. Observe that [(P, L) = e(G), so bounding
the number of incidences is exactly the same thing as bounding the number of edges of G.

Now, for arbitrary bipartite graphs G we could of course have e(G) as large as n?, but we have
some additional structure to work with because G is coming from a set of points and lines. In
particular, because every pair of lines intersect in at most one point, G can not contain a C}
(since such a subgraph would consist of vertices py, pa, £1, {2 with py, p2 points common to both
¢y and f5). This together with the fact that v(G) = |P| + |£| = 2n immediately implies that

I(P,L) =e(G) <ex(2n,Cy) = O((Qn)g/Q) = O(ng/Q),

with this last step using that this “big oh” notation is not affected by multiplying by a fixed
constant. [

While it is neat that we could obtain this purely geometric result using graph theory, we should
note that the bound of Corollary 1.2 is not tight, and in fact the true bound is I(P, £) = O(n*/?).
The fact that we obtained a subpar bound should perhaps not come as a surprise, as we used
almost no information about the geometry of the Euclidean plane R? in our argument. It is,
however, possible to derive this optimal bound of O(n*/®) if one uses Theorem 1.1 together with
some appropriate geometric tools (such as real polynomial partitiontionings). We will not go
into this here, but see eg the book for a lot more on this problem and more.

The Lower Bound. Theorem 1.1 shows that ex(n,Cy) = O(n*?). The immediate question
is: is this tight? This is an important question for us to figure out, since e.g. any improvement
to Theorem 1.1 would give an improvement to our bound in Corollary 1.2 as well as to any
other application we can come up with for ex(n, Cy).

To see whether our bound is tight, we need to prove a lower bound for ex(n, Cy), i.e. to construct
n-vertex graphs with many edges and no Cj’s. This, as the reader is welcome to try for
themselves, is not so easy to do. To make some headway on this, we usethe following mantra.

14



Mantra 2. To find a lower bound construction for extremal problems, we should ask ourselves
what would need to happen for our extremal upper bound to be (exactly) sharp.

In our case we ask: what would need to happen for us to have ex(n,Cy) = ”—“1"4_34“"? Well,
this would happen precisely if every inequality throughout our proof of Theorem 1.1 were in
fact an equality. In particular, our very first inequality >_,, [N (u) N N(v)| < (5) must be an
equality, and this would imply that every pair of distinct vertices in G has exactly 1 common
neighbor. Now we have to ask...is this ever possible?

Well, if you think about it for long enough, you might have the wild idea that “every two
vertices has exactly 1 common neighbor” is kind of analogous to the statement “every two
points in R? lie on exactly one common line.” Riffing off of this as well as what we did for our
application in Corollary 1.2, what if we defined a bipartite graph G by taking a set of points P
and a set of lines £ and making a point p adjacent to a line ¢ if and only if they are incident?
Such a graph will automatically be C-free due to the geometry of the situation, so we will win
if we can find some points and lines with many incidences.

As hinted at just after Corollary 1.2, it is possible to find n points and lines in R? such that
I(P, L) = Q(n'?), giving a corresponding lower bound to ex(n, Cy), but this is as good as we can
hope to do in Euclidean space. However, another wild thought based on what we said around
Corollary 1.2 is that our idea of using points and lines does not fundamentally rely on the full
geometry of Euclidean space: we only needed the very basic property that two points line on at
most one line, and such a property holds for many different types of geometries. In particular,
since we're working with finite graphs...why not try and do something with geometries over
finite fields?

Recall from algebra? that for every prime power ¢ there exists a field F, of order ¢. Again going
off what we did in Euclidean space, we want to consider a set of points and lines from the plane
Fg = {(z,y) : z,y € F,}. There might be some particularly clever choices of points and lines
that we could make here, but since we are just playing around, why don’t we go ahead and just
take all of them. That is, we will take P = TF Z and L all of the lines in Fg. To be clear, lines
in Fg are just sets of points in ]Fg taking on one of two forms: for a,b € F, we define the line
lop = {(x,ax +b) : x € F,}, and for ¢ € F, we define the vertical lines ¢. = {(c,y) : y € F,}.
Now define a bipartite graph G, on P U £ where p ~ ¢ if and only if p € £. We leave it as
an exercise to the reader to verify that G is indeed Cy-free. To count e(G,), we observe that
the total number of lines is ¢> + ¢ and that each line is incident to exactly ¢ points, and as
such e(G,) = ¢ + ¢*. Because the total number of vertices in G, is exactly 2¢* 4 ¢, we in total
conclude for any prime power ¢ that

ex(2¢* +q,Cy) > ¢ + ¢°.

By considering n = 2¢ + q =~ 2¢? or equivalent ¢ ~ (n/2)/2, we find that for infinitely many

integers n that ex(n,Cy) is at least ¢> ~ (n/2)%? = 273/2p3/2, As such, the upper bound of
ex(n, Cy) = O(n®?) really is the best we can do for general n! In fact, some basic number
theory facts let us prove the following.

Theorem 1.3. We have ex(n, Cy) = O(n?/?).

2 Any reader scared of algebra should be reassured that this is the only fact you need to recall from algebra.
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Proof. By Theorem 1.1 we have for n large enough that, say, ex(n,C,;) < n3/?

ex(n,Cy) = O(n3/?).

Now consider any integer n > 12. By Bertrend’s postulate, there exists a prime number p with
$v/n/3 < p < /n/3. This in particular implies n > 3p* > 2p? + p, which together with our
discussion above implies

, proving

ex(n, Cy) > ex(2p® +p, Cy) > p® > (12) 732032,

proving that ex(n, Cy) = Q(n*?) and hence that ex(n, Cy) = ©(n*?) as desired. O

We personally find it fascinating that one can use ideas from algebra and geometry to solve
the purely combinatorial problem of determining ex(n,Cy). This is in fact a very common
phenomenon.

Mantra 3. To solve a combinatorics problem, one often needs ideas and tools from other areas
of math. As such, any extra knowledge you have outside of combinatorics is always useful to
keep in the back of your mind!

This mantra is intended to be inspirational rather than intimidating. In particular, even if you
don’t have hardly any knowledge in areas outside of combinatorics (such as myself), you can
still make it very far, its just that some problems in particular may elude your grasps until you
figure out the right tool needed to crack it.

Even Better Lower Bounds. We've done pretty good so far with our lower bounds for
ex(n,Cy), but we can go even farther.

Mantra 4. Once you prove something, see if you can prove something even better.

In particular, given that we have determined the order of magnitude ex(n,Cy) = O(n*?), we
should next ask ourselves if we can prove that ex(n,C;) ~ en®/? for some constant c. We
emphasize that doing this will require a bit more algebra/geometry than before, and as such
the reader may wish to skip over this part of the text if they're already overwhelmed.

Returning back to the problem at hand, we know up to this point (at least for certain values
of n) that
273232 1 o(n3/?) < ex(n, Cy) < 27103 + o(n®/?),

and we need to figure out if we can sharpen either of these bounds. For this, it is useful to
analyze “why” our lower bound proof does not match the bound we got in the upper bound.
After all, in our construction every pair of points really does have exactly one common neighbor.
However, if we look back at what motivated our construction in the first place, we recall that
for the upper bound for Theorem 1.1 to be exactly sharp that we need every pair of vertices to
have a common neighbor, and there is no hope of that happening for our current graph because
G, is bipartite (meaning a given point and a given line will never have any common neighbors

in G,).

It is not so immediate how to fix this problem, as the underlying motivation for our construction
relied on working with both points and lines which intrinsically are different objects from each
other. But, if we stare at things long enough, we might realize that our lines /,; are indexed
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by points in Fg, and as such, one might possibly have the idea where we could consider a graph
G where its vertex set is just ]F?I but where a point (x,y) corresponds to both the point itself
and the line £, ,. That is, we want to define a graph on F; where (z,y) ~ (a,b) if and only
if (z,y) ~ l4p. While this is a noble idea, an immediate issue in this definition is that this
edge relation is not symmetric. That is, having (z,y) € ¢, does not imply (a,b) € £, (ie.
y = ax + b does not mean b = xa + y). At a very high level the issue here with the idea of
identifying points with a corresponding line is that points and lines are not truly “dual” to
each other in Fg. However, this can be fixed by going to yet another type of geometry, namely
projective geometry.

To define things, consider the set of triples T = {(z, y,2) : x,y, z € F3}\{(0,0,0)} and define an
equivalence relation (not to be confused with an edge relation) by having (z, vy, z) = (ax, ay, az)
for all « € F, \ {0}. Let [z,y, 2] denote the equivalence class containing (z,y, z), and define
our set of “points” P to be the set of all such equivalence classes. For each [a,b,c] € P we
define the line {j, 34 = {[x,y,2] : ax + by + cz = 0}. Note that this definition is well-defined
(i.e. it does not matter whether we write [z, y, z| or [ax, ay, az]) since having az + by + cz = 0
implies aax + aby + acz = 0 for all a # 0. Also note that this definition is truly “dual” in
points and lines, in that [z,y, 2] € (o if and only if [a,b,c] € {f,.;. Motivated by this
and our ideas from above, we define a graph G} on P where [z,y,2] ~ [a,b, ] if and only if
[2,y, 2] € Liap,q- We leave it as an exercise to verify that G is Cy-free, that v(G}) = P +q+1,
and that e(G}) = 3(¢+ 1)(¢* + ¢+ 1).

Similar to before, if we take n = ¢*> + ¢ + 1 ~ ¢?, then we see that this shows ex(n, Cy) is at
least 1¢* &~ in3/?, exactly matching the asymptotic bound from Theorem 1.1! Actually, even

d nyv4n—3+n
4

more is true: one can check that the upper boun is actually exactly tight in this

case. That is, for all prime powers ¢, we have

ex(¢*+q+1,Cy) = %(q +1)(¢* +q+1).

Generalizations. Given our success with studying the Turan problem for C}, we should go
on and ask to what extent can the ideas here be used to prove bounds for other graphs F.
Naively one might first consider the problem for other cycles Cy, but this turns out to be
pretty difficult. Instead, the “correct” generalization of the ideas we have here are for complete
bipartite graphs K, in general beyond just that of Ky, = C,. For example, we leave it as
an exercise to generalize the upper bound in Theorem 1.1 to prove the following general upper
bound.

Theorem 1.4 (K6vari-Sés-Turan Theorem). For all integers s,t > 1, we have
ex(n, Kqy) = O,y (n*71%).
Here we add the s,t subscript to the big-oh notation to emphasize that the implicit constant

depends on s,t. This is not entirely necessary since we fix s, at the start of the theorem, but
it is sometimes nice to emphasize this for clarity.

This gives an upper bound, what about a corresponding lower bound? Our lower bound
ex(n,Cy) = Qn?) immediately implies ex(n, Ky;) = Q(n%?) for all t > 2, giving the cor-
rect order of magnitude. In fact, Fiiredi improved the lower bound for ex(n, Ks;) even
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further, giving a tight asymptotic bound. With some effort, one can generalize the geometric
intuition we had for Cy to prove ex(n, K3,;) = ©(n®?) for all ¢ > 3, roughly be replacing the
intuition of “two lines intersect in at most one point” with “three spheres intersect in at most
two points.” Despite this success, the next case of this problem remains open.

Open Problem 1.5. Determine the order of magnitude of ex(n, Ky4).

Similarly ex(n, K, ;) remains open for all s > 4. However, it turns out that we can solve this
problem for K,; whenever t is sufficiently large in terms of s.

Theorem 1.6. For all s > 2, there exists an integer to such that ex(n, K,;) = ©(n?>"/*) for
all t Z t().

The first result of this form was proven by who showed one can take t, = by
using an explicit algebraic construction like we had for Gj. The best current bound is due to

Bukh who recently showed one can take t, = 91215 by using a random algebraic construction.

1.2 Forbidding Cliques

Now that we’ve all been convinced that studying ex(n, F') is an interesting problem, we need
to figure out some graphs F' for which we can effectively bound (or even determine) ex(n, F').
As a starting step, we can think about this problem for small graphs F. A moment’s thought
shows that it is quite easy to determine ex(n, F') for every graph F' with v(F') < 3 except for
the graph F' = K3, which is the smallest non-trivial instance of this problem. The full solution
to this problem is a classical result of Mantel from 1907.

Theorem 1.7 (Mantel’s Theorem). We have ex(n, K3) = |n?/4] for alln > 1. Moreover, the
only n-vertex Ks-free graphs with |n?/4| edges are those which are isomorphic to the balanced
complete bipartite graph K, 2| 1n/2]-

There are many proofs for Mantel’s Theorem (the textbook “Proofs from the Book” contains 7
proofs, and there are many more than just these!). We will content ourselves with only a single
proof here, though we sketch out a few more in the exercises.

Proof. One reasonable approach to consider when given a problem like this is to try and prove
things by induction on n, which is indeed what we shall ultimately do, though we will have to
be a little careful with the details.

Indeed, consider the following naive approach using induction: let G' be an n-vertex Ks-free
graph and v an arbitrary vertex of G. Inductively we know that e(G — v) < [(n — 1)%/4],
and hence e(G) < |(n —1)?/4] + deg(v). Unfortunately this bound is not good enough: if, say
G = K11 and v were the center of the star then this would give a bound of | (n—1)?*/4|+n—1,
which is too large. One can try and be smarter by picking v to be a vertex of minimum degree,
but we do not know if this is enough to prove the result. To deal with this, we will prove the
result by removing two vertices at a time from G rather than just one.

To this end, observe that the result is true for n = 1,2. Assume we have proven the result up
to some value n > 3 and let G be an n-vertex triangle-free graph. If e(G) = 0 then we are done,
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so we can assume G has an edge ry. By induction, we know that e(G—z —y) < [(n—2)?/4] =
|n?/4] —n+ 1, and hence that

e(G) = e(G — x — y) + deg(z) + deg(y) — 1 < [n*/4] + deg(x) + deg(y) — n,

where the —1 in the first equality comes from the fact that xy € E(G) and hence is counted
by both deg(z) and deg(y). Finally, because G is triangle-free (which is a fact we must use
somewhere in our argument), we must have N(z) N N(y) = (), as any common neighbor z would
form a triangle with the edge xy. We conclude then that

deg(x) + deg(y) = |N(x)| + |N(y)| = [N(2) UN(y)| < n,

which combined with the bound above give the desired bound.

To prove the equality case, again one can show this holds for n = 1,2. Inductively then, the
only way for the bound e(G—z —y) < [(n—2)%/4] to be tight is if G —2x —y = K|n/2)—1,[n/2]-1,
and similarly the only way the bound |N(z) U N(y)| < n can be tight is if every vertex of
G — x — y is adjacent to exactly one of x,y, which is only possible if G is K\, 2], [n/2]- O

Similar to how the “correct” way to generalize our bound for Cj in Theorem 1.1 was to consider
complete bipartite graphs, it turns out that the “correct” way to generalize Mantel’s Theorem
is to consider larger cliques K,. And indeed, just like the case of triangles, the Turan number
for cliques in general can be solved exactly and has a unique extremal construction which is
defined as follows.

Definition 3. Given integers r,n > 1, we define the Turdn graph T,_1(n) to be the (r — 1)-
partite graph whose part sizes are as equal as possible, i.e. such that each part either has size

n/(r—1)] orsize [n/(r —1)]

Theorem 1.8 (Turén’s Theorem). For all integers r > 2 and n > 1, we have ex(n, K,) =
e(T,—1(n)). Moreover, the only n-vertex K,.-free graph with e(T,_1(n)) edges are those which
are isomorphic to T,_1(n).

Again there are many different proofs of Turan’s Theorem, and again we limit ourselves to just
a single one here based on the following idea.

Mantra 5. If you think an extremal problem has a unique optimal construction, then try and
prove this by “shifting” an arbitrary construction to look like the optimal construction.

For example, in the setting of Turan’s Theorem we might want to try shifting an arbitrary

K,-free graph into a graph that, like the Turdn graph 7T,_;(n), is complete (r — 1)-partite. And
indeed this is always possible to do.

Lemma 1.9 (Zykov Symmeterization). For every K.-free graph G, there exists a graph G’
satisfying the following:

o V(G =V(G),
o dege/(x) > degs(x) for all x € V(G), and
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o G' is complete (r — 1)-partite.

In particular, these last two conditions imply that G’ is a K,-free graph with at least as many
edges as G.

Proof. We prove the result by induction on r, the case r = 2 being trivial. Let z € V(G) be a
vertex of maximum degree. Observe that H := G[N(z)] must be K,_;-free, as any K, in H
together with z would form a K,. By induction we can find a complete (r — 2)-partite graph
H’ satisfying the conditions of the lemma for H. Now define G’ to be the graph formed by
starting with H' and then adding every edge from V(H') = Ng(z) to the remaining vertices
z U (V(G)\ No(x)).

Observe that V(G') = V(G) and that G’ is complete (r — 1)-partite (namely by considering
the r — 2 parts from H' together with the part x U (V(G) \ Ng(z)), so it remains to check the
degree condition. If y ¢ V(H') = Ng(z) then

dege (y) = v(H') = degg(r) > degq(y),

with this last inequality using that x was chosen to be a vertex of maximum degree. If instead
y € V(H') then

degei (y) = degg (y) + [V(G) \ No(x)| > degy(y) + |Na(y) \ No(x)| = degg(v),

where the inequality used degy (y) > degy(y) by definition of H. O

We now use this result to prove Turan’s Theorem, though for simplicity we omit the proof of
uniqueness.

Proof of Turdn’s Theorem. Let G be an n-vertex K,-free graph. By Zykov symmeterization,
we know that there exists an n-vertex complete (r — 1)-partite graph G’ with at least as many
edges as GG, and it is a simple exercise to show that any such graph has at most as many edges
as T,._1(n), proving the result. O

As a historical aside, Turan proved this result without being aware of Mantel’s Theorem, and
in this paper he went on to introduce the general problem of determining ex(n, F') for various
graphs F', which is why the “Turdn number” bears his name.

1.3 Forbidding Trees

We have now solved the Turan problem for the “densest” graphs K. We now turn to solving
the problem for the “sparsest” graphs, namely that of forests and trees. The simplest case of
this problem is that of stars, which is easy to solve exactly.

Proposition 1.10. For all r > 2, we have ex(n, K;,_1) < %n with equality if and only if at
least one of r or n is even.
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Proof. A graph G being K ,_;-free is the same as saying that G has maximum degree at most
r — 2. Thus, any n-vertex K ,_;-free graph satisfies

1 1 r—2
e(G):§Zdeg(x)§§Zr—2: 5

proving the upper bound. This upper bound is tight whenever there exists an n-vertex (r — 2)-
regular graph, which holds precisely if at least one of r or n is even. m

Note that in this example there are infinitely many extremal constructions, which is a signifi-
cantly different phenomenon compared to what we saw when forbidding cliques.

We next turn to the problem of avoiding an arbitrary tree T, for which we might ideally like
to generalize our argument for stars. Unfortunately unlike in this case we can not say that
an arbitrary T-free graph has small maximum degree, but we can prove the slightly weaker
statement that such a graph has small minimum degree.

Lemma 1.11. If T is a tree with r vertices and if G is a graph with minimum degree at least
r — 1, then G contains a copy of T.

Note that the bound of » — 1 is best possible, as can be seen by considering graphs GG which are
disjoint unions of copies of K, ;. We present two essentially equivalent proofs of this result,
the first of which is a little vaguer but requires less knowledge of trees while the second is a bit
more explicit/algorithmic.

First Proof. We prove the result by induction on r, the case r = 2 being trivial. Assume we
have the proven the result up to some r» > 3 and let T" be an arbitrary r-vertex tree.

