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Due to limited time the following are only sketches of full solutions, and in particular these
solutions alone wouldn’t necessarily constitute a solution worth full marks. I also emphasize
that there may exist other (and possibly simpler) solutions these problems.

1 HW1

0.1 (Handshaking Lemma) Prove that every graph G has
∑

x∈V (G) deg(x) = 2e(G) [2-].

Consider the set of pairs P = {(v, e) : v ∈ V (G), e ∈ E(G), v ∈ e} and for each vertex v
let Pv = {(v, e) : e ∈ E(G), v ∈ e}. Then the Pv sets partition P , giving

2e(G) = |P| =
∑

|Pv| =
∑

deg(v).

Alternatively you could consider the set of pairs {(v, w) : vw ∈ E(G)} which gives a
similar argument.

0.4 Prove that a graph is bipartite if and only if it contains no odd cycles [2-].

If G has an odd cycle (v1, . . . , v2ℓ+1) and a bipartition V1 ∪V2 with, say, v1 ∈ V1, then one
can prove inductively that vi ∈ Vj iff i ≡ j mod 2. But this implies v1v2ℓ+1 ∈ E(G) has
both vertices in V1, a contradiction.

For the other direction, one should prove (or at least cite) (i) a graph has an odd cycle
if and only if it has a closed walk of odd length, and (ii) a graph is bipartite if and only
if each of its connected components is bipartite. With this, if we assume our graph has
no odd cycles then you can define a bipartition on each connected component by picking
an arbitrary vertex v and defining V1 ∪ V2 by having u ∈ V1 iff dist(u, v) is odd. One can
check that this can not have, say, uu′ ∈ E(G) with u, u′ ∈ V1 as otherwise this plus the
paths from u, u′ to v would create an odd closed walk.

1.3a Prove that
z(m,n; s, t) ≤ (t− 1)1/smn1−1/s + (s− 1)n.

(Hint: if you’re struggling with this, try solving the previous problem first) [2].
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Consider the set P of pairs (S, v) where v ∈ V