Because T is a tree, there exists some leaf x with some vertex y its unique neighbor. Because
G has minimum degree at least » — 1 > r — 2, we inductively can assume that G has a copy of
T' =T — . Now the vertex playing the role of y in this copy of 7" has at least » — 1 neighbors,
of which at most r — 2 of them lie in this copy of 7”. In particular, there exists at least one
neighbor which is not in 77, and taking this together with the copy of T” gives a copy of T' gives
the desired result. O

Second Proof. We build up our copy of T' algorithmically “vertex by vertex.” To do this we
require the fact that for every r-vertex tree, there exists an ordering of the vertices vy, ..., v,
such that for all 2 < i < r there exists an integer j; < i such that Np(v;)N{vy,...,v;i-1} = {v;, }.

Let y; be an arbitrary vertex of G. Iteratively given that we have chosen vertices yq,...,y;_1
in G for some ¢ < 7, we choose y; to be an arbitrary vertex in Ng(y;;) which is not in the set
{y1,.. . vi-1} \ {y;,}. Note that the number of such vertices is at least r — 1 — (i —2) > 1,
so there does indeed exist a valid choice for y;, and as such this algorithm will successfully
terminate. With this, it is not difficult to see that the y; vertices form a copy of T, giving the
result. O

The result above gives a tight bound on the minimum degree needed to contain a copy of T,
but we ultimately want a bound on ex(n,T), i.e. on the average degree needed to find a copy
of T'. Fortunately, there is a general result which allows us to translate between the concept of
minimum degrees and average degrees.
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Proposition 1.12. If G is a graph of average degree at least d, then there exists a non-empty
subgraph G' C G with minimum degree at least d/2 and average degree at least d.

For most applications of this result we will only need the conclusion that G’ has large minimum
degree, but sometimes it is useful to also have this additional average degree condition (see for
example Theorem 2.8). Again we offer two essentially equivalent proofs of this result, both of
which implicitly use that the average degree by definition is

v(G)7! Zdeg(x) = 21}6((5))

First Proof. Assume the result is false for a given d and graph G, and choose such a coun-
terexample with v(G) as small as possible. If 6(G) > d/2 then taking G' = G gives the
desired subgraph, a contradiction. As such, we can assume that G contains a vertex x with
deg(x) < d/2. In this case, the graph G —x has a smaller number of vertices and average degree

2¢e(G —x)  2e(G) —2deg(z) _ 2¢(G)—d
(G-~ w@ =1 =@ =1-%

with this last step using that 2e(G) > dv(G) by hypothesis. Since G — x is a graph with fewer
vertices than G and with average degree d, our choice of G having v(G) as small as possible
implies that there exists G' C G — x C @ satisfying the properties of the statement, giving
another contradiction. O

Second Proof. The key idea of the argument is to start with G’ = G and then iteratively remove
vertices of low degree, i.e. as long as G’ contains a vertex of degree less than d/2 then we remove
this vertex and we repeat this until no such vertices exist. Note that the total number of edges
that we remove in this process is certainly less than

(d/2) - v(G) < e(G),

with this inequality being equivalent to saying that G has average degree at least d/2. As
such, the resulting graph G’ has at least one edge and has minimum degree at least d/2 by
construction. One can similarly check that it has average degree at least d, proving the result.

O

This in total lets us prove the following.

Theorem 1.13. For any r-vertex tree T', we have

r—2
2

n—0,(1) <ex(n,T) < (r—2)n

Proof. For the lower bound we take the disjoint union of copies of K,_;, which is certainly
T-free and which has the stated number of edges.

For the lower bound, assume that there exists an n-vertex T-free graph G with e(G) > (r —2)n,
i.e. with average degree more than 2(r — 2). By Proposition 1.12 there exists a subgraph G’
of G with minimum degree more than r — 2, i.e. with 6(G’) > r — 1. By Lemma 1.11 G' C G

contains a copy of T', a contradiction. O
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While Theorem 1.13 solves the Turan problem for trees up to a factor of 2, one can ask if one can
give an even more precise answer. In particular, given that the lower bound of Theorem 1.13

is the truth for the case of stars, it is natural to believe this should be the answer in general.
Conjecture 1.14 (Erd8s-Sés). Every r-vertex tree T satisfies ex(n,T) < “52n.

There are a number of special cases for which the Erdds-Sés Conjecture is known to be true
(such as for paths; see Theorem 2.8), but overall the problem of improving the small gap from
Theorem 1.13 for all 7" seems difficult to do

1.4 An Aside: General Turan Results

At this point we've studied ex(n, F’) for a lot of classes of graphs F', but still we’ve said almost
nothing about graphs in general. Part of the issue is that the Turan number can behave in very
different ways depending on the structure of the graph F', in the following sense.

Proposition 1.15. Let F' be a graph.
o If F is non-bipartite, then ex(n, F') = ©(n?).
o If I is bipartite, then ex(n, F) = O(n*~1/v(),

Proof. For any graph we have ex(n, F) < e(K,) = (}) = O(n?). If F is further non-bipartite,
then the balanced complete bipartite graph K|, 2| rn/21 is F-free and shows that ex(n, F') >
|n?/4] = Q(n?), proving the first part. For the second part, because F' is bipartite, we have

F C Ky(r)o(r), and hence by Kévari-Sés-Turdn,
eX(”? F) S eX(n, Kv(F),v(F)) = O(n2_1/”(T))'
O

This observation divides the study of Turdn number into two distinct cases: the non-degenerate
case which studies non-bipartite F' (i.e. those graphs with ex(n, F') = ©(n?)), and the degenerate
case which studies bipartite F' (i.e. those graphs with ex(n, F') = o(n?)). In what follows we
very briefly survey results for these cases. Some of these results require some machinery to
prove, and as such will be deferred until much later in the text.

The Non-Degenerate Case. For non-bipartite graphs F', the most important theorem is the
following.

Theorem 1.16 (Erdés-Stone-Simonovits). For any graph F' with at least one edge, we have

ex(n, F) = (% + 0(1)) (;’)

In particular, this result determines the asymptotic value of ex(n, F') for any non-bipartite?
graph F. The lower bound for this is rather easy: the Turdn graph Ty (z)_1(n) has chromatic

3If F is bipartite the theorem simply says ex(n, F') = o(n?), which follows from K8vari-Sés-Turan.
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number x(F) — 1 and hence is F-free and has about i‘(gg:f (g) edges. The upper bound is

somewhat difficult to prove, and we will defer this until we have the regularity lemma at our
disposal.

Because of the Erdds-Stone-Simonovits Theorem, the non-degenerate case of the Turan problem
is often considered to be a solved problem. That being said, for any given non-bipartite graph
F one can still ask for sharper (or even exact) bounds on ex(n, F), as well as to determine the
full set of optimal extremal constructions. There are a number of results in this direction, with
perhaps the most useful being the following due to Simonovits.

Theorem 1.17. Let F' be a graph which is “edge-critical”, meaning it contains an edge e with
X(F —e) < x(F). Then ex(n, F) = e(T\(r)-1(n)) for all n sufficiently large, and moreover the
unique extremal construction for n sufficiently large is Ty py—1(n).

We emphasize that the assumption of n being sufficiently large is necessary in general. Indeed,
we always have ex(n, F') = (}) whenever n < v(F'), and for small n this will typically be better
than the bound given in Theorem 1.17.

Finally, we note that while the Erdds-Stone-Simonovits Theorem largely solves the case of non-
degenerate Turdn problems for graphs, the analogous problem for hypergrpahs remains very
wide open. We’ll touch on this a bit more

The Degenerate Case. While non-degenerate Turédn problems for graphs are largely solved,
nothing could be farther from the case for degenerate Turan problems. Indeed, even determining
the order of magnitude of relatively simple bipartite graphs remain open despite decades of
study. We already mentioned that for complete bipartite graphs that ex(n, K ) remains open
for all s > 4. Similarly, for even cycles (which are perhaps the next most natural class of
bipartite graphs to study) our knowledge can largely be summarized as follows.

Theorem 1.18. For all { > 2, we have ex(n, Cor) = O(n'*1/%). Moreover, this is best possible
whenever { = 2,3, or 5.

That is, we know the Turdn number for Cy, Cg, and C4g, but frustratingly not for Cg! This is
roughly because there exists a class of very particular algebraic objects which just so happen to
solve these three cases and no others. Another frustrating problem is that of the 3-dimensional
hypercube graph (03, which can be viewed as the “skeleton” of a usual cube. Determining
ex(n,Q3) was one of the original problems that Turdn raised back in his 1941 paper on the
topic, but to date only the following bounds are known.

Theorem 1.19. We have ex(n, Q3) = O(n®/?) and ex(n, Qg) = Q(n*/?).

The lower bound comes simply by considering an extremal C-free graph. The upper bound is
based on a “supersaturation” argument of Erd6s and Simonovits from 1969.

While nothing as strong as the Erdds-Stone-Simonovitis Theorem exist for bipartite graphs,
there are a few nice general bounds. For lower bounds, essentially the best we know is the
following.

Theorem 1.20. If F is a graph with v vertices and e edges with e > v, then

2

ex(n, F) = Q(n® 1),
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This bound comes from a probabilistic argument that we will see in . A general upper
bound which can be proven by a more sophisticated argument is as follows.

Theorem 1.21 (Fiiredi). If F is a bipartite graph where every vertex on one side of the bipar-
tition has degree at most r, then

ex(n, F) = O(n*1/").

Much more can be said about what we do not know about Turan numbers of bipartite graphs,
see

1.5 Exercises

1. Verify that the graphs G,, G} defined in the first subsection are Cy-free and that v(G}) =
¢ +q+1ande(G) =35(g+1)(*+q+1) [1+].

2. Prove the Kévari-Sés-Turdn Theorem, Theorem 1.4 [1+].

3. Given integers m,n, s,t > 1, define the Zarankiewicz number® z(m,n; s,t) to be the max-
imum number of edges in a bipartite graph G with parts U, V satisfying |U| = m, |[V| = n,
and that G no copy of K,; with the part of size s in U and the part of size £ in V.

(a) Prove that
z2(m,n;s,t) < (t— DY mn!=Y* 4 (s — 1)n.

(Hint: if you're struggling with this, try solving the previous problem first) [2].

(b) Prove that if G is an n-vertex bipartite Cy-free graph then e(G) < 273/2n3/24-0(n?/?),
i.e. the lower bound we got for ex(n, Cy) using G, was best possible in the setting of
bipartite graphs [2-].

(c) Prove that for all s,t there exists a constant C' > 0 such that if G is an n-vertex
K, ~free graph, then the number of edges vy € E(G) with deg(z) > Cn'~'/* is at
most O(n). Find an example of a graph which has ©(n) edges of this form (Hint:
the intended proof I have in mind works with C' ~ (s +t — 1)/%) [2].

(d) Use (a) with s =t = 2 to give a generalization of Corollary 1.2 [1].

4. The Turén problem involves graphs with 0 copies of a given graph F' (where here by a
copy we mean a subgraph isomorphic to F'). What about graphs with more copies?

(a) Prove that if G is an n-vertex graph then G contains at least e(G) — ex(n, F) copies
of F' for any graph F' [1].

4Some texts define z(m,n; s,t) with respect to G which are K ;-free rather than simply avoiding things on
one side like we have here.
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10.

11.

(b) Prove that if G is an n-vertex graph with e(G) > 100n*? then G contains at least
Q(n=%(G)*) copies of Cy (The number 100 does not matter in case you'd rather
prove this result with a different constant) [2].

Note that the number of copies guaranteed in (b) is far more than the naive bound
given by (a). This sort of phenomenon of graphs with e(G) just above ex(n, F') having
a surprisingly large jump in the number of copies of F' is known as supersaturation.

(c) Prove that for all m with 100032 < m < (g) that there exists an n-vertex graph
G with e(G) = ©(m) and with ©(n~%m?*) copies of C; (Hint: consider something
random) [2+].

. Prove that ex(n, K33) = Q(n°?) [3].

. Prove that ex(n, K,;) = Q(n*71/%) for all ¢ sufficiently large in terms of s [3+].

Xk ok

Determine ex(n, F) for all graphs F' with 2 < v(F') < 3 other than F' = K5. Why did I
leave out the case v(F) =17 [1].

. Verify that if G is an n-vertex complete (r — 1)-partite graph then e(G’) < e(T,-1(n))

[14].
Here we sketch a few alternative proofs of Mantel’s Theorem and Turan’s Theorem.

(a) Observe that if G is a triangle-free graph, then deg(z) + deg(y) < v(G) for all
zy € E(G). Use this to prove Mantel’s Theorem (which is in fact the original way
Mantel proved his result) [2].

(b) Generalize our inductive proof of Mantel’s Theorem to give an alternative proof of
Turdn’s Theorem (which is in fact the original way that Turdn proved his result).
For simplicity you can choose to prove only that

1 n?
Kr <(1- 5
ex(n, Ky) < ( r— 1> 2

which one can check is equivalent to proving the upper bound of Turan’s Theorem
[2].
Let F' denote the unique 4-vertex graph with 5 edges (i.e. the graph consisting of two
triangles sharing an edge). Prove (without using Theorem 1.17) that ex(n, F) = |n?/4]
for all n > 4 [2].
If F' denotes the “bowtie” graph consisting of two triangles sharing a vertex, show that

ex(n,F) = |n?/4] + 1 for all n > 6 [3-].
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12.

13.

14.

15.

Determine ex(n, P;) exactly for all n (Hint: characterize all connected Py-free graphs) [2].

Prove that for every integer s > 1 and real € > 0, there exists a graph with average degree
at least 2s — ¢ which contains no non-empty subgraph with minimum degree greater than
s+ 1; that is, the d/2 in Proposition 1.12 is essentially best possible [2].

One can consider Turan problems which avoids more than just a single graph at a time.
To this end, given a set of graphs F, we say that a graph G is F-free if G is F-free for
all F e F.

Prove that for all £ > 2 we have ex(n, {Cs,Cy, ..., Cy}) = O(n'+/%) (Hint: first prove
the result under the additional assumption that every vertex of G has degree at least n'/ 9

2].

Prove that if F is a graph with ex(n, F') = Q(n) and if F” is a graph obtained from F' by
adding a new vertex z and making it adjacent to a vertex y € V(F), then ex(n, F') =
O(ex(n, F')). In other words, to determine the order of magnitude of ex(n, F') for all
graphs F it suffices to do so for all graphs with minimum degree at least 2 [2].
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2 Spanning Subgraphs and Dirac Problems

Up to this point we have considered the Turdn number ex(n, F') where we think of F' as a
fixed graph and n as tending towards infinity, but this is not the only regime that could be
considered. For example, ex(n,C,) asks for the maximum number of edges that an n-vertex
graph can have without containing a Hamiltonian cycle. More generally, we might consider
ex(n, F,,) where F,, is some sequence of spanning subgraphs of K.

Unfortunately the Turan problem for spanning subgraph tends not to be very interesting. For
example, one can show ex(n,C,) > (”;1) + 1 by taking G to be a clique on n — 1 vertices
together with a single vertex of degree 1, and it is not too difficult to show that this somewhat
silly construction is best possible. More generally, ex(n, F;,) tends to be ludicrously large for a
number of natural choices of F}, simply by considering graphs G which have a single vertex of
small degree. This leads us to another mantra.

Mantra 6. If an extremal problem has a known or boring optimal construction, try modifying
or adding extra restrictions to the problem in such a way that any solution to this new problem
must be “far” from the known/boring construction.

In particular, our current construction for ex(n, C},) is boring because we can trivially make con-
structions by using vertices of very small degrees. So what if we instead forced our constructions
to all have large minimum degree? This leads to the following broad type of problem.

Definition 4. Given a graph F', we define’® the Dirac number 6*(F) to be the smallest number
0* such that any v(F')-vertex graph G with 6(G) > 0* has a copy of F' as a spanning subgraph.

Note that we have already seen some problems somewhat similar to 6* when we were working
on Turdn numbers for trees via Lemma 1.11. We will see another application of min degree
results to Turan problems with Theorem 2.8.

2.1 Hamiltonian Cycles

Recall that a graph G is Hamiltonian if it contains a cycle passing through all of its vertices.
Historically, the first study of Dirac numbers came from Dirac who determined §*(C,,), i.e. the
smallest minimum degree of an n-vertex graph GG which guarantees that G is Hamiltonian.

To start our investigation, let us try to think of some graphs with large minimum degree
which do not have a Hamiltonian cycle. One immediate way to tell that a graph does not
have a Hamilotonian cycle is if the graph is disconnected. In particular, if we consider G to
be the n-vertex graph which is the disjoint union of K,/ and K|, /3, then this is a graph
with no Hamiltonian cycle and with minimum degree |n/2] — 1, showing that we must have
*(Cy) > |n/2]. While perhaps not as obvious, there exists another construction that gives a
very similar bound which one might discover by looking at the cases of small n, for example.
Specifically, any graph of the form K, ,_,, with m < [n/2] will fail to be Hamiltonian. Indeed,

5This name is completely made up since we are not aware of any standard name for this parameter in the
literature.
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if n is odd this is immediate because K, ,_, is bipartite and hence can not contain C,. If n
is even then any Hamilton cycle in such a graph must have exactly n/2 = [n/2] of its vertices
lying in each part of K, ,,—,, which is impossible to do under the condition m < [n/2].
This construction thus implies that 6*(C,) > [n/2], which matches the bound in the previous
construction if n is even and does a little better if n is odd. In total it turns out that this bound
is indeed the correct one.

Theorem 2.1 (Dirac’s Theorem). Every n-vertex graph G with 6(G) > n/2 contains a Hamil-
tonian cycle.

The reader should double check that this, together with our constructions from above, is equiv-
alent to saying that 6*(C,) = [n/2]. Before we get on with the proof, let us make the meta-
observation that for n even there are two extremal constructions for Dirac’s Theorem (the
disjoint union of two equally sized cliques, and a slightly unbalanced complete bipartite graph).
This is non-ideal due to the following

Mantra 7. Extremal problems tend to be harder if they have more than one extremal con-
structions, especially if these constructions look very different from each other.

Indeed, part of the ease of proving Turdn’s Theorem is that there is only one possible extremal
construction, which means we can hope to do arguments like Zykov symmeterization which
move us closer to this unique extremal example. However, this approach as well as many others
fail when there are multiple different looking extremal examples because whatever argument
we make must simultaneously be optimal for all of our possible constructions.

To partially deal with this issue, we will utilize another mantra.

Mantra 8. If during a proof you assume that there exists some counterexample to your state-
ment, it is sometimes useful to assume this counterexample is “extremal” in some sense.

We will see a concrete example of this in our following proof of Dirac’s Theorem, which is
originally due to

Proof of Dirac’s Theorem. Assume for some integer n that there exists a counterexample G
and, crucially, choose such a counterexample with as many edges as possible. Intuitively by
choosing a graph with more edges should make it easier for us to construct a Hamiltonian cycle,
giving the desired contradiction. In particular, this assumption gives us the following key fact.

Claim 2.2. The graph G contains a Hamiltonian path x1 - - - x,.

Proof. This is trivial if G = K,,, so assume this is not the case, i.e. that there exists some
non-edge zy ¢ E(G). Because G + xy is an n-vertex graph with 6(G + zy) > 6(G) > n/2 and
with strictly more edges than G, it must be that G 4+ zy contains a Hamiltonian cycle C' by
assumption of G' being a counterexample with the maximum number of edges. The subgraph
C — xy then must be a Hamiltonian path. O]

The other key observation we will need is the following.
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Claim 2.3. If there exists an integer 2 < i < n such that x; ~ x1 and xv;_1 ~ x,, then G is
Hamiltonian.

Proof. Consider the following sequence of vertices:
P = (21,24, Tiy1, -, Tpo1, T,y Tim1, Tia, - - -, Ta).

It is not difficult to see that P is a Hamiltonian path (i.e. every vertex appears exactly once and
consecutive vertices are adjacent) with its first and last vertices being adjacent to each other.
Therefore this defines a Hamiltonian cycle in G, proving the claim. O

As an aside, the idea in this claim of “rotating” the Hamiltonian path we started with into a
new one P is a common idea known as a Pdsa rotation.

Back to our problem at hand, we want to show that an index 7 as in the claim exists. To this
end, define
Xl = {Z N e xl},

Xn = {Z Y i [El}.

By the claim above and our assumption that GG is Hamiltonian, we can assume that X, X,, are
disjoint subsets of {2,...,n}. This implies that

n—1>1X3UX,| =|X1|+ |X,| = deg(z1) + deg(z,,) > n,

a contradiction. O

Even though Dirac’s Theorem is tight, it is still possible to ask for strengthenings of this result
as follows.

Mantra 9. After proving a theorem, check to see where you use the hypothesis of your theorem
and if these can be relaxed in any way.

For example, the only place where we really used §(G) > n/2 in our proof of Dirac’s Theorem
was to show that deg(zy)+deg(x,) > n. A moments thought then shows that our proof actually
implies the following stronger result.

Theorem 2.4 (Ore’s Theorem). If G is an n-vertex graph such that for every non-edge xy ¢
E(G) we have deg(x) + deg(y) > n, then G is Hamiltonian.

In fact, our proof has much more flexibility that can be exploited to prove a number of other
extensions. We state another one here and leave its proof as an exercise to the reader.

Theorem 2.5 (Pésa’s Theorem). If G is an n-vertex graph such that for all integers k < n/2,
H{x € V(G) : deg(x) < k}| <k,

then G is Hamiltonian.

These extensions of Dirac’s Theorem, in addition to being nice on their own, also have various
applications to them, such as the following.
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Theorem 2.6. If G is an n-vertex graph with 6(G) > ”TH, then for every edge vy € E(G)
there exists a Hamiltonian cycle in G which uses the edge xy.

Proof. Let xy € E(G) be an arbitrary edge, and consider a new graph G’ obtained by adding a
new vertex v which is adjacent to only x,y. This (n+1)-vertex graph G’ satisfies the conditions
of Pésa’s Theorem (it has only 1 vertex of degree at most 2, and every other vertex has degree
at least v(G')/2), so G’ contains a Hamiltonian cycle C. Note that this Hamiltonian cycle
must contain the edges zv, vy since these are the only two neighbors of v. As such, the graph
C — v + xy is a Hamiltonian cycle in G using the edge xy, proving the result. O]

2.2 Applications to Paths

Having just determined the optimal minimum degree needed to guarantee a graph contains a
Hamiltonian cycle, it is natural to ask what conditions guarantee a Hamiltonian path. In fact,
this turns out to be a consequence of Dirac’s Theorem.

Theorem 2.7. We have 6(P,) = |n/2]. Equivalently, any n-vertex graph G with 6(G) > 5+
contains a Hamiltonian path and this bound is best possible.

Proof. The fact that this bound is best possible follows by considering G to be the disjoint
union of two cliques of sizes |n/2], [n/2].

Now let G be an n-vertex graph with §(G) > ”T_l and consider a new graph G’ obtained by
adding a vertex v which is adjacent to every vertex of G. Then §(G’') > (n+1)/2 = v(G")/2,
so by Dirac’s Theorem G’ contains a Hamiltonian cycle C', and thus C' — v is a Hamiltonian
path in G. O]

The trick we used in the proof above lets us easily translate many of the results that we have
for Hamiltonian cycles to that of Hamiltonian paths; see the exercises for more.

We can also use Dirac’s Theorem to prove good bounds for Turan numbers of paths.

Theorem 2.8 (Erdds-Gallai). For all r > 2, we have ex(n, P,) < “52n.

Note that this bound is tight whenever r — 1|n, as can be seen by considering G' to be the
disjoint union of K, _4’s.

Proof. By prove the result by double induction on r and n. The result for all n is trivial when
r = 2, so assume we have proven the result for all n» up to some value r. This result in turn is
trivial if n < r — 1, so we assume we have the proven the result up to some value n > r. With
this in mind, let G be an extremal n-vertex P,-free graph and assume for contradiction that
e(G) > S2n.

Because our extremal example looks like a disjoint union of K, _;’s, a perhaps reasonable thing
to try and prove is the following.

Claim 2.9. The graph G contains a cycle C' with r — 1 vertices.
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r—1

Proof. By Proposition 1.12, there exists a subgraph G’ C ¢ with minimum degree at least ™5
(i.e. strictly more than %) and average degree strictly more than » — 2. By induction on r
and the fact that G’ has average degree more than r» — 2, we conclude that G’ must contain a

path 1 ---x,_4.

Now all of the neighbors for x1, x,_1 must lie within {z1,...,z,_1}, as otherwise G’ C G would
contain a path on r vertices. Because degg (1), dege (z,-1) > 5, the exact same argument
that we used in the proof of Dirac’s Theorem implies that there exists a cycle C using all of
the vertices in {z1,...,2,_1}. O

Observe that every vertex in C' can only be adjacent to other vertices of C', as one could use
any additional neighbor together with C' to construct a P, in G. As such, the number of edges
incident to the vertices of C' is at most (’;1), and as such the graph G — V(C) is a smaller
order graph which has

2 2 2

and since G — V(C) has n — r + 1 vertices, we conclude by induction on n that G — V(C) has
a P,, giving the result. O]

e(G—V(C’))>r_2n—(T_1) g,

2.3 Clique Factors

Perhaps after Hamiltonian cycles and paths, the next most natural spanning structure to con-
sider is that of a perfect matching, i.e. a disjoint union of K5’s which cover every vertex of the
graph exactly once. Note that perfect matchings can only exist if the number of vertices in our
graph is even.

While a natural problem to consider, perfect matchings will turn out to not be very interesting
to study for two reasons. First, any graph with an even number of vertices and a Hamiltonian
cycle (or path) contains a perfect matching, so by Dirac’s Theorem we know that §(G) > n/2 is
enough to guarantee a perfect matching, and this is best possible by considering K, /2—1.n/241-
Second, one can in fact characterize ezactly when a given graph has a perfect matching as we
shall see in , S0 just proving a sufficient condition is not so interesting.

While the exact problem of determining minimum degree conditions for perfect matchings is
not so exciting, there are generalizations of perfect matchings for which this is very interesting.
To this end, we say that a K,.-matching in a graph G is a subgraph of G which is the disjoint
union of copies of K., and we say that G has a K,.-factor if G has a K,-matching which contains
every vertex of G exactly once. Note that G can only hope to have a K,-factor if r|n.

Theorem 2.10 (Hajnal-Szemerédi Theorem Version I). If G is an n-vertex graph with r|n and
3G) > (r—1)n/r, then G contains a K,-factor.

The Hajnal-Szemerédi Theorem is a deep result with a number of applications, see for example
. The original proof of this result was quite difficult. There does exist a quite
short proof due to Kierstead and Kostochka, but it is a little too dense to present here
. Rather than spending time on proving this in full, we will instead
sketch out how to prove a somewhat weaker result.
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Proposition 2.11. If G is an n-vertex graph with r|n and 6(G) > (r — 1)n/r, then G has a
K,-matching which contains all but at most (r — 1)?r vertices of G.

Sketch of Proof. The rough idea is to consider a largest K,-matching in G and argue that it has
at least this size. However, to make the argument work we need to assume something slightly
stronger about our matching.

To this end, let Sy, ..., S,/ be a partition of V(G) into sets of size r such that G[S;] contains
K, for as many i as possible, and conditional on this, we choose this partition so that G[S;]
contains a K,_; for as many ¢ as possible, and so on. Let C; C S; denote a largest clique in
G[S;] and assume for contradiction that G[C;] # K, for at least (r — 1)*> 4+ 1 values of i. By
the Pigeonhole principle, this implies there is some ¢ € [r — 1] such that |C;| = ¢ for at least r
values of i, say for all i € [r] without loss of generality. Let N(C;) denote the set of common
neighbors of C}, i.e. the vertices adjacent to every vertex of C;.

Claim 2.12. We have |[N(C;)| > (r — {)n/r and N(C;) N C; =0 for all i,j € [r].

Proof. The lower bound |N(C;)| > (r — £)n/r follows from the fact that each of the ¢ vertices
of C; have minimum degree at least (r — 1)n/r, i.e. are non-adjacent to at most n/r vertices.
For the second part, assume for contradiction that there exists some v € N(C;) N C; and let
w € S; \ C; be arbitrary (which exists since |C;| < r = |5;|). In this case, we could change our
partition by replacing S;, S; with S; U {v} \ {w} and S; \ {v} U {w}, which would increase the
number of sets in the partition which contain a K,,; while not decreasing the number of sets
containing any larger clique, contradicting how we chose our partition. We conclude that no
such v exists. O

In total this claim implies  3;_, [N(C;) N, Cj| > (7 —£€)n, which by the Pigeonhole principle
implies there is some j > r such that

(r—~0n

n/r—r

i'N@‘)”CﬂZ[ WZT(T—K)Jrl.

Claim 2.13. There exists some distinct ©',i" € [r] and disjoint C}, C{ C C; of sizes 1 and r —{
such that C; € N(Cy) N Cj and C7 € N(Cy) N Cj.

Proof. By the inequality above and the Pigeonhole principle, there exists i/ € [r| such that
IN(Cy)NCj| >r—{+1, and since |[N(Cy) N C;| < r we have

> INC)NC = r(r——1)+1,
ielr\{7)

so again by the Pigeonhole principle there exists ¢ # ¢’ such that |[N(C;») N C;| > r — (. Let
CY C N(Cjv) N Cj be an arbitrary subset of size r — £ and let ¢} € N(Cy) N Cj be an arbitrary
vertex disjoint from C7, giving the result. m

Let w € Sy \ Cy be arbitrary. If we consider modifying the partition by replacing S, S;», S;
(whose largest cliques have sizes ¢, ¢,7) with the r-sets Sy UC} \ {w}, Cir UCY, and S; U {w} \
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(C7UCY) (whose largest cliques have sizes at least £+ 1,7, 1), we see that this strictly increases
the number of sets in our partition containing a K, while maintaining the sizes of all larger
cliques, a contradiction to how we chose our partition. O

We emphasize that for many Dirac-type problems it is relatively easy to find an “almost span-
ning” subgraph like we did here, but finding a genuinely spanning structure is often difficult.
One general tool for doing this is the absorption method

2.4 Exercises

1. Let’s look at Turan numbers of spanning subgraphs.

(a)
(b)

Prove that ex(n,C,) = (") + 1 [2].

Prove that ex(n, P,) = (") [2-].

2. We've seen that a minimum degree of about n/2 is the threshold for guaranteeing both
a perfect matching and a Hamiltonian cycle. In the next few exercises we show that the
behaviors for matchings and cycles differ greatly from one another when other sorts of
degree conditions are imposed.

(a)

Prove that if G is an n-vertex graph with minimum degree d > 2, then G contains
a cycle on at least d + 1 vertices. Moreover, prove that for infinitely many n there
exists an n-vertex graph which are (d — 1)-regular and which have no cycle on at
least d + 1 vertices [1+].

Prove that if G is an n-vertex graph with minimum degree d > 2 and d < n/2, then
G contains a matching on at least 2d vertices. Moreover, prove that this is best
possible, i.e. that the result is false if we do not impose the condition d < n/2 and
that there exist infinitely many n > 2d with minimum degree d — 1 with no matching
on at least 2d vertices (Hint: the argument you use here can’t be a direct analog of
a proof of Dirac’s Theorem since the previous part shows such an approach will fail
for cycles) [2].

Prove that if G is an n-vertex graph with d > 1 and maximum degree A, then every
maximal matching of G (i.e. every matching which is not a subset of any larger
matching) has at least %n vertices. Moreover, prove for all integers 1 < d < A with
d even that there exists a graph G with minimum degree d and maximum degree A

which contains a matching on at most ALHU(G) vertices [2].

Prove that if G is an n-vertex graph with minimum degree d > 1 and maximum
degree A, then G contains a matching on at least dJFLAn vertices. Moreover, prove
for all integers 1 < d < A that there exist graphs G with minimum degree d and

maximum degree A such that no matching has size larger than di—dAv(G) (Hint: what
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would you need to assume about G for the same argument from (c) to give you the
desired bound? Can you make this assumption here?) [2+].

3. The original proof of Dirac’s theorem went as follows:

(a)

(b)

Define a lollipop to be a graph which consists of a cycle on vertices vy, . .., v, together
with a path on vertices uq,...,u; with u; = v;. Given a graph G, consider its
“largest” lollipop, i.e. the one which has ¢ as large as possible and conditional on
this has t as large as possible.

Prove that if such a largest lollipop has ¢ > 3 and ¢ > 2, then w; is not adjacent to
any two consecutive vertices in vy, ..., v,. Similarly prove that if £ > 3 then u; is not
adjacent to any v; vertex which is “close” to v;. In particular, prove this is true for
vy, U2, then generalize this as much as you can (Hint: use the previous exercise) [2].

Conclude Dirac’s Theorem [2]. .

4. Prove Pésa’s Theorem [2].

5. Prove that if G is an n-vertex graph with §(G) > (n + k)/2 for some integer k > 0, then
for any path P C G on k edges there exists a Hamiltonian cycle of G which contains P
as a subgraph (Hint: the trick we did before for £ = 1 using Pésa’s Theorem no longer
works here, so you’ll have to go back and modify our proof of Dirac’s Theorem instead)

2].

6. Prove that if G is an n-vertex graph and §(G) > n/2, then for every edge of G there
exists a Hamiltonian path of G containing this edge [1+].
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3 Ramsey Theory

Turan’s original motivation for the Turdn problem came from another area of extremal com-
binatorics known as Ramsey theory. In a very abstract sense, Ramsey theory (which extends
far beyond just that of graphs) aims to prove that every sufficiently large structure contains
relatively simple and orderly substructures. The original problem, as well as the namesake of
the theory, comes from the following foundational result of Ramsey® from

Definition 5. A red-blue edge coloring of a graph G is a map x : F(G) — {red, blue}. We
say that such a coloring has a monochromatic K, if there exists a subgraph of G isomorphic to
K, such that either every edge of the subgraph is colored red or if every edge of the subgraph
is colored blue.

Theorem 3.1 (Ramsey’s Theorem). For all integers n > 1, there exists a (finite) N such that
every red-blue edge coloring of Ky contains a monochromatic K, .

Equivalently, this says that for all integers n > 1, there exists some (finite) N such that every
N-vertex graph G either contains a clique of size n or an independent set of size n (as can be
seen by coloring the edges of Ky red if they belong to G and blue otherwise). That is, large
graphs can not simultaneously have arbitrarily large clique and independent numbers.

The original proof of Ramsey’s Theorem does not give explicit bounds on the size of N, and
the central problem ins Ramsey Theory is to get better bounds on this quantity.

Definition 6. We define the (diagonal) Ramsey number R(n) to be the smallest integer N
such that every red-blue edge coloring of Ky contains a monochromatic K,.

There are many variants of this classical Ramsey number R(n), several of which we will discuss
below.

3.1 Classical Bounds

Let us start by working some small examples to give a little intuition for the problem in general.
It is immediate that R(1) = 1 and R(2) = 2, so the first non-trivial case of the problem is to
determine” R(3).

Proposition 3.2. We have R(3) = 6.

Proof. The lower bound comes from giving a coloring of the edges of K5 which does not contain
a triangle. The unique way to do this is to take a C5 C K5 and color its edges red with the
remaining edges (which also form a C5) being colored blue. It is easy to check that such a
coloring has no monochromatic triangle.

6Funnily enough Ramsey was not a combinatorialist but rather a logician, and to this day there is still a lot
of work on Ramsey theoretic problems from the perspectives of both logic and combinatorics.

"Colloquially this result is known as the “party problem” due to the following interpretation of its statement:
if there are 6 people at a party, then there exist 3 people there who either all know each other or who all do not
know each other.
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For the upper bound, consider an arbitrary red-blue coloring of the edges of K4 and assume for
contradiction that this did not contain a monochromatic triangle. Let u be an arbitrary vertex,
and observe that u has 5 total edges incident to it each of which is given one of 2 colors, so by
the pigeonhole principle at least 3 of the edges of u all have the same color, say without loss of
generality that the edges uvi, uvq, uvs are all colored red. Now if any edge v;v; is colored red
then u, v;, v; would form a red triangle, so we can assume that all of the edges v;v; are colored
blue. But in this case vy, v9, v3 forms a blue triangle, again yielding a contradiction. O

At its core, the reason that the upper bound proof worked is that if a red-blue coloring does
not contain a monochromatic K3, then the “red neighborhood” of any vertex u can not contain
either a red K5 nor a blue K3. Building on this idea leads to the following definition.

Definition 7. Given integers m, n, we define R(m,n) to be the smallest integer N such that if
every edge of Ky is colored either red or blue, then there either exists a red K, or a blue K,,.

For example, one can check that R(2,3) = 3 which is implicitly what we used in our upper
bound proof for R(3). Generalizing this idea gives the following observation of Erdés and
Szekeres.

Lemma 3.3 (Erdds-Szekeres). For all m,n > 2, we have

R(m,n) < R(m —1,n) + R(m,n — 1).

Proof. Let N = R(m — 1,n) + R(m,n — 1) and assume for contradiction that there exists
a red-blue edge coloring of K which does not contain a red K,, nor a blue K,. Let u be
an arbitrary vertex and let Vx denote the set of vertices v such that uv is colored red, and
similarly define V. Note that |[Vz| + |V = N — 1= R(m —1,n) + R(m,n — 1) — 1, and that
we must either have |Vz| > R(m — 1,n) or |Vg| > R(m,n — 1) (since otherwise |Vg| + |Vp| <
R(m—1,n)+ R(m,n—1) —2).

First consider the case that Vg > R(m — 1,n). By definition of R(m — 1,n), the coloring on
Kn|[Vg] must contain either a red K,,_; or a blue K,. The latter case can not happen by
assumption of our coloring, and if the former happens then this K, 1 together with u would
form a red K,,, again giving a contradiction. A similar conclusion holds if |Vg| > R(m,n — 1),
proving the result. O

Using this recurrence relation together with the boundary condition R(1,n) = R(n,1) = 1 gives
the following.

Theorem 3.4. For all m,n > 1, we have

Indeed, by induction on m + n we have that

m+n—3 m+n—3 m+n—2
< — — < =
R(m,n) < R(m —1,n) + R(m,n 1)_( 9 )+< I ) < I ),

with the last step being Pascal’s identity. Finally, taking m = n in this bound gives bounds for
diagonal Ramsey numbers.
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Corollary 3.5. For alln > 1, we have

R(n) < (2” _12) <4,

n —

Let us turn now to lower bounds, starting with an elementary bound.

Lemma 3.6. We have R(n) > (n —1)* + 1.

Proof. Color the edges of R(,_1)2 via breaking up the vertex sets in to n — 1 parts Vi,..., V1
each of size n — 1 and coloring all the edges within each part red and all the edges between two
parts blue. It is easy to see that this avoids monochromatic copies of K. O

Note that in this coloring that the blue edges form a copy of the Turan graph 7,,_1(n — 1)

. It was believed for some time
that R(n) should grow polynomialy like in this lemma here, but Erdés disproved this in a very
strong form.

Theorem 3.7. We have

R(n) > (14 0(1))6%271/2.

This is a strange bound and not one should necessarily expect to understand how to prove even
if you work out the right proof idea. Indeed, our proof will utilize the following.

Mantra 10. First figure out how your proof works using an abstract set of parameters, then
go back and choose whatever parameters you need in order for the arithmetic to go through

Let us see this in action.

Proof. To partially motivate the idea of the argument, we observe that it is very easy to
show R(n) > n+ 1 for n > 3. Indeed, there are only two colorings of K, which contain a
monochromatic K, and as long as n > 3 we can find a coloring which avoids one of these
two bad ones. To get our stated lower bound, we will similarly use an elementary counting
argument to bound the number of “bad” colorings of Ky and then argue that if N is not too
large then there are more total colorings than bad colorings, proving that there exists some
coloring which is not bad.

From now on we fix an integer N which we will determine later once we see how the numbers
work out. For each subset S C [N] of size n, let Bs denote the set of edge colorings of Ky
which have a monochromatic K,, on S. Because the total number of edge-colorings of Ky is

N
2(3) and because a coloring avoids monochromatic K,,’s if and only if it does not lie in any Bg
set, we see that there exists an edge-coloring of Ky avoiding monochromatic K,,’s if and only

if
22) > | | Bl

se(%)
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It thus remains to show that this latter set is small. Using elementary arguments we have

| U Bs| < Z |BS|:<5)21+(§)(3)

se(%) se(t)

where this last step used that every coloring in Bg has 2 choices for how it can act on the edges
N n
2

of S (either all red or all blue) together with 2(2)=(5) choices for the remaining edges. As such,
we will succeed if
N\ 1 (»
21-(:) < 1.
n

To get a handle on this, we use the well-known binominal inequality (’;‘) < (em/k)* to conclude
that it suffices to have N such that
6]\/’2(1171)/2
2 () <1
n

and in particular the result holds provided N < 21/ . ﬁQ*”/ 2 and picking such an N gives
the desired bound. O

This counting argument is all well and good, but we can give a more modern perspective by
rewriting our proof in the language of probability.

Alternative Proof. Let N be an integer to be determined later and consider a uniform random
red-blue edge coloring of K. Let X be the random variable which is equal to the number
of monochromatic K,,’s that are in the random coloring of K. Crucially, we observe that if
E[X] < 1, then R(n) > N. Indeed, because X is integer valued, the only way E[X] < 1 is
possible is if there exists some coloring of K such that X = 0, i.e. a coloring without any
monochromatic copies of Ky.

To get a handle on E[X], for each S € (UZ ]) we let 1g denote the indicator random variable
for Kx[S] being monochromatic. That is, 1g is the random variable defined by having 1g = 1
if Kn[S] is monochromatic and 1g = 0 otherwise. With this X = ) 1g, so by linearity of
expectation we have

BLX] = O ElL] = Y Prlts = 1] = ) )20

as can be checked by a simple counting argument. Thus in total, we conclude R(n) > N

provided (]X )21—(’;) < 1, which as we showed in the previous version of the proof happens for
N = (1+o0(1)) 527"/ O

While both the counting argument and the probabilistic argument for [theorem] are effectively
equivalent to each other, the prespective of “thinking probabilistically” has proven to be the
more useful in general. Indeed, it is hard at this point not to find an important result in
Ramsey theory where the lower bound (and sometimes even the upper bound) does not use
some amount of ideas or techniques motivated by probability theory. Since we are not assuming
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the reader has any knowledge of probability we will not dwell on this point any further at this
point, though the interested reader is invited to go to [probabilistic methods section] for much
more on this perspective.

We note that in both cases of our argument, the lower bound for R(n) we gave was non-
constructive, i.e. we did not explicitly construct a coloring of K which avoids monochromatic
K,’s, we only showed that such a coloring must exist. It is a major open problem to find a
constructive argument which gives anywhere close to these bounds here.

Open Problem 3.8. For some ¢ > 1, find “explicit” red-blue edge colorings of K. which avoid
monochromatic K,,’s.

Observe that our proof not only shows that constructions should exist for ¢ = v/2, but in fact
a more careful inspection shows that for any ¢ < /2 that almost every coloring should work.
Nevertheless, how to explicitly find such a coloring problem remains quite elusive.

The results we have mentioned in this sections are all classical, and the reader might wonder
what is the current state of the art. For the lower bound, the only improvement over [result] is an
argument due to Lovasz using a slightly more involved probabilistic approach that gives a lower
bound of [whatever|, improving the bound of [result] by a multiplicative factor of [whatever].

For the upper bound, modest results showing bounds of the form 4"~°(" for an increasing series
of o(n) functions were obtained over the years until a recent major breakthrough by [authors in
year] who proved that R(n) <777, and since then some further optimizations of their argument
has yielded a bound of R(n) <?777. At present this is all that is known for diagonal Ramsey
numbers despite decades of hard work from an armada of talented mathematicians.

In addition to the diagonal Ramsey numbers R(n), a lot of work has been put into studying
the assymetric case R(m,n). In particular, the study of these numbers when m is fixed and
n tends towards infinity is referred to as “off-diagonal” Ramsey numbers. These problems are
essentially equivalent to asking: how large can «o(G) be if G is K,,-free and contains a given
number of vertices? Indeed,

3.2 More Colors and Arithmetic Ramsey Theory

There are a ton of variants for Ramsey numbers that one can consider. One of the immediate
ones to consider is using more than just two colors. To this end, we define the multi-color
Ramsey number R,(n) to be the smallest number N such that every g-coloring of the edges
of Ky contains a monochromatic copy of K,. Similar to [before| one can show that these
numbers exist. In particular, we leave it as an exercise to prove the following bounds for the
first non-trivial case of n = 3.

Theorem 3.9. We have
29 < R,(3) <3-¢!

Another direction is to consider coloring combinatorial objects other than graphs. One natural
choice would be the integers [N], from which we can ask if there exists a monochromatic subset
satisfying some sort of arithmetic condition. One classical result due to Schur is as follows.
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Theorem 3.10 (Schur). For all ¢ > 1, there exists a finite number N, such that any g-coloring
of [N] contains a monochromatic solution to the equation x+y = z, i.e. there exist three integers
x,y,z with x +y = z which are all assigned the same color.

Proof. We will in fact prove that
Nq S Rq(?))’

following a common theme in Ramsey theory of upper bounding one Ramsey problem by a
function of another. To prove this, we will start with some coloring x : [N] — [¢] and then use
this to construct an auxiliary coloring x' : F(Ky) — [g] in such a way that monochromatic
triangles under Y’ correspond to monochromatic solutions to z + y = z under x. There are a
couple of plausible ways one might try and define x’. For example, given the edge zy € E(Ky)
it is perhaps natural try coloring this edge to be the same color as either min(z, y) or max(z,y),
but neither of these are really “compatible” with the goal of finding a solution to x + y = z.

With a bit more thought, one might come up with the (correct) idea of defining \/(xy) =
X(|z — y|). To see why this does what we want, assume that x’ has a monochromatic triangle
on u < v < w. This implies that x(v—u), x(w—v), x(w—u) all have the same color. Moreover,
we have (v —u) + (w —v) = (w — u), so taking r = v —u, y =w — v, and z = w — u gives a
monochromatic solution under x. In total this implies that if N > R,(3) and x is an arbitrary
coloring then, because ' must contain a monochromatic triangle since N > R,(3), x contains
a monochromatic solution to  +y = z. This proves N, < R,(3), and in particular that this
number is finite. O

A lot more can be said about this area known as arithmetic Ramsey theory. Perhaps the most
famous result in this direction is Van der Waerden’s Theorem.

Theorem 3.11 (Van der Waerden’s Theorem). For all k,q, there exists a finite number Ny,
such that any r-coloring of [Ny,| contains a monochromatic k-term arithmetic progression.
That is, there exist integers a,d > 1 such that a,a+d, ... a+ (k—1)d are all given the same
color.

Proving this is not so easy, and the bounds for N, are horrendous even in the case of ¢ = 2.
In fact, an even stronger statement than Van der Waerden’s Theorem is known to be true.

Theorem 3.12 (Szemerédi’s Theorem). Every subset of [N] which does not contain a k-term
arithmetic progression has size o(N).

To see this implication, observe that every r-coloring of [N] contains a subset of size at least
r~!N which, by Szermedi’s Theorem, must contain a k-term arithmetic progression whenever
N is sufficiently large. This is an example of a general phenomenon where Turédn results (which
bound how dense a structure can be before it contains a given substructure) often upper bound
Ramsey results (which bound how large a structure can be with the property that it can
be partitioned into r substructures avoiding a given substructure) simply because one of the
partition elements in a Ramsey result must have relatively large density.
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3.3 Ramsey Theory Without Colors

3.4 Exercises
1. Let’s look at some small Ramsey numbers:
(a) Prove that R(3,4) =9 [2]
(b) Prove that R(4) < 18 [1].
(c) Prove that R(4) = 18 [3].
(d) Determine® R(5) [5].

2. Prove that every n-vertex graph has a clique or independent set on at least %logQ(n)
vertices [1+].

3. Recall that a tournament is a digraph obtained by giving an orientation to each edge of a
complete graph, and that a tournament is transitive if one can order its vertices vy, ..., v,
in such a way that v; — v, if and only if 4 < j. Prove that every tournament on n vertices
contains a transitive tournament of size at least [log,(n)| + 1 [2-].

4. Here we sketch how to prove a lower bound for the first non-trivial offdiagonal Ramsey
number R(3,n).

(a) Prove that to show R(m,n) > N it suffices to construct a red-blue edge coloring of
Ksn such that the number of red K,,’s plus the number of blue K,,’s is at most N
[1+].

(b) Prove that there exists € > 0 such that R(3,n) = Q(n'™®). What’s the best value
of ¢ you can find using this method? (Hint: you will want to consider a random
construction, but you’ll want to color each edge red with some probability p < %
since there is assymetry in m and n) [2+].

k >k ok

5. Prove for all n,q > 2 that R (n) < ¢ [2-].

8Currently the best known bounds are 43 < R(5) < 46. The fact that this is still open should demonstrate
how hard determining R(n) exactly is. Indeed, Erdds once said something to the effect of: if aliens came to
Earth and demanded we tell them what R(5) was in the next 10 years or they would destroy us, then we should
dedicate all our resources to this problem. If instead they ask for R(6), then we should instead dedicate all our
resources to fighting the aliens because we have no hope of doing what they ask.
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6. Let us look at the multi-color Ramsey number R,(3).
(a) Prove that R,(3) > 27 [2-].
(b) Prove that R,(3) < 3- ¢!, noting that this is best possible for ¢ = 2,3 [2].

(c) Improve this upper bound to R,(3) < |e-¢!| + 1, which as far as we know is still the
best known upper bound [3-].

7. For every graph F and integer ¢, define R,(F) to be the smallest integer N such that
any g-edge coloring of Ky contains a monochromatic copy of F. Prove that if ex(n, F') =
O(n?~%) for some a > 0, then R,(F) = O(¢*/*) (Hint: concretely if you assume ex(n, F') <
Cn*= then you should be able to prove something like R,(F) < (4Cq)"/®, for example)
[2-].

8. One of the most important results in general Ramsey theory is the Hales-Jewett Theorem
which is a sort of “high-dimensional tic-tac-toe” theorem that goes as follows:

9. We say that a graph G is K,-Ramsey if any red-edge edge coloring of G contains a
monochromatic copy of K,,, and we define the size Ramsey number R(n) to be the smallest
number of edges in a graph which is K,,-Ramsey.

(a) Observe that R(n) can be defined to be the smallest number of vertices in a graph
which is K,-Ramsey, motivating this definition [1].

(b) Prove that R(n) < (R(;)) [1+].

(c) Prove that R(n) = (R(;)); noting crucially that this equality holds despite us largely
not understanding what R(n) is (Hint: prove that any K,-Ramsey graph must have

chromatic number at least R(n)) [2+].
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Part 11

Structural Graph Theory
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4 Colorings

Recall that a proper k-coloring of a graph G is a map ¢ : V(G) — [k] such that c(u) # c(v)
whenever uv € E(G). That is, we color each vertex using one of k colors such that no edge is
monochromatic. We say that G is k-colorable if there exists a proper k-coloring of GG, and we
define the chromatic number x(G) to be the smallest k& such that G is k-colorable.

Colorings arise in various applied and theoretical contexts, and many problems in graph theory
center around determining x(G) for various graphs GG. However, it is well known that deter-
mining whether x(G) = k is an NP-hard problem for all £ > 3, meaning one can not hope to
find some “simple” way of determining if a graph has a given chromatic number. As such, the
best one can realistically hope for in general is to establish reasonable bounds on x(G) based
on easy to compute parameters of G. We discuss two of the most fundamental bounds in the
following sections.

4.1 Upper Bounds

Here and throughout this chapter we let A(G) denote the maximum degree of GG, and whenever
G is clear from context we will denote this quantity simply by A.

Theorem 4.1. If G is a graph then

w(G) < x(G) <AG) + 1.
Proof. We define a “greedy” coloring ¢ : V(G) — [A + 1] as follows. Let vy,...,v, be an
arbitrary ordering of the vertices of G. Iteratively given that we have defined c(vq),. .., c(v;—1)
we choose ¢(v;) to be any element in [A + 1]\ {c(v;) : v; € N(v;), j < i}; note that such an
element must exist since |N(v;)| < A+ 1.

We claim that ¢ is a proper (A + 1)-coloring. Indeed, if v;v; € E(G) with, say, ¢ > j then we
chose ¢(v;) to be disjoint from c¢(v;). Thus ¢ is a proper (A +1)-coloring, proving the result. [

Theorem 4.1 is important in the field of coloring because it and its proof serves as the starting
point for a number of other foundational results, several of which we discuss now.

Perhaps the immediate question to ask upon seeing Theorem 4.1 is if this bound is tight. And
indeed, one quickly sees that it is for Ka,q for all A > 1, and for A = 2 it is tight if and
only if G' contains an odd cycle. This turns out to exactly describe the cases of equality for
Theorem 4.1.

Theorem 4.2 (Brooks’s Theorem). If G is a connected graph of mazimum degree A and if G
is not an odd cycle or Kayy then x(G) < A.

Sketch of Proof. Essentially one can show that if GG is as in the hypothesis, then there exists
an ordering vy, ..., v, of V(G) such that (1) vy,ve € N(v,), (2) v1 7% v2, and (3) [{v; € N(v;) :
Jj <i}| < A for all i < n. We now consider a greedy coloring ¢ : V(G) — [A] as we did before
except (crucially) we set ¢(v1) = ¢(ve) which will not create an improper coloring by (2). By

45



(3), every vertex v; < n will have at least 1 choice when it is time to be colored, and by (1) the
set {c(v;) : v; € N(v,)} has at most A —1 used colors since ¢(vy) = ¢(v2), meaning that we can
also color v,, successfully. This gives a proper A-coloring of GG as desired. n

While the maximum degree of a graph is a nice, clean parameter, it can often be entirely
unrelated to x(G) with perhaps the most egregious example of this being the star K o which
has chromatic number 2. Given this, one can ask if its possible to strengthen the bound of
Theorem 4.1 by using some sort of “refinement” of the maximum degree A which, in particular,
gives more reasonable bounds for stars. To this end and with Mantra 9 as motivation, we
might ask ourselves what the best possible bound we could prove using the same argument as
in Theorem 4.1, giving rise to the following parameter.

Definition 8. We define the degeneracy of a graph G to be the smallest integer d such that
there exists an ordering vy, ..., v, of V(G) such that [{v; € N(v;) : j < i}| < d and we denote
the degeneracy of G by d(G).

With this definition the exact same proof of Theorem 4.1 gives the following.

Theorem 4.3. If G is a graph, then

X(G) < d(G) + 1.

Note that we always have d(G) < A via considering an arbitrary ordering of V(G), so Theo-
rem 4.1 is always at least as strong as Theorem 4.1. Moreover, it is an exercise to show that
d(G) = 1 whenever G is a forest with at least 1 edge, meaning Theorem 4.3 is tight for all such
graphs.

As an aside, the reader might feel that our definition of degeneracy is rather ad-hoc and specific
only to the very particular proof we were trying to generalize. However, it turns out that
degeneracy plays an important role in other areas such as Turan problems and that it has other
(perhaps more natural) equivalent formulations. We touch on some of these connections in the
exercises.

The last extension of Theorem 4.1 that we touch on asks if we can not only find some proper
(A + 1)-coloring but one which has some additional “nice” properties. This is perhaps natural
to consider given that a closer look at our proof of Theorem 4.3 reveals that there is not just
one proper (A + 1)-coloring but in fact exponentially many, so we can perhaps be a bit more
greedy with the sort of coloring we get at the end. There are various “nice” properties one
could consider for colorings; the one we focus on will be the following.

Definition 9. We say that a proper k-coloring ¢ : V(G) — [k] is equitable if |c71(i)| €
{lv(GQ)/k], [v(G)/k]} for all i. That is, each color is used as equal a number of times as
possible.

Equitable colorings are a lot harder to come by compared to usual colorings. Indeed, the star
K a has exponentially many proper 3-colorings but none of them are equitable if A > 5.
However, it turns out that equitable colorings always exist at the threshold of A + 1.
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Theorem 4.4 (Hajnal-Szemerédi Version II). If G is a graph with mazximum degree A then
there ezists an equitable proper (A + 1)-coloring.

This result turns out to be equivalent to our previous statement Theorem 2.10 of the Hajnal-
Szemerédi Theorem, which is perhaps surprising at first glance but which is not too hard to
prove; we leave this as an exercise. As before, we refrain from proving this result.

4.2 Lower Bounds and Perfect Graphs

For our lower bounds we recall that «(G) denotes the largest size of an independent set of G
and that w(G) denotes the largest size of a clique of G.

Theorem 4.5. For every graph G, we have
X(G) =z w(@),
and

v(G)
(@)

X(G) >

e

~—

Proof. The first bound follows simply because the vertices making up the clique of size w(G)
of G must all be given colors that are distinct from each other. For the second bound, we
observe that in any proper coloring ¢ : V(G) — [t] that ¢™(i) is an independent set of G for all
i (otherwise ¢ would have two adjacent vertices mapped to the same color 7). In particular, one
of these independents has size at least v(G)/t by the pigeonhole principle, and taking ¢t = x(G)
implies that a(G) is at least v(G)/a(G) as desired. O

Both of these bounds can easily seen to be tight for G = K,,. However, characterizing all cases of
equality analogous to Brooks’s Theorem seems difficult to do here. Indeed, x(G) = v(G)/a(G)
holds if and only if V(G) has a partition into maximum independent sets and offhand there
does not seem to be a simple way to characterize this property. The case of x(G) = w(G) is
even more complex, as for any graph G’ we can form a graph G = G’ U K,, with n = v(G’) and
this trivially satisfies x(G) = w(G) despite the structure of G being entirely arbitrary on half
of its vertices. To avoid having to take into account silly constructions like these, we will want
to shift to studying a certain class of graph families which are ubiquitous in structural graph
theory.

Definition 10. We say that a family of graphs G is hereditary if it is closed under deleting
vertices, that is, if for every G € G we have G — v € G for every vertex v € V(G). Equivalently,
G is hereditary if for every graph GG € G all of the induced subgraphs of GG are also in G.

Many natural families of graphs are hereditary, such as those avoiding some graph F' as either
an induced or non-induced subgraph. Returning to our previous problem, we will now aim to
characterize not the full family of graphs G with x(G) = w(G) for all G € G but simply the
largest hereditary family of graphs G with this property. Equivalently, we aim to study the
following type of graphs.
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Definition 11. We say that a graph G is perfect if x(G') = w(G") for every induced subgraph
G’ of G.

Again to be clear, the family of all perfect graphs is a hereditary family and it is the largest
one satisfying x(G) = w(G) for every graph in the family. Perfect graphs have a long history
of study with this ultimately culminating in a full characterization of their structure.

Theorem 4.6 (étrong Perfect Graph Theorem). A graph G is perfect if and only if both G and
its complement G' do not contain an induced odd cycle of length at least 5.

The fact that graphs must satisfy this property to be perfect is an exercise. The converse
is tremendously difficult and was originally proven by Chudnovsky, Robertson, Seymour, and
Thomas in 2006.

4.3 Coloring Variants

Here we look at some variants of the notion of proper colorings.

4.3.1 List Colorings

It is very common in coloring arguments to construct some proper k-coloring ¢ : V(G) — [k] by
inductively defining ¢(v) for some vertex v and then constructing a coloring of G —v. However,
when we do this we are no longer exactly looking for a proper k-coloring of G — v but rather a
coloring where each u ¢ N(v) is allowed to be any color in [k] while u € N(v) are required to
be colored from the set [k] \ {c(v)}, and because of this we can’t directly apply any inductive
statement that holds for proper k-colorings. The solution to this problem is to consider a more
general notion of coloring which is preserved by us iteratively coloring a vertex of our graph.
Specifically, we do this by assigning each vertex a list of “allowed colors” L(v) which we can
think of as being the subset of [k] obtained after removing any of the colors from vertices we’ve
already deleted from G in some sort of inductive step. More precisely, we have the following.

Definition 12. Given a graph G, a list assignment is a function L which assigns to each
v € V(G) a set L(v). A proper L-coloring is a map c from V(G) which satisfies ¢(v) € L(v)
for all v € V(G) and which has c(u) # c¢(v) for all u,v with wv € E(G). We say that G is
k-choosable if there exists a proper L-coloring for G for all L with |L(v)| < k and we define the
list chromatic number x,(G) to be the smallest k such that G is k-choosable.

As an example, observe that G has a proper k-coloring if and only if it has a proper L-coloring
with L(v) = [k] for all v. As such, G being k-choosable implise that it is k-colorable and hence
X(G) < x¢(G) for every graph G. As such, the following is a direct strengthening of the results
of the previous subsection.

Theorem 4.7. If G is a graph of maximum degree A then
xe(G) < d(G)+1<A+1.
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The proof of this is essentially identical to our previous arguments and we leave the details as
an exercise to the reader.

While Theorem 4.7 is certainly at least as strong as our results upper bounding x(G), it is not
clear if this is a strict strengthening. That is, it is not clear whether there exists any graph with
X(G) # x¢(G). And indeed, intuitively it doesn’t like this should be the case. That is, finding
a proper L-coloring seems hardest to do when the lists L(v) overlap as much as possible since
otherwise it seems easier for us to avoid creating monochromatic edges. As such, it naively
seems like the worst-case scenario for L is if L(v) = [k] for all v which exactly recovers the
notion of a proper k-coloring.

Perhaps surprisingly (or unsurprising given we’ve dedicated a whole subsubsection to this topic),
there do in fact exist L which are strictly harder to properly color compared to the identically
[k] assignment, implying that x(G) < x¢(G) for such graphs. Genuinely surprisingly, this holds
even for bipartite graphs where y(G) and y,(G) can be made arbitrarily far apart from each
other.

Theorem 4.8. For every integer t > 2, there exists a graph G with x(G) = 2 and x.(G) > t.

Sketch of Proof. We only prove this for t = 3 with the generalization of this argument being
left as an exercise to the reader. For this, take G = K3 3 say with bipartition U = {u, ug, ug}
and V = {vy,vq,v3}. Define L by having L(u;) = L(v;) = {1,2,3} \ {i}. Observe now that
if there exists a proper L-coloring ¢ then {c(u1), c(us),c(uz)} contains at least 2 colors since
if this only contained one color i then this would contradict c(u;) € L(u;) = {1,2,3} \ {i}.
But this set containing at least two colors implies that L(v;) C {c(uq), c(uz), c(us)} for some i,
namely the one whose color set L(v;) equals these two colors. This means that for any choice of
c(v;) € L(v;) that there will exist some u; € N(v;) with ¢(u;) = ¢(v;), contradicting this color
being proper. We conclude that no proper L-coloring can exist for this choice of L, implying
that XZ(KS,S) > 2. ]

Corollary 4.9. There does not exist a function f : N — N such that xo(G) < f(x(G)) for
all graphs G. That is, the list-chromatic number can not be bounded by some function of the
chromatic number.

As a final remark, we note that in very recent years an even greater generalization of list coloring
has appeared in the literature known alternatively as correspondence coloring or DP-coloring
which in particular originated in the context of inductive proofs similar to our motivation for
studying list colorings.

4.3.2 Edge Colorings

All of the colorings we have considered up to this point involve colorings of the vertices of
G. What if we were to consider colorings of its edges instead? While a natural idea, it is
not immediately clear what a “proper” edge coloring should be. Motivated by the idea that a
vertex coloring is proper if no two vertices which share an edge in common are given the same
color, we might consider edge colorings to be proper if no two edges which share a vertex in
common are given the same color.
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Definition 13. Given a graph G, we say that a function ¢ : E(G) — [k] is a proper k-edge
coloring if ¢(e) # J(f) for any distinct edges e, f with e N f # (). We define the chromatic
index X'(G) to be the smallest integer k such that G has a proper k-edge coloring.

Proper edge colorings of a graph G are in fact equivalent to proper vertex colorings of an
appropriate auxiliary graph of G.

Lemma 4.10. Given a graph G, define the line graph L(G) to be the graph with vertex set
E(G) where two distinct edges e, f are adjacent to each other in L(G) ifen f # (. A function
d : E(G) — [k] is a proper k-edge coloring of G if and only if it is a proper k-coloring of L(G).

We can use this connection to proper colorings to immediately conclude some very strong
bounds on x'(G).

Proposition 4.11. If G is a graph with mazimum degree A, then
A<X(G)<2A-1.

Proof. Indeed, observe that w(L(G)) > A as the A edges incident to a vertex of maximum
degree in G form a clique in the line graph L(G). On the other hand, the maximum degree of
L(G) is at most 2A — 2 as every edge uv in G is incident to at most 2A — 2 edges other than
wv itself (since each of u, v are incident to at most A — 1 other edges respectively). The bounds
now follow immediately from Theorem 4.1. O]

One can use Brooks’s Theorem to improve the upper bound of this proposition by 1 for A > 3,
but we choose not to do so here since a substantially stronger bound holds.

Theorem 4.12 (Vizing’s Theorem). If G is a graph with maximum degree A then x'(G) €
{A,A +1}.

Despite Vizing’s Theorem determining x’ up to an additive error of 1 for every graph G there is
still a lot that can be said about edge colorings especially in the context of multigraphs, though
we will not go into this further here.

4.3.3 Fractional Colorings

4.4 Clique Numbers and Chromatic Numbers

A major theme of structural graph theory is to determine when a given parameter of a graph
G can be bounded by a function of another parameter. For example, we saw that y,(G) can
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not be upper bounded by a function of its natural lower bound x(G) while x'(G) can be very
strongly upper bounded by its natural lower bound A(G). For x(G), the natural question to
ask in view of Theorem 4.5 is whether x(G) is upper bounded by a function of its clique number
w(G). As a first step, we need to figure out if an analog of Theorem 4.8 holds in our setting.

Question 4.13. Is it true that for every t there exists a graph G with w(G) = 2 but x(G) > t?

That is, do there exist triangle-free graphs with arbitraily large chromatic numbers? The answer
to this question is immediately yes for ¢t = 3 by considering odd cycles. One can also verify it
for t = 4, though it likely will take you either a lot of trial and error or a computer (as the
smallest such example is on 11 vertices), which are approaches which will not generalize to, say,
t = 1000. The difficulty in finding these constructions should suggest that either this is false for
large t or that we need a more systematic scheme for forming our constructions. And indeed,
we will in fact show that this question has a positive answer by coming up with a systematic
way for constructing examples.

The motivation for our approach is as follows. Say we have some triangle-free graph G with
chromatic number at least ¢, we want to build from this a new graph M (G) which is triangle-free
and which has chromatic number at least ¢4+ 1. The simplest way to force chromatic number at
least ¢ + 1 is to add a new vertex w to G which is adjacent to all of V(G) since the new vertex
is forced to be given a coloring distinct from the ¢t which we know must be used for G, but this
approach completely fails to maintain that our graph is triangle-free. To get around this, for
each u; € V(G) we will create a new “duplicate” vertex v; in such a way that we essentially
force the color of v; to be the same as the color of u; and such that these duplicate vertices v;
form an independent set. If we can achieve this, then by adding a new vertex w adjacent to
all of the duplicate vertices will achieve our desired goal. After pondering on this idea for a bit
one might be led to the following operation.

Definition 14. Given a graph G with vertices uy, ..., u,, its Mycielskian M(G) is a graph
with vertex set uq,...,u,,v1,...,v,, w such that:

o uu; € E(M(G)) and wv; € E(M(G)) if and only if wu; € E(G),
e v;w € E(M(QG)) for all i, and
o ww¢ E(M(G)) and vv; ¢ E(M(G)) for all 4, 5.

and such that w;w ¢ E(M(G)) and

That is, M(G) is formed by taking G, duplicating each vertex so that v; has the same set of
neighbors as u; in GG, and then adding a new vertex w adjacent to all the duplicated vertices.
Crucially, this operation does precisely what we want it to do.

Proposition 4.14. For every graph G, x(M(G)) = x(G) + 1 and M(QG) is triangle-free when-
ever G is triangle-free.
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Proof. For triangle-freeness, we observe that no triangle in M(G) can involve two v; vertices
since such vertices are never adjacent, and as such no triangle can involve w whose only neigh-
bors are v; vertices. As such, if there is a triangle it must either be of the form w;, u;, us or
Vi, uj, ug, but such vertices form a triangle in M(G) if and only if u;, u;, uy form a triangle in
G, proving this half of the result.

For ease of notation let ¢ = x(G). To prove x(M(G)) <t + 1 we construct an explicit proper
(t + 1)-coloring for M (G) as follows. Start with an arbitrary proper t-coloring ¢ of G. Now
define ¢ : V(M (G)) — [t + 1] by having c(u;) = ¢(v;) = /(u;) and ¢(w) = t + 1. That is, we
duplicate the coloring of ¢ on both the u and v vertices and then give w a completely new
color. Any edge involving w will be monochromatic because w is the only vertex with color
c(w). One can also check that if some edge w;u; or v;v; were monochromatic under ¢ then the
edge u;u; would be monochromatic under ¢’ which we assumed not to be the case. This shows
¢ is a proper coloring, proving the bound.

We now prove that x(M(G)) > ¢+ 1, and for this we assume for contradiction that there exists
some proper t-coloring ¢ of M(G).

Claim 4.15. For every color s € [t], there exists some w; with {c(u;) : u; € Ne(u;)} = [t]\ {s}.

Proof. Assume this was false for some s, we aim to use this to contradict that G’ has chromatic
number ¢. To this end, define a coloring ¢ : V(G) — [t]\ {s} by having ¢/(u;) = ¢(u;) whenever
c(u;) # s and otherwise take ¢/(u;) to be an arbitrary color in [¢]\ ({s}U{c(u;) : u; € Ng(w)}),
noting that such a color exists by hypothesis. We claim that this is a proper coloring. Indeed,
the only way an edge u;u; can be monochromatic under ¢ is if, say, c¢(u;) = s, but in this
case we must have c(u;) # s since c¢ is proper coloring and hence ¢ (u;) = c(u;) # /(u;) by
construction. We have thus shown that G can be properly colored using only ¢ — 1 colors,

contradicting y(G) = t. O
With this claim we see that {c(v1), ..., c(v,)} = [t] since for each u; as in the claim we must have
c(v;) = s. But this means c¢(w) will equal the color of one of its neighbors v;, a contradiction
to ¢ being a proper coloring. ]

Corollary 4.16. For all t > 2 there exists a triangle-free graph with chromatic number t.

Proof. Take Gy = K, and iteratively define G;;; = M(G;). The proposition immediately
implies that G, satisfies the conditions of the corollary. m

A natural followup now is to ask to what extent we can strengthen this result. For example,
what if our graph is both Cs-free and Cs-free (the two smallest certificates for whether a graph
has chromatic number 2 or not), can we find graphs of arbitrarily large chromatic number in this
case? Note here that the Mycielskian M (G) will be entirely ineffective for this sort of problem
since any edge in G creates a Cs in M(G). It is natural then to go back to our motivation for
M (G) and see if one can modify it to get rid of C5’s as well, but we do not know of any way to
make this work.

Ultimately there does exist an explicit construction of graphs with no C3, C4, or C5 which have
arbitrarily large chromatic numbers due to Tutte. However, these graphs are tremendously
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large and as far as we know these constructions do not generalize to the next natural followup
question of asking if there exist graphs with large chromatic number which avoid all of C3, Cs,
and C;. Ultimately, this problem does indeed have a positive answer in a very strong sense. To
this end, we recall that the girth of a graph is the length of its shortest cycle.

Theorem 4.17 (Erdés). For all integers {,t > 2 there exists a graph G with girth at least ¢
and x(G) > t.

This result says in a very strong sense that x(G) is a “global” parameter of G, in the sense that
it implies there exist graphs which G locally look like a tree (in the sense that G restricted to
the vertices within distance g/2 of a given vertex is a tree) but nevertheless needs an arbitrarily
large number of colors to actually color the whole graph.

There is no known family of “elementary” graphs’ which satisfies Theorem 4.17. However,
similar to our proof of Theorem 3.7 showing R(n) is large we will be able to prove with an ap-
propriate (though somewhat more involved) random construction. For this, we recall Markov’s
inequality which says that if X is a non-negative random variable then Pr[X > ¢] < E[X]/t for
all real t.

Proof. The random construction we consider will be based off perhaps the most important
object in probabilistic combinatorics, namely the Erdds-Renyi random graph model. To this
end, for an integer n > 1 and a real number 0 < p <1 we let G,,, denote the random n-vertex
graph obtained by including each edge independently and with probability p. Thus G,,; = K,
with probability 1, G, is the empty graph with probability 1, and G/, 1/2 is equally likely to
be any n-vertex graph. The naive idea we want to try is to pick some values for n and p such
that with high-probability G,,, simultaneously has few (or even 0) cycles of length at most ¢
and has large chromatic number. Let us address each of these obstacles in turn.

First of all, let X; denote the number of cycles of length ¢ in G and let X, = Zf;; X;.
Observe that E[X;] < p'n’ as the total number of cycles of length 7 in K, is at most n* and the
probability that any given cycle C survives into G,,, is exactly p’ (i.e. this is the probability
that G,,, independently keeps all i edges of C'). By linearity of expectation we find that

E[X<] < ) p'n' < (€ = Dmax{pn, (pn)"". (2)

We now turn to studying x(G,), and a priori it is not so clear how to approach this. The key
insight is that we only care about proving lower bounds for this chromatic number, so it suffices
to bound some general lower bound for y which might be simpler to analyze. In particular, by
Theorem 4.5 it suffices to show that n/a(G,, ) is large, i.e. that a(G,,,) is small, which is much
simpler to do. Indeed, if we let Y, denote the number of independent sets of G,,,, of size a then
by linearity of expectation and the basic inequality 1 — x < e, we find

a

B = (=) (n) < )0t = (neTeIP) < (ne ) (3)

9There do exist explicit constructions due to Lubotzky, Phillips, and Sarnak, but these are highly complicated
and rely on quite a bit of algebra and number theory.
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Heuristically, what this tells us is that if e 7?2 < n=! ie. if p > @, then G,,, with high
probability will not contain any independent sets of size at least a, which if true would imply
that x(Gnyp) > n/a. This gives a good lower bound if @ < n, and hence heuristically we need
p > log(n)/n in order for us to conclude that G,,, has large chromatic number. Unfortunately
though for this range of p, (2) suggests that the number of short cycles in G,,,, could be as large
as (logn)‘. In total this suggests (the true fact that) G, , does not simultaneously have high
girth and high chromatic number for any choice of p.

The saving grace to this approach is the observation that although G, , does not have 0 short
cycles for p > logn/n, it does have few of them. In particular, if we take G,,, and delete a
vertex from each of its short cycles then this graph will by definition have large girth and also
be very close to G, it G}, , has few short cycles.

With all this motivation in mind, let p = C'logn/n with n, C' sufficiently large integers so that
the following inequalities hold. Let A; be the event that X, < n/2. By Markov’s inequality
and (2) we have
_ -1 _ -1 -1
(=D (E=DC o) 1
n/2 n/2 2

PriA] =1—-Pr[ X, >n/2] >1—

with this last inequality holding for n sufficiently large in terms of C' and ¢. Similarly let A,
denote the event that a(G,,) < n/2t. By Markov’s inequality and (3) we have

1

Pr[As) =1 — Pr[Yy o > 1] > 1 — (ne P42 = 1 — (n . p= /42 > 3
with the last inequality holding for C' > 4¢ and n sufficiently large. From this, we conclude that
Pr[A;NAy] > 0, i.e. with positive probability both A; and A, occur, i.e. there exists an n-vertex
graph G such that it has at most n/2 cycles of length less than ¢ and a(G) < n/2t. Define

G’ by taking GG and deleting 1 vertex from each cycle of length less than ¢. By assumption we
have v(G’") > n/2 and a(G') < o(G) < n/2t, and as such

v(G)
a(G")

n/2
> 12—y,
—n/2t

X(G) =
proving the result. [

At this point we have more than proved that one can not upper bound x(G) by a function of
w(@) for arbitrary graphs G, but what about if we turn our attention away from all graphs and
restrict to some nice family of graphs instead?

Definition 15. We say that a family of graphs G is y-bounded if there exists a function
f N — N such that x(G) < f(w(@)) for all G € G.

For example, Theorem 4.17 says that the family of all graphs is not y-bounded. On the other
hand, the family of perfect graphs by definition are x-bounded with f(n) = n, and Vizing’s
Theorem implies that the family of line graphs is y-bounded with respect to f(n) = n + 1.
There are many open questions regarding which families of graphs are y-bounded as well as
determining optimal values for the function f with the biggest open question being the following.
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Conjecture 4.18 (Gyarfds-Sumner). For every tree T, the family of graphs Gr which do not
contain an induced copy of T is x-bounded.

This conjecture was originally made by Gyarfas in 1975 (and independently by Sumner later)
and despite receiving a lot of attention, the only trees we know of for which this problem is
solved is when T is a star, path, or has radius 2.

4.5 Exercises

1. We begin with some warmups.

(a) Recall that a map ¢ : V(G) — V(H) is a homomomorphism if {¢(u), p(v)} € E(H)
whenever {u,v} € E(G). Prove that a graph G has a proper t-coloring if and only
if there exists a homomorphism ¢ : V(G) — K; [1].

(b) Prove that if ¢ : V(G) — [t] is a proper coloring then ¢7!(4) is an independent set of
G. Prove that if ¢ : E(G) — [t] is a proper edge coloring then (¢/)71(4) is a matching
of G [1].

2. Prove that the number of proper t-colorings of a graph G is at least HveV(G) (t — deg(v)).
In particular, every n-vertex graph GG with maximum degree A has at least 2" proper
(A + 2)-colorings [1+].

3. Prove that there exists some C' > 1 such that every n-vertex graph G with maximum
degree A has at least C™ proper (A + 1)-colorings. That is, G does not just have 1 proper
(A + 1)-coloring but at least exponentially such colorings (Hint: the proof we have in

mind yields that there are at least 95+ such colorings, in particular giving the result
with C' = 2%/3) [2+].

4. Prove that one can equivalently define the degeneracy d(G) of a graph G to be the smallest
integer d such that every subgraph G’ C G contains a vertex of degree at most d [1+].

5. Prove that e(G) < d(G)v(G) for all graphs G. In particular, graphs with bounded
degeneracy have at most a linear number of edges [1+].

6. Let us consider the degeneracy of various types of graphs.

(a) Prove that a graph G has d(G) = 1 if and only if G is a forest with at least one edge
[1+].

(b) Prove that if G is a graph with maximum degree A then d(G) = A if and only if G
is regular. In particular, note that this gives an easy proof of Brooks’s Theorem for
graphs G which are not regular [1+].
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(c) Prove that if G is a planar graph then d(G) < 5. In particular, note that this implies
X(G) < 6 for planar graphs (Hint: you may assume without proof the fact that
planar graphs have e(G) < 3v(G) — 6 provided v(G) > 3) [1+].

7. Here we briefly showcase how degeneracy appears in other graph theoretic contexts.

(a) Prove that for all d there exists a graph F' with d(F) = d such that ex(n, F') =
O(n?*~'/?) (Hint: you may assume without proof anything I claimed in the chapter
on Turdn Problems) [2-].

(b) Prove that if F' is a graph with d(F) = d, then ex(n, F') = O(nQ’Tld); a major open
problem of Erdés conjectures that in fact ex(n, F') = O(n2~4) should hold, which is
best possible by the previous part [3+].

(c¢) Recall that Ro(F') denotes the smallest number N such that any red-blue edge col-
oring of Ky contains a monochromatic copy of F. Prove that if d(F) = d then
Ry(F) = Oq4(v(F)) [4-].

8. Prove that our two stated versions of the Hajnal-Szemerédi Theorem are equivalent to
each other [2-].

9. Prove that if a graph G is perfect, then G and G do not contain an induced odd cycle of
length at least 5 [2].

10. Determine which of the following families of graphs are hereditary: all graphs, regular
graphs, planar graphs, trees, forests [1].

11. Prove that for every hereditary family G that there exists a family of graphs F such that
G € G if and only if G does not contain any graph of F as an induced subgraph. Prove

that there exists a hereditary family G such that the family F can not be taken to be
finite [2-].

12. Formally prove that x,(G) < d(G) + 1 for every graph G [1].
13. We consider the list chromatic number of complete bipartite graphs.

(a) Complete our proof of Theorem 4.8 by showing that for all ¢ there exists some n;
such that x¢(Kp, n,) >t [2].

(b) Give an alternative proof by showing that x,(K;_q _1y-1) >t [2].
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14.

15.

16.

17.

18.

Use Brooks’s Theorem to prove that x'(G) < 2A — 2 for every graph G with maximum
degree A > 3 [1+].

Prove that every K3-free graph on at most 10 vertices has chromatic number at most 3,
meaning that M (C5) is the smallest triangle-free graph with chromatic number 4. Your
proof should be human readable and checkable, i.e. it can not be of the form “I generated
every graph on at most 10 vertices on my computer and verified that this is true” [3-].

Given a graph G and an integer k > 1, we define the Zykov graph Z(G, k) by taking k dis-
joint copies Gy, ..., Gy of G, and then for each of the v(G)* sequences T = (z1,..., %) €
V(Gy) x -+ x V(Gg) we add a new vertex vz whose neighborhood equals {z1, ..., z;}.

Prove that Z(G, k) is triangle-free whenever G is, and that x(Z(G, k)) = x(G)+1 provided
k > x(G). As such, these graphs give another explicit family of triangle-free graphs with
arbitrarily large chromatic numbers [2].

Prove Markov’s inequality whenever X is a non-negative discrete random variable [1+].

In this exercise we will partially motivate the exact statement of the Gyarfas-Sumner
conjecture. To this end, for each graph F' let G be the family of graphs which does not
contain F' as an induced subgraph.

(a) Prove that if F' contains a cycle then G is not y-bounded [2-].

(b) Prove that if Fy, Fy are forests then Fy U Fy is x-bounded if and only if F and F
are both y-bounded (Hint: inductively define f(1), then f(2), then f(3), and so on)
[2+].

(¢) Conclude that to determine which graphs F' are such that Gp is x-bounded it suffices
to do so in the case when F'is a tree [1].
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5 Matchings and Factors

In Section 2 we saw some sufficient conditions for G to contain a Hamiltonian cycle, and it is
natural to ask if there exist nice necessary and sufficient conditions for Hamiltonicity. This turns
out to be essentially hopeless. Indeed, it is known that the computational problem of determin-
ing whether or not a given graph is Hamiltonian is NP-complete, which means that if a “simple”
necessary and sufficient condition existed then a large number of seemingly intractable problems
for computer science would all have efficient algorithms. Similarly determining whether a graph
has a Hamiltonian path is also NP-complete. However, there does exist a nice characterization
for when a graph has a perfect matching.

Definition 16. Given a graph G, a matching M is a subgraph of G such that every vertex has
degree 1, i.e. M is the disjoint union of some number of edges. The matching number v(G) is
the maximum number of edges in a matching of G. A perfect matching is a matching which is
incident to every vertex of G. Note that a perfect matching can only exist if v(G) is even.

Matchings are particularly nice in bipartite graphs where we have the following two fundamental
(and ultimately equivalent) theorems.

Theorem 5.1 (K6nig’s Theorem). Given a graph G, let 7(G) denote the smallest size of a set
of vertices S which are incident to every edge of G. If G is bipartite, then

The inequality v(G) < 7(G) trivially holds for every graph G, so the difficult part is in proving
v(G) > 7(G) for bipartite graphs. For this next result, we define for a set of vertices S its
neighborhood N(S) ={z:3Jy € S, 2y € E(G)}.

Theorem 5.2 (Hall’s Theorem). Let G be a bipartite graph with bipartition U UV . Then G
has a perfect matching if and only if |N(S)| > |S| for all S C U.

The fact that |N(S)| > |S| is necessary for a perfect matching is immediate, so again the
difficulty lies in proving this is sufficient for bipartite graphs.

We now move on to prove a slightly less well-known result characterizing when arbitrary graphs
G have a perfect matching by showing that an “obvious” necessary condition is also sufficient.
To this end, given a graph G we let odd(G) denote the number of connected components of G
which have an odd number of vertices.

Theorem 5.3 (Tutte’s Theorem). A graph G has a perfect matching iff odd(G — S) < |S| for
all S C V(G).

Proof. The statement of this theorem as well as both directions of this proof will be motivated
by the following observation.
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Claim 5.4. Let G be a graph and S C V(G). If G has a perfect matching M, then for every
connected component C in G — S of odd order there must exist an edge in M which is incident
to a vertex of C and a vertex of S.

Proof. Each vertex v of C' must be contained in an edge e, € M by definition of the matching
being perfect. Since C' has odd order, there must exist some vertex v € V(C) such that
le, NV (C)| = 1. Because C'is a component of G — S, any edge of G which is incident to exactly
one vertex of C' must also be incident to a vertex of S, proving the claim. n

For the first direction of the theorem, let G be a graph such that odd(G — S) > |S| for some
S and assume for contradiction that GG contained a perfect matching M. By assumption there
must exist some connected component C' of odd order in G — S which is not incident to any of
the at most |S| < odd(G — S) edges of M incident to S, a contradiction to the claim.

For the second (and harder) direction, assume for contradiction that there exists a graph G
with odd(G — S) < |S| for all S C V(G) which does not have a perfect matching. From now
on we fix such a graph with v(G) as small as possible. We begin with a key observation which
will guide us on how to construct a perfect matching in G.

Claim 5.5. There ezists some non-empty set S C V(G) such that odd(G — S) = |S].

Proof. We will show that this holds for S = {v} for any vertex v. Indeed, if G' has an even
number of vertices then G — {v} necessarily has at least one connected component of odd order,
proving odd(G — {v}) > |{v}|, and equality must hold by our hypothesis on G. If G has an
odd number of vertices then we would have odd(G) > 1 > |()], a contradiction to our choice of
G. O

The key observation is that for any set S as in Claim 5.5, any perfect matching M that we
wish to construct must have the property that each edge incident to S must also be incident to
a distinct odd connected component of G — S by Claim 5.4. As such, when constructing M we
have to somehow take into account all of the sets S of this form. Motivated by this, from now
on we fix some S C V(G) with odd(G — S) = |S| and we choose such a set S with |S| as large
as possible. We begin by showing that the even components of G — S are easy to deal with.

Claim 5.6. If C s a connected component of G — S with an even number of vertices, then C
has a perfect matching.

Proof. Because v(C) < v(G) — |S| < v(G), we have by our choice of G being a minimal
counterexample that C' either has a perfect matching or there exists some 7' C V(C) satisfying
odd(C' — T') > |T|. In this latter case we have

0dd(G — (SUT)) = 0dd(G — §) + odd(C — T) > |S| + |T| = |SUT],

a contradiction to our assumption on . Thus it must be that C contains a perfect matching.
O

Similarly the odd components are almost easy to deal with.
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Claim 5.7. If C' is a connected component of G — S with an even number of vertices, then for
every v € V(C') the graph C — v has a perfect matching.

Proof. Again, if this failed to be true then there must exist some 7" C V(C) \ {v} such that
odd(C' =T —v) > |T'| + 1, but this means

odd(G — (SUT U{v})) =0dd(G—8) +0odd(C—T —v) > |S|+|T|+1=|SUTU{v}.

By hypothesis on G this is only possible if odd(G — (SUT U {v})) = |SUT U{v}|, but this
contradicts are choice of S being the largest subset of G such that equality holds, a contradiction.

[]

From these observations, we can determine precisely what we need to show to prove that G has
a perfect matching.

Claim 5.8. Define an auxiliary bipartite graph B with one part being vertices of S, the other
part the odd connected components of G — S, and where v ~ C if and only if there exists an
edge of G incident to both v and a vertex of C. If B contains a perfect matching then so does
G.

Proof. Say there existed such a perfect matching M’. For each edge ¢/ = {v,C} € M, let €
be an edge in G which contains v and a vertex from C, which exists by definition of G, and
let M = {&:¢ € M'}. For each even connected component C' of G — S we let M denote a
perfect matching of C' (which exists by Claim 5.6), and for each odd connected component C'
of G — C we let M¢ denote a perfect matching of C' — é with é € M the unique edge incident
to a vertex of C' (and again such a perfect matching exists by Claim 5.7). It is not difficult to
check that M Uc Mc is a perfect matching of G, proving the result. O

With this claim, we have reduced the problem of finding a perfect matching in an arbitrary
graph to finding one in a bipartite graph, and as such it suffices for us to verify that the
conditions of Hall’s Theorem are satisfied!’. And indeed, for any set C of odd connected
components of G — S, if we had Ng(C) = T with |T'| < |C|, then this would imply that
odd(G —T) = |C| > |T, a contradiction to our condition on G. We conclude that B satisfies
the condition of Hall’s Theorem and hence has a perfect matching. This implies G has a perfect
matching, a contradiction to us assuming no such matching existed. O]

One can derive an analog of Kénig’s Theorem from Tutte’s Theorem for the setting of arbitrary
graphs as follows. This was originally done by Berge as a followup to Tutte’s Theorem, hence
the name of this result.

Theorem 5.9 (Tutte-Berge Formula). For any graph G we have

/(@) = min S(V(G)| - U] +0dd(G ~ 1)

10Tp fact, any proof of Tutte’s Theorem must either use or give an alternative proof of Hall’s Theorem since
the statement of Tutte’s Theorem is strictly stronger.
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5.1 Exercises

1. Prove that for every graph G we have v(G) < 7(G) where v(G) is the size of a largest
matching in G and 7(G) is the smallest size of a set of vertices S which are incident to
every edge of G.
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6 Flows and Connectivity

Koénig’s Theorem from Section 5 is what we informally refer to as a “max-min theorem”: it
says that some quantity defined in terms of a maximum (i.e. the maximum size of a matching
of a graph) is equal to another quantity defined in terms of a minimum which naturally upper
bounds the first quantity (i.e. 7(G)). There are a number of other (essentially equivalent) max-
min theorems in graph theory. In this chapter we discuss two of these: the Max-Flow Min-Cut
Theorem related to flows, and Menger’s Theorem related to connectivity.

6.1 Flows

Maybe insert motivation for the problem, eg transporting water or traffic.

In this subsection we will shift slightly from graphs towards digraphs. Formally a digraph D
is a pair of sets (V, A) where A C {(z,y) : z,y € V, x # y} Let me pause on formally defining
names for these/ introducing notation like zy until after I know what I need.. We will be
interested in directed graphs together with some additional information.

Here and throughout for functions of arcs we write g(u,v) instead of g((u,v)).

Definition 17. A network is a quadruple N = (D, s,t,¢) where D is a digraph, s, are vertices
of D Which maybe need to be sources and sinks; I guess if you don’t do this then you need to
define the value to be out flow of s minus in-flow, and ¢ : A(D) — R is a function called the
capacity function. A flow for a network is any function f : A(D) — Rso. A flow is said to be
admissible if the following conditions hold:

e For every non-source and terminal in-flow equals out-flow; also we're bounded by capacity.
We then define val(f) to be flow leaving source/entering sink.

TODO. Likely topics: k-connectivity, blocks, Menger’s Theorem, min cut max flow, ear decom-
positions
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7 Probabilistic Methods

One the most important development in extremal combinatorics has been the idea of using
probabilistic tools to solve extremal problems. We’ve already seen a few examples of this: in
Theorem 3.7 we used a uniform random edge-coloring to prove exponential lower bounds on the
Ramsey number R(n), and in Theorem 4.17 we used a certain random graph (after deleting a
few of its vertices) to prove the existence of graphs with high chromatic number and high girth,
and it is hard to understate how many other breakthrough results beyond these were solved
using probabilistic thinking.

Since GSU has a whole class dedicated to this topic, we reluctantly will restrain ourselves and
give only a single additional application of this beautiful method in this text. We encourage
anyone interested in digging further to read either the standard text by Alon and Spencer, as
well as my own notes here. We now use the probabilistic method to give a general lower bound
for Turan numbers of arbitrary graphs F'.

Theorem 7.1. If F' is a graph with v vertices and e edges with e > v, then
=5

Proof. Our proof approach uses the same “method of alterations” as in Theorem 4.17: we
start with random graph G,,, (which we recall is the n-vertex graph obtained by keeping edge
independently with probability p) and then delete “bad parts” of this random graph until it
has our desired property (namely that of F-freeness).

ex(n, F) = Q(n*~

To this end, consider G, , with p a quantity to be determined later. Let X denote the number
of copies of F'in G,,,. For S a set of v vertices, let 1g be the indicator variable which is 1 if S
contains a copy of F'in G,,, and which is 0 otherwise. With this,

leSXSU!le,

since each set of v vertices contains at most v! copies of F. To have 1g = 1, we in particular
need S to contain at least e edges, so

Pr[ls — 1] S Z (<]2€)>pk<]~ _p)(;)*k S 1)221)2])3 S 47_)2p6.
k>e
In total this gives
E[X] <! (Z) 47T < (47n)"p.

Observe that when p > n*/¢, the calculation above suggests that G, will contain copies of F'
(at least in expectation), so Gy, will not work as an F-free graph for this range of p. However,
we can get around this by observing that if G is a subgraph of G, , obtained by deleting an
edge from each copy of F'in G,,, then G will be F-free by construction. Moreover, the number
we will have e(G) > e(G,,) — X since at most X of the original edges from G, , are deleted.
Using linearity of expectation gives

BI(G)] 2 Bie(Goy) ~ X1 2 () = (409" 2 G = (t*0)'s" @)
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At this point we want to choose p so that the above expression is maximized. Intuitively this
will happen when both terms on the rightside of (4) are roughly equal to each other, i.e. when
pn? =~ n'p°. This suggests taking p ~ net. And indeed, after playing around for a bit, one sees
that, for example, taking p = L and plugging it into (4) gives'! Ele(G)] > 2-3=

1 v
20-16° 601600
Because G is a (random) F-free graph with at least this many edges in expectation, there must

exist some deterministic F-free graph with at least this many edges, proving the result. O]

Theorem 7.1 can fail to be effective if we consider F' with, say, a bunch of isolated vertices.
However, a simple observation allows one to improve upon Theorem 7.1 in cases like these.

Corollary 7.2. For every graph F with e(F) > 2 we define the 2-density

e(F')—1
F) = _
ma(F) F'gg,n?(ig')y v(F') —2

For any F with e(F) > 2 we have
ex(n, F) = Q(n2_m21(F>).

Proof. If my(F') = 1 then we only need to prove ex(n, F') = Q(n) which is trivial via considering
an n-vertex star if /' # K;,; and considering an n-vertex matching otherwise. We can thus
assume mso(F') > 1 from now on.

Let F' C F be any subgraph obtaining the maximum in mqy(F"), which under the assumption
of my(F') > 1 implies that e(F”") > v(F”’). Thus by Theorem 7.1 we have

Fy—2 1

2‘2}?1?'7—1) = Q(n” @),

ex(n, F) > ex(n, F') = Q(n

where here this first inequality used the fact that any F’-free graph is also F-free. n

7.1 Exercises
1. Prove that every graph G contains a bipartite subgraph G’ with e(G’) > 1¢(G).
(a) Using probability [2].
(b) Without using probability [2].
(c) Prove the stronger fact that e(G’) > 1e(G) whenever ¢(G) > 0 [2].
2. We can use probability to give another proof of Turan’s Theorem.

(a) (Caro-Wei) Prove that if G is an n-vertex, then

1
NC R pp——
vt deg(z) +1

UHere we use 4¥° < 4v¢ and that e > 2.
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(Hint: construct a random independent set I in such a way that Pr[z € I] = —*+—)

T deg(z)+1
[2-+].

[N

(b) Conclude ex(n, K,) < (1 — )%

3. Let G be a graph with m edges and N copies of a graph F'.

(a) Prove (without using probability) that G' contains an F-free subgraph with at least
m — N edges. [1+]

(b) Prove that if N > m and e(F) > 2, then G contains an F-free subgraph with at
least )
o (2
Ne(F)—l

¢ What does this result imply when G = K,,7 [1]

edges [2].

We note that our intended proof of (b) uses probability to “boost” the weak deterministic
bound from (a) to get a substantially stronger bound. This is a common application of
the probabilistic method, as the next exercise aims to show as well.

4. Given a graph G, define the crossing number ¢r(G) to be the minimum number of crossing
pairs of edges in any embedding of G into R%. For example, cr(G) = 0 if and only if G is
planar.

(a) Prove (without using probability) that cr(G) > e(G) — 3v(G) (Hint: use Euler’s
formula) [2].

(b) (Crossing lemma) Prove that there exists some C' > 0 such that if G is an n-vertex
graph with m > Cn edges then
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8 Regularity and Removal Lemmas

This chapter is centered around Szemerédi’s reqularity lemma (or simply the reqularity lemma
for short), which was originally a lemma proven by Szemerédi in his proof of Szemerédi’s
Theorem but which has since been recognized as a powerful and fundamental tool in graph
theory with many applications to Turan problems, Dirac problems, and much more. We will
only scratch the surface on what can be said here, and we refer the interested reader to the
book “Graph Theory and Additive Combinatorics” by Zhao for a more thorough treatment.

8.1 The Regularity Lemma and its Applications

Informally, the regularity lemma says that for every graph G, there exists a partition of V(G)
into a bounded number of parts such that the graph between most pairs of parts “looks like”
a random graph. We need some definitions to make this precise.

Definition 18. Let G be an n-vertex graph, A, B C V(@) sets of (not necessarily disjoint)
vertices, and € > 0 a real number.

e We define e(A, B) = [{(z,y) € Ax B : xy € E(G)}. Note that e(A, B) equals the number
of edges between A and B if these sets are disjoint, and e(A, B) equals twice the number
of edges within A if A = B.

e We define the density of the pair (A, B) by

e(A, B)
[AlIB]

d(A,B) =
Note that 0 < d(A, B) <1 for all A, B.

e We say that the pair (A, B) is e-regular if for any X C A and Y C B with |X| > ¢|A]
and |Y'| > ¢|B|, we have

That is, a pair is e-regular if all large subsets of A, B have roughly the same density
as the pair itself. Note that this sort of property is what we would expect to see if we
constructed a random graph on A U B by keeping each edge independently and with
probability d(A, B).

e We say that a partition V3 U--- UV, of V(G) is an e-regular partition if

Z e(Vi, V;) < en’.

(V4,Vj) which are not e-regular

Theorem 8.1 (Szemerédi’s Regularity Lemma). For all € > 0, there exists a number M c)
such that every graph G has an e-regular partition Vi U --- UV, with m < M(e)
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We note that the number M(e) is horrendously large in terms of e, which means that the
implicit constants in any proof which uses regularity lemma will be horrendously large as well.
While we will not get into it here, a result of Gowers shows that M (e) must necessarily be quite
large for the theorem to hold. In a similar spirit, one can cook up constructions which show
that this result is not true if we replace the condition that most edges are in e-regular pairs
with the condition that all edges are in e-regular pairs.

We now give a proof of the regularity lemma. We emphasize, however, that the reader may
first find it helpful to actually read through some of the applications of this result first to get
a feel for these strange definitions and only then come back to review its proof.

Proof.

Roughly speaking, the idea of the proof is to start with some arbitrary partition P of G.
Iteratively if we have some partition P which is not e-regular, then we can use this fact to
produce a “refinement” P’ of P which improves upon P in some measurable way. To capture
this improvement, we associate to each partition P of G a certain parameter ¢(P) lying between
0 and 1 called the “energy” of P. Because the energy can not exceed 1, we can have at most a
bounded number of improvement steps, at which point P must be e-regular by construction.

Somewhat more precisely, for sets U,V C V(G) we define

_ ujivi :
Q(U7 V) - 'U(G)Z d(U7 V) )

and for a partition P for V(G) we define

g(P)= > qU,V).

UVeP

It is straightforward to check that 0 < g(P) < 1. Most importantly, we have the following.

Claim 8.2. If P is a partition which is not e-reqular, then there exists a refinement P’ (i.e. a
partition such that for each U' € P’ there exists U € P with U' C U) such that |P'| < 47! and
such that q(P') > q(P) + .

Assuming this claim, we can prove the result by starting with P; = {V(G)} and then iteratively
if P; is not e-regular then we let P; 1 be the refinement of P; given by the claim. By the claim
and properties of ¢ we must have 1 > ¢(P;) > ie® and hence this process terminates at some
i < &%, implying that Py is e-regular at this point. Moreover, one can bound |Py| as, say,
an iterated exponential of 4’s of height i/ < €75, so taking M (e) to be this quantity gives the
result.

To prove this claim, the idea is that for each pair V;,V; € P with i # j which is not e-regular
we define 4, ; C V; and A;; C V; to be two sets witnessing that this pair is not e-regular, i.e.
which is such that |d(V;, V;) — d(A4;;, A;;)| > €. Similarly if (V;,V;) is not e-regular then we let
Aii, Ai« CV; denote a pair of sets witnessing this fact. Now for each ¢ and each binary vector
x indexed by the A;; sets for all j € NU {*} which exist, we let V;* be the set of vertices v with
v € A;; if and only if x4, ;, = 1. One can show that the refinement P’ consisting of all the V;*
sets for all 4, z satisfies q(P’) > q(P) + &°. Moreover, each V; € P gets partitioned into at most
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2/P1+1 pieces (since there are at most |P| + 1 total sets A; ; with the +1 coming from 4;.). We

thus have |P’| < [P|2/PH! < 471 proving the result. O

We now turn to applications of the regularity lemma, which in general all go through the same
three basic steps:

(1) Take an e-regular partition V3 U---UV,, for your graph G as guaranteed by the regularity
lemma.

(2) “Clean” the graph G by deleting a small number of “poorly behaved” edges, e.g. by
deleting all edges between any pairs (V;,V;) which are either not e-regular, have low
density, or which have |V| relatively small.

(3) Solve the problem for the cleaned graph, often by invoking known results from extremal
combinatorics or by making use of a “counting” lemma.

One basic and very important example of this framework comes from the following result known
as the triangle removal lemma (or simply the removal lemma depending on context).

Theorem 8.3 (Triangle Removal Lemma). For all € > 0, there exists a 6 > 0 such that if G
is an n-vertex graph with at most én3 triangles, then G can be made triangle-free by deleting at
most en? edges.

Essentially, this says that any graph which is close to being triangle-free (in the sense that it
has o(n?) triangles) can be made triangle-free by deleting at most o(n?) edges.

Proof. Fix some ¢ > 0, and with plenty of foresight we define ¢’ = min{i,e/ 4} and § =
£2()°M(¢")~% where M (') is as in the statement of the regularity lemma. Let G be an n-
vertex graph with at most én® triangles. With our framework above in mind, we begin by
applying the regularity lemma to obtain an &’-regular partition V; U JV,, and then we define
our “cleaned” subgraph G’ C G by deleting all edges between pairs (V;,V;) such that either
(V;,V;) is not &’-regular, or d(V;,V;) < 2¢’, or min{|V;|,|V;|} < &'m™'n.

Claim 8.4. It suffices to show that the graph G’ is triangle-free.

Proof. Observe that the number of edges we deleted going from G to G’ is certainly at most
5'n2+225’|%|]vj|—|— Z [Viln < &'n® +2¢’ + &'n = 4e'n® < en?,
.5 |Vi|<e'm~1ln

where this first inequality used that the number of terms in the sum is at most m. As such,
if we assume the hypothesis of the claim then we see that we can indeed remove at most en?
edges from G so that the resulting graph is triangle-free. m

Assume for contradiction that G’ contains a triangle, say with each of its vertices coming from

parts V;, V;, V; and we emphasize that we do not require that these integers ¢, j, k to be distinct
from each other. This implies that there is at least one edge in G’ between each of these three
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parts, which by definition of G’ implies that all of these pairs of parts are &’-regular, have
density at least 2¢/, and that each of these parts has size at least ¢'m~'n.

Claim 8.5. The set of vertices V] C V; which have at least €'|V;| neighbors in V; and at least
e'|Vi| neighbors in V. satisfies |V/| > (1 — 2¢")|V].

Proof. Indeed, if we let X C V; denote the set of vertices with less than ¢’|V;| neighbors in V;,

then /
eI XINvil

vl

Because d(V;,V;) > 2¢" and (V;,V;) is ¢’-regular, this inequality is only possible if |A] < ¢'|Vj|.
An analogous argument shows that the number of vertices of V; with less than &’|V}| neighbors
in Vi is at most €'|V|, proving the claim. O

d(X,V;) <

Claim 8.6. Fvery x; € V; as defined above is contained in at least $(¢')|V;||Vi| triangles.

)

Proof. By definition of V}/, the sets X; := Ng/(x;) N V; and X}, := Ne/(x;) NV, both have at
least an ¢’ proportion of the vertices of V;, Vj.. Using this and the fact that the pair (V}, V}) is
¢’-regular, we find that

d(Vi, Vi) > d(V;, Vi) —€' > €,

which by definition means that the number of pairs of adjacent vertices (z;,xy) € Vj x V| is
at least &'|V/||V{| > (£/)®|V;||Vi|. Since each of these pairs (z;, ;) forms a triangle with z;
and since each such triangle arises from at most 2 pairs (z;, z;), we find that the number of
triangles using x; is as stated. O

By combining these two claims, we see that for any choice of ¢’ <
in G’ is at least

i that the number of triangles

1 1 1

TEVIVIVAIVL 2 (om0 = 3(&)PM ()0 = 260,

with the first inequality using that every part surviving in G’ has size at least ¢‘'m~'n. This in
turn implies that G O G’ contains at least 26n® triangles, a contradiction to our assumption
that it contains at most dn? triangles, proving the result. O]

As an aside, because our proof used the regularity lemma, the dependencies of ¢ and § we
obtain are very bad. There do exist regularity-free proofs of the triangle removal lemma due to
Fox which gives nearly optimal bounds on these dependencies, but even these nearly optimal
bounds are still quite large.

The triangle removal lemma is, in addition to simply being a nice statement, an incredibly
important tool in its own right. We will see some application of this in the next subsection.
For now , we continue looking at applications of the regularity lemma by proving the Erdos-
Stone-Simonovits Theorem which we recall below.

Theorem 8.7. For any graph F' with at least one edge, we have

ex(n, F) = (% + 0(1)> (’;)
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Proof. The key observation due to Simonovits is that we can reduce our problem to studying
complete r-partite graphs where every part has size ¢, and we let K,.; denote this graph.

Claim 8.8. It suffices to prove for all r,t > 2 that

it (222 o) (2.

Proof. Assume this is true and consider any graph F' with r := y(F'). The lower bound comes
from considering G = K,_y;|n/(»—1))- For the upper bound, we observe that I’ C K., r) since
any y(F') = r implies that F' is r-partite, and as such it is certainly contained in a complete
r-partite graph with every part of size F'. As such,

ex(n F) < extn, Ky < (£ o)) ()

r—1 2

proving the result. [l

We now prove this upper bound on ex(n, K,.;). This was originally done by Erdés and Stone,
though we emphasize that their proof was not based on regularity like ours is. Many of the
details here are completely analogous to what we did in our proof of the triangle removal lemma,
so we will a bit terser in our exposition whenever the parallels are clear.

Fix some r,t. Proving this asymptotic bound is equivalent to showing that for any 6 > 0, we
have ex(n, K,;;) < (=2 +§)(3) for all sufficiently large n. To this end, fix some § > 0, let d > 0

be some small constant in terms of 9, r, ¢, and let € > 0 be a very, very small constant in terms
of d,r,t (we won’t specify it exactly, but we will want e ~ (d/2)").

Let G be an n-vertex graph with at least (:%f +9) (g) edges and V; U---UV,, an e-partition of
G as guaranteed by the regularity lemma. Let G’ C G be the subgraph defined by deleting all
edges between V; and V; for any pair (V;, V;) which is either not e-regular, or has d(V;, V;) < d,

or has min{|V;|, |V;|} <em !'n.

As in our proof of the triangle removal lemma, we observe that the number of edges we delete
when going from G to G’ is at most

en? +dn? 4+ en? < —n?,

N

with the last step using our assumption of €, d being sufficiently small in terms of §. In particular,
G' is an n-vertex graph with at least (% +6/2) (g) edges, so for n sufficiently large Turan’s
Theorem guarantees that G’ contains a K,. Possibly by relabeling our parts we can assume
that the r vertices of this K, lie in parts Vi,...,V, where again we allow the possibility that
V; =V, for some i # j. The existence of this K, implies that there exist edges in G’ between
each of the parts V;, V; for all distinct 1 < 7,5 < r, so by construction of G’ this implies that

each of these pairs (V;,V;) is e-regular and has d(V;, V) > d.

Intuitively at this point we will try and proceed as follows to build our copy of K,;: we begin
by selecting some vertex xy,; € V; which has at least (d — €)|V;| in each of the other parts,
with most vertices in V; satisfying this property. We then pick 2., € V; which has at least
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(d —¢)|V; N N(xq,1)| neighbors in each set V; N N(x1,1) which again is satisfied by most choices
of vertices in V; provided ¢ is much smaller compared to d. We then pick 1,3 to have many
neighbors within the common neighborhoods N(z1.1) N N(x1,2) and continue in this way until
we have selected vertices x1.1, ..., x1,; which have many common neighbors in each of the other
parts. From here we pick some x5, in the intersection of this common neighborhood and V, and
proceed in a similar way until we have eventually constructed a full copy of K. The following
gives a formal framework for this approach to work.

Claim 8.9. For n sufficiently large, we have that z'f‘71, C, ‘7} are subsets of Vi, ..., V, such that
(d —&)'|Vi| = 2re|Vi| for all i, then for all i and integers 1 < s <t there are at least 27°|V;|®
tuples (1, ...,xs) € V° of distinct vertices such that |(\,_, N(zy) NV;| > (d — ¢)|V;| for all
J#i

Proof. We prove the result by induction on s, the base case s = 0 being trivial. Let (1, ..., 25 1)
be an arbitrary tuple satisfying the conditions for s — 1, let V* = ﬂz,_:ll N(zy)NV; and let X;
denote the set of 2 € V; such that |N(z) N 17]*] < (d—¢)|V;]. Then

d(X;, V7)) <d—e <d(V,,V;) —e.

Because (V;,V;) is an e-regular pair and |‘7;*| > (d — 5)5*1|1~/j|5|Vj| > ¢|V;| by hypothesis, we
must have | X;| > ¢|V;|. Using this and the requirement that our tuples have distinct vertices,
we find that the number of choices for x which we can append to (x1, ...,z 1) while satisfying
the conditions of the claim is at least

~ ~ ~ 1 ~
VAUX) = s +12 Vil = (r = DelVi| =t > Vil = relVi] > S|V,

with the middle inequality holding for n sufficiently large in terms of € since |V;| > em™tn >
eM(g)'n. Since we inductively assumed the number of choices for (xy,..., 7, 1) was at least
2175|V;|*~1 we conclude the result. O

To prove the result, we first apply this claim with 17J = Vj for all j to find a tuple (21,1,...,21,) €
Vi satisfying these conditions. Iteratively given that we have constructed (z.1,...,zy.) for all
1 < i <i<r, we apply the claim with V; = V; Mi<ici, 1<5< NV (@irs) for j > i and V; =V for
J < to find a tuple (z;1,..., %) € 17; Note that iteratively we always apply the claim after
assuming |‘7]| > (d — €)™V}, so the hypothesis of the claim will hold provided ¢ is sufficiently
small in terms of d,r,t. We conclude that this process terminates with distinct vertices such
that ;s ~ z;,¢ whenever i < i’ by construction, giving our copy of K,.; as desired. O

As an aside, we note that our proof in fact shows the somewhat stronger fact that having
e(G) > (=2 +0)(}) implies that G contains 5(n") copies of K,,).

The exact mechanics of our proofs for both the triangle removal lemma and the Erdds-Stone-
Simonovits Theorem are very similar to each other, in that they both rely on showing that if
there exists a set of r parts whose pairs are all e-regular and have high density, then one can find
many copies of K,. Arguments of this form are very common with the regularity lemma, and
as such it can be useful to record facts like these into so-called “counting lemmas”, a general
version of which is the following.
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Lemma 8.10 (Graph Counting Lemma). For every graph F with vertex set {vy,...,v.} and
for every real number 6 > 0, there exists some € > 0 such that the following holds: if G is a
graph and Vi, Va, ..., Vypy C V(G) are such that (V;, V) is e-regular with d(V;, V;) > 6 whenever
viv; € E(F), then the number of homomorphisms ¢ from F to G with ¢(v;) € V; is at least

(t-0) I @vivy) HIV|

ViV; EE(F)

To be clear, this lemma only guarantees many homomorphisms of F' and not necessarily many
copies of F'. However, the number of homomorphisms of F' which are not injective is at most
O(v(G)*™)~1) | so this result guarantees many injective homomorphisms (and hence copies of
F) whenever |V;| = Q(v(G)) for all i. The proof of the graph counting lemma is spiritually
similar to the proofs we have done up to this point, and as such we leave its proof as an exercise
to the reader.

8.2 Applications of the Removal Lemma

We now discuss applications of the triangle removal lemma, which we recall says that any graph
with o(n?) triangles can be made triangle-free by deleting at most o(n?) edges. We begin with
a Turan type problem. To this end, given graphs H and F' we define the generalized Turdn
number ex(n, H, F') to be the maximum number of copies of H in an n-vertex F-free graph.
Note that ex(n, Ky, F') = ex(n, F).

Theorem 8.11. We have ex(n, K3, K4y — €) = o(n?) where K4 — e denotes the graph obtained
from Ky after deleting an edge.

That is, every n-vertex graph where every edge is contained in at most one triangle has o(n?)
triangles. This is equivalent to saying that every n-vertex graph where every edge is contained
in exactly one triangle has o(n?) triangles, which is the most common way this theorem appears
in the literature.

Proof. Let G be any n-vertex (K, — e)-free graph. By definition every edge of G is contained in
at most one triangle, implying that the number of triangles is at most ¢(G)/3 = O(n?) = o(n?).
By the triangle-removal lemma one can delete o(n?) edges of G to make it triangle-free. But by
definition of G, each edge removed destroys at most one triangle in GG, implying that G must
have had o(n?) triangles to begin with, proving the result. O

This bound of ex(n, K3, K, —¢) = o(n?) is best possible in that there exists a construct showing
that ex(n, K3, Ky —e) > n?—°0)

We now give some applications of the removal lemma to areas outside of combinatorics. We
begin with the original motivation for the regularity lemma, namely in determining how large a
subset A C [n] can be if it contains no k-term arithmetic progression, i.e. no k distinct integers
ai,...,a; € Asuch that a;11 —a; = aj41 —a; for all 4, j. The simplest non-trivial case of k = 3
was originally solved by Roth using Fourier analysis. A substantially simpler proof can be given
using the removal lemma.
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Theorem 8.12 (Roth’s Theorem). If A C [n] contains no 3-term arithmetic progression, then
Al = o(n).

Again the bound of |A| = o(n) is best possible here as for all k there exist sets A C [n] without
k-AP’s with size |A| > n'=o®),

Proof. Let A C [n] be such that it contains no 3-term arithmetic progression, which we crucially
observe is equivalent to saying that no distinct x,y, z € A satisfy x 4+ y = 2z since in this case
x, z,y would be a progression with common difference z —x = y — z. We now wish to construct
a graph G4 whose edges are defined based on A such that G4 inherits some nice properties
because A is 3-AP free. After a lot of thought, one might be led to the following idea for
constructing G 4:

The graph G 4is tripartite with parts V; = [n], Vo = [2n], and V5 = [3n],
e We have v; € V] adjacent to v, € V5 if and only if there exists a € A with vy + a = vs,

e We have vy € V5 adjacent to vs € V3 if and only if there exists a € A with v + a = vs,
and

We have v; € V; adjacent to vz € V3 if and only if there exists a € A with vy + 2a = v3.

We emphasize that the adjacency condition for Vi, V5 is defined differently compared to the
other cases. Crucially, this graph does inherit nice properties whenever A is 3-AP free.

Claim 8.13. If A C [n] is 3-AP free, then (vi,v9,v3) € Vi X Vo x V3 is the vertex set of a
triangle in G 4 if and only if vo = v1 + a and v3 = vy + 2a for some a € A.

Proof. 1t is straightforward to check that every triple of vertices (v, v 4+ a,v; + 2a) with a € A
is a triangle. Assume now that (v;,vs,v3) forms a triangle in G4. By definition this means
Vo — v :=a €A, v3—1v9:=b€ A, and v3 — vy := 2c for some ¢ € A. As such we have

a+b=(vy—v1)+ (v3 —v9) = v3 — v = 2¢.

Because A is 3-AP free, this equality is only possible if at least two of a, b, ¢ are equal to each
other, but one can check that this is only possible if a = b = ¢, proving the claim. O]

From this claim we conclude that the number of triangles in G4 is exactly |Aln when A is
3-AP free since a triangle is uniquely identified by picking v; € Vi and the a € A such that
vg = wv; + a. This claim also implies that every edge of G4 is contained in at most one
triangle since, for example, any edge vyvy with v; € Vi, vy € V5 can only be in a triangle with
v3 = v1 + 2(vg — v1) € V3. By Theorem 8.11 we conclude that

[Aln = o(n?),

and hence that |A| = o(n), proving the result. O

74



It is perhaps tempting giving the simplicity of this argument to try and use some sort of removal
lemma to try and prove Szemerédi’s Theorem that sets A C [n] without k-AP’s have |A| = o(n),
but this turns out to be substantially harder to do with perhaps the “simplest” such proof being
those that rely on the difficult machinery of hypergraph removal lemmas.

The last application we consider is from property testing. In this setup, we want to quickly
determine whether a given graph G either has some desired property or if it is far from having
this property. To this end, we say that an n-vertex graph G is e-close to having a property P
if there exist sets of edges E, E' C K,, with |E|, |E’| < en? such that G + E — E’ has property
P and we say that G is e-far otherwise. That is, G is e-far from P if we can not get G to
satisfy P even after changing up to 2en? of its edges. Determining precisely whether a graph
satisfies a property or is far from it can take quite a bit of time if n is large. Remarkably, the
property of triangle-freeness can be tested with arbitrarily high probability after checking only
O(1) vertices of G.

Theorem 8.14. For all e, c > 0 there exists a randomized algorithm which runs in time O, (1)
which correctly determines whether a given graph G s either triangle-free or e-far from being
triangle-free with probability at least 1 — c.

Proof. Let C be some large (but fixed) integer depending on ¢, ¢ to be determined later. Our
algorithm goes as follows: we uniformly at random pick three vertices vy, vo,v3 € V(G) and test
if these vertices form a triangle. We repeat this process independently for a total of C' times.
If none of these vertices form a triangle then we output that G is triangle-free, and otherwise
if some vy, v9, v3 form a triangle then we output that G is e-far from being triangle-free.

This algorithm always correctly identifies that G is triangle-free, so it remains to check that
it correctly identifies G' as being e-far from triangle-free with high probability. And indeed,
observe that G being e-far from triangle-free means that G can not be made triangle-free by
removing at most en? edges. The contrapositive of the triangle removal lemma then implies that
G must contain at least dn® triangles for some § depending only on . As such, the probability
that three uniform random vertices of G form a triangle is at least §, and hence the probability
that the algorithm above fails to find any triangle in its C trials is at most

(1-9)%,

and this quantity can be made less than ¢ by taking C sufficiently large in terms of ¢, ¢, proving
the result. O]

8.3 Variants

There are many variants of both the regularity lemma and the removal lemma. For example,
there exist versions of the regularity lemma which guarantee that each part in the partition has
nearly the same size, as well as variants of the regularity lemma for settings other than graphs
such as arithmetic regularity lemmas. Similarly the removal lemma can be extended to hold
for arbitrary graphs (as we discuss in the exercises), as well as in settings where we care about
induced copies. We will not discuss these further here and instead refer the reader again to the
great book by Yufei Zhao on this topic.
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8.4 Exercises

1.

Prove that if G is an n-vertex graph with less than £n? edges, then V; = V(G) is an
e-regular partition with only one part. Because of this, e-regular partitions are only
interesting and useful in the case when G has ©(n?) edges [1].

. Prove the graph counting lemma [2-].

Using the graph counting lemma, prove the graph removal lemma: for every graph F' and
£ > 0 there exists some ¢ > 0 such that if G is an n-vertex graph with at most dn*(¥)
copies of F', then G can be made F-free by removing at most en? edges of G [2-].

Probably add more, eg walking through Behrand or Ramsey-Turan.
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9 Linear Algebra Methods

Roughly speaking, the linear algebra method in combinatorics works as follows:
1 Associate a “linear algebraic object” M to your problem (e.g. a matrix or a list of vectors).
2. Determine algebraic information about M (e.g. its rank, eigenvalues, eigenvectors),

3. Use this algebraic information to conclude something about your original problem.

The linear algebra method applies to a broad range of problems. We only scratch the surface
here, and we refer the reader to books by Babai and Frankl and by Matousek for a more
thorough treatment of this versatile method.

9.1 Introduction to Spectral Graph Theory

Within the context of graph theory, perhaps the most natural linear algebraic object to consider
is the adjacency matrix. To this end, given a graph G we define its adjacency matrix A(G) to
be the symmetric matrix whose rows and columns are indexed by V(G) where A(G),, = 1 if
u~vin G and A(G),, = 0 otherwise. We write A instead of A(G) whenever G is clear from
context.

A priori, A is simply a convenient way to encode the graph G, and as such there is no reason
to really study A as a linear operator. Surprisingly, the algebraic properties of A contains a
tremendous amount of combinatorial information about GG. Because of this, there is a large
area known as spectral graph theory which centers around studying algebraic properties of both
A as well as many other types of matrices that can be associated to graphs. We will only get
a glimpse of this area here and refer the reader to for more on this.

We begin with a classical connection between A and combinatorial properties of G, namely
that of closed walks. For this, we recall that a sequence of vertices (wy, ..., wx 1) of a graph
G is called a walk of length k if w;1; € N(w;) for all 1 < i < k, and we say that this walk is
closed if w; = wyy1. For the rest of this section, we make frequent use of the standard linear
algebra fact that every real symmetric matrix (such as A) with n rows and columns has n real
eigenvalues as well as a orthonormal basis of eigenvectors.

Lemma 9.1. If G is an n-vertex graph and if A1, ..., \, are the eigenvalues of its adjacency
matriz A, then the number of closed walks of G of length k equals >, \F.

Proof. We first observe that if G is a graph and if u,v € V(G), then the number of walks of
length k from u to v is Aﬁm. Indeed, by definition of matrix multiplication, we have

k
Au,v = Z Auwl e Awk,lv;

where the sum ranges over all sequences of vertices wy, ..., wg_1. A given term of this sum will
be 1 if this sequence defines a walk and will be 0 otherwise, showing that Aﬁm is the desired
amount.
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From this observation, we see that the number of closed walks of length k is exactly
S A, - Tt - YO
ueV(G) 7

where here the first equality used the definition of the trace of a matrix, and the second equality
used both that the trace of a square matrix equals the sum of its eigenvalues and that raising
a square matrix to a power k raises all of its eigenvalues to the power k as well. O

Corollary 9.2. If G is an n-vertex graph and if Ay, ..., A\, are the eigenvalues of its adjacency

matrix A, then
2e(G) = > N

Proof. Observe that (w;,ws,ws) is a closed walk of G of legnth 2 if and only if it is of the
form (u,v,u) with uv € E(G). It follows that the number of closed walks of length 2 is exactly
2e(@) (since there is one for each orientation of each edge), giving the result by the previous
lemma. O

These results allow us to use algebraic information about A to determine combinatorial infor-
mation about GG and vice versa as the next result shows.

Corollary 9.3. If G is a non-empty graph and if Apax, Amin are the largest and smallest eigen-
values of A, then Apax > 0 > Anin.

Proof. By Lemma 9.1 (or simply by definition of A and the trace), we have that

On the other hand, we have
D A =2¢(G) > 0.

These two statements are only possible if there exists some eigenvalue which is positive and
some eigenvalue which is negative, proving the result. O]

The statements above hold for arbitrary graphs, but more can be said for particular kinds of
graphs. In particular, spectral graph theory tends to be at its strongest for regular graphs due
to the following key observation.

Lemma 9.4. If G is a d-reqular graph, then the all 1’s vector 1 is an eigenvector of A with
eigenvalue d.

Proof. For all u € V(G) we have

(Al)u - ZAU,U]-U - Z 1=d= dlu,

vEN (u)

proving that A1 = d1. O]
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One famous application of spectral graph theory to regular graphs comes from Hoffman’s bound
for the independence number of G.

Theorem 9.5 (Hoffman’s Ratio Bound). Let G be a non-empty n-vertex d-reqular graph and
A its adjacency matriz. Then
_)\min
< i
—d- )\min "

where Amin denotes the smallest eigenvalue of A.

a(G)

Proof. Let I be an independent set of size & = a(G) and let x be the vector indexed by V(G)
with x; = 1 if + € I and x; = 0 otherwise. Observe that because [ is an independent set, we

have
Z’TA.I' = inAi,jxj = Z Ai,j = 0
2 t,jel
Let 41, ..., y, be an orthonormal eigenbasis for A with eigenvalues A1, ..., \,. Since G is regular,

the all 1’s vector 1 is an eigenvector with eigenvalue d, so we can assume y; = 1/y/n and A\; = d.
Writing « = ) ¢;y; for some real numbers ¢;, we see that

a=a"r= g cz,

a/vn={(x,y) = c.
Putting all of this together, we find
0=a"Ar =2" Z Ny = Z i = (a?/n)d + Z )\
i#1
> (@®/n)d + " ¢ Amin = (&®/n)d + (@ — 0 /n) Ayin.
i#1

and

Dividing both sides by a and rearranging gives

OC(Amin - d)/n 2 )\min-
Dividing both sides by (Amin — d)/n (which is negative because Api, < 0 since G is non-empty)
gives the result. O

Hoffman’s Ratio Bound is quite effective for a number of graphs. In particular, one can use
this to prove the Erdés-Ko-Rado Theorem, which is the fundamental theorem of extremal set
theory.

Theorem 9.6 (Erdés-Ko-Rado). Let F C ([’:}) be a collection of r-element subsets of [n] which
is intersecting, i.e. which is such that F N F' # () for all F, F" € F. If n > 2r, then

n—1
F| < )
Fl < <r — 1>
Note that this result is best possible by considering F to consist of all sets containing the
element 1.
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Sketch of Proof. Define an auxiliary graph GG which has vertex set ([Z}) where we have F' ~ F”
if and only if N F’ = (). From this, we see that a family F is intersecting if and only if it is
an independent set of G. One can show that G has (:f) vertices, that it is regular with degree
(”;T), and (less trivially via using n > 2r) that the smallest eigenvalue of its adjacency matrix

equals ——"— (";T) In total this implies that any intersecting family F satisfies
_r_(n—r -1
‘f| S OC(G) S n n_rnr( r )n_r _ r n _ n ,
X G B G R O A U
proving the result. O]

9.2 Beyond the Adjacency Matrix

While the adjacency matrix is perhaps the most natural matrix to associate to a graph G, there
are many different types of matrices that could be considered which each have their own sets of
advantages and disadvantages. In particular, many results and proofs for the adjacency matrix
continue to hold word for word for a slightly broader class of matrices which can sometimes
be useful to consider. To illustrate this fact, we consider another classical result relating the
eigenvalues of A to combinatorial properties of G.

Lemma 9.7. For any graph G, the largest eigenvalue \pax of the adjacency matrixz A satisfies
Amax < A(G).

Proof. Let x be an eigenvector of A corresponding to Ayax and let v € V(G) be such that |z, |
is maximized. Then by our definitions, we have

[ Amax@o| = [(Az),| = |ZAv,uxu‘ < Z 2| < deg(v)|zo] < A(G)|zy.

u~v

This shows |Amax| < A, proving the result. O

Examining this proof, we see that we hardly used any of the properties of A in our argument.
In particular, word for word the same argument gives the following.

Lemma 9.8. Let G be a graph and M any symmetric matriz such that M, , = £1 ifuv € E(G)
and M, , = 0 otherwise. Then the largest eigenvalue Aynax of M satisfies

A < A(G).

A priori it’s not clear whether Lemma 9.8 is actually interesting or if it is just a generalization
for generalization’s sake. Surprisingly, this result plays a key role in a beautiful proof of Huang’s
solving a 30 year problem known as the sensitivity conjecture.

Theorem 9.9 (Huang [?]). Let Q,, be the hypercube graph on 2" vertices. If V. C V(Q,) is a
subset of size 21 + 1, then the induced subgraph Q,[V] has mazimum degree at least \/n.

80



This result is sharp in several ways. First, it is easy to find subsets of size 2"~! such that Q,,[V]
is the empty graph, so in order to get any non-trivial lower bound on the maximum degree one
needs V' to have size at least 2"~! 4 1. Second, Chung et. al. [?] proved that there exist choices
of V such that @,[V] has maximum degree [y/n], so this bound is essentially best possible.

It was shown by Gotsman and Linial [?] that proving a result of this form is equivalent to
showing that two notions of “sensitivity” for Boolean functions are equivalent, which led to a
great deal of interest in resolving it. Nevertheless, it remained unanswered for 30 years until
Huang came up with the following remarkable proof.

The key idea is to define the 2" x 2" matrix B,, recursively by

B, I }

Bo = [0}, Bn = [ I —B,

where here I denotes the identity matrix of dimension 2"~!. Observe that if the negative sign
in the definition of B,, wasn’t there, then this would just define the adjacency matrix of @),.
Thus this is a sort of “twisted adjacency matrix” which has —1’s in some of the positions where
there are usually 1’s. This choice of signings turns out to spread out the spectrum of B, in a
nice way.

Lemma 9.10. The spectrum of B, consists of ++/n each occurring with multiplicity 271,

Proof. Tt is straightforward to prove by induction that B> = nI, which implies that every
eigenvalue A\ of B, satisfies A> = n. Thus o(B,,) consists of =/n, and each must appear with
equal multiplicity because Tr(B,,) = 0. O

We will also need a basic fact from linear algebra.

Theorem 9.11 (Cauchy interlacing theorem). Let B be a real symmetric n X n matriz and C
an m X m principal sumbmatriz of B with m < n. If B has eigenvalues \y > -+ > X\, and C
has eigenvalues py > -+ > iy, then for all

/\i Z g Z )\i+nfm-
Shockingly, we have everything we need for our proof of Huang’s Theorem.

Proof of Theorem 9.9. Let B = B, be as described above. Let V' C V(Q,) be any subset of
size 2"71 4+ 1 and let C' be the submatrix of B indexed by the rows and columns corresponding
to B. Let G = @Q,,[V]. Observe that C satisfies the conditions for M of Lemma 9.8 since B is a
(symmetrically) signed version of the adjacency matrix. By Lemma 9.8, the Cauchy interlacing
theorem, and the previous lemma, we conclude that

A(G) 2 M(C) = Agn1(B) = V/n,

proving the result. O]
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9.3 Beyond Matrices

The linear algebra method extends far beyond just using eigenvalues of matrices to solve prob-
lems. To illustrate this, we briefly look at what is perhaps the most famous application of the
linear algebra method, though this will require us to briefly leave the world of graph theory
and enter the related world of extremal set theory.

Consider the following (somewhat whimsical) setup. The city of Oddtown has a number of
clubs, each of which follows the following odd set of rules: each club must have an odd number
of people, and every two distinct clubs must have an even number of people in common.

The main question now becomes: if Oddtown has n people, what’s the maximum number of
clubs it can have? Equivalently, if F = {F}, Fy,..., F,,} C 2" is a set system such that |F}| is
odd for all 7 and such that |F; N Fj| is even for all i # j, then what is the maximum size of F?
A very simple construction is to take F; = {i} for all 7, which trivially satisfies the stated
conditions. However, it is far from the only construction. For example, if n is even, then one
can also take each F; to be either {i} or [n]\{i}, and there are many, many more constructions

achieving a bound of n (in fact, there’s close to 2"* non-isomorphic constructions due to Szegedy
[7, Exercise 1.1.14]).

Given all of these constructions, it seems plausible that (1) the true answer is indeed n, and
(2) proving this might be difficult (since we have to come up with an argument that somehow
deals with all of these constructions in a unified way). Fortunately, the linear algebra method
manages to give a unified approach for all of these constructions in an extremely elegant way.
More generally, if a given problem has many distinct looking extremal constructions, then it is
often the case that the linear algebra method can come in handy.

Theorem 9.12 (Oddtown). Let F C 2" be a set system such that |F| is odd for all F € F
and such that |F 0 F'| is even for all F # F' € F. Then |F| < n.

Proof. Given a set F' C [n], define its characteristic vector yr € F4 by having (xp); = 1 if
i € F and (xr); = 0 otherwise. Note crucially that for any F, F’, the dot product satisfies

(Xp,xr)=|FNF| mod 2.

We claim that {xr : F' € F} is a set of linearly independent vectors. Indeed, say we had
Z Arxr = 0.

Take any F' € F and apply the dot product on both sides to get
Z Ar(xr, Xr) = 0.
FeF

By the observation above and the hypothesis of the theorem, we see (xr, xp/) = 0if F' # F" and
that (x, xr) = 1. Thus the above says A = 0, and as F’ € F was arbitrary, we conclude
that these vectors are indeed linearly independent.

Since we have |F| linearly independent vectors in F%, we must have |F| < n, giving the result.

O
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While the above technically is a proof without the use of matrices, we note that one can write
an essentially equivalent proof in the language of matrices. However, for many generalizations
of oddtown, the most natural way to use this argument is through the language of vectors (with
these vectors typically being some set of low degree polynomials). We will explore this
further in the exercises.

9.4 Exercises

Throughout this we define the spectrum o(M) of a real symmetric matrix
M to be the multiset of eigenvalues of A and we let \jax, Amin denote the largest and smallest
eigenvalues of A.

1. Prove that if G is connected and has diameter d, then A has at least d + 1 distinct
eigenvalues (Hint: it suffices to show that the minimum polynomial of A has large degree)

2].

2. Prove that if G is a graph with average degree d, then Aya. > d [2-].
3. (Wilf’s Theorem) Prove that if G is a graph, then x(G) < Apax+1; note that by Lemma 9.7

this bound is always at least as strong as the classic bound x(G) < A(G)+1 (Hint: prove
this by induction on v(G) via using the previous problem) [2+].

4. (Hoffman’s Bound for the Chromatic Number) Prove that if G is a graph, then

>

max

AInin

X(G) >1—

Note that this result is immediate from Hoffman’s Ratio Bound if G is d-regular (assuming
the easy to prove fact that d = Apax), so the difficulty is in proving this for non-regular
graphs [3-].

5. Bipartite graphs turn out to have nice characterizations in terms of their spectrum.

(a) We say that a matrix M has spectrum symmetric about 0 if the number of eigenvalues

it has equal to X is the same as the number of eigenvalues it has equal to —\ for all
A

Prove that a graph is bipartite if and only if the spectrum of its adjacency matrix is
symmetric about 0 [2].

(b) Prove that a graph is bipartite if and only if Apnin = —Amax [2]-

6. Prove that if A is the adjacency matrix of K;, then o(A) has eigenvalues equal to Vst
and —+/st with the rest equal to 0 [1-+].
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7. Prove that there exist two graphs G, Gy with adjacency matrices A;, A such that
0(A;) = 0(As) and such that G is connected while G5 is not connected (Hint: there
exist examples where G, Gy have 5 vertices each) [2-].

In general, two graphs with o(A;) = 0(Asy) are called cospectral. Such graphs are impor-
tant in spectral graph theory since they tell us the limitations of what can be determined
by the spectrum of the adjacency matrix. For example, this result shows that one can
not determine whether G is connected or not from o(A) alone.

8. There are various ways to generalize Hoffman’s bound, here’s one direction which changes

how we measure the “size” of an independent set. Given a graph G, a vector z indexed
by V(G), and a set of vertices I, define |I|, = Y, ; 27, and define a,(G) = max; ||,
where I ranges over all independent sets of G.

Prove that if G is a graph and if M is a (not necessarily symmetric) matrix with rows
and columns indexed by V(G) such that M, , = 0 whenever u o v and such that M has a
basis of eigenvectors. If A\, is the smallest eigenvalue of M, and if = is a unit eigenvector
of M with eigenvalue \ > A, then

_)\min
<
O‘r(G) o )\min - A

[1+].

We note that this result can be used to prove a variant of the Erdés-Ko-Rado theorem,
see
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Part IV

Bonus Topics

10 Hypergraphs

TODO. Likely topics: generalized KST, codegree arguments and loose cycle Turan problems,
Turan densities exist and supersaturation, Fisher’s inequality, hypergraph ramsey, Kruskal-
Katona

11 Random Graphs

TODO. Likely topics: thresholds, connectivity, spreadness theorems

12 Planar Graphs

TODO. Likely topics: Euler’s formula, Wagner’s Theorem characterizing planar graphs, 5-color
theorem, minors.

13 Spectral Graph Theory

TODO. Likely topics: adjacency matrix, Laplacian matrix, matrix-tree theorem, Cheeger in-
equality, expanders

14 Advanced Methods

TODO. Likely topics: entropy, hypergraph containers, spreadness, absorption, homomorphism
counting

Note: many of these topics would be covered in exactly the same way as in my notes here.
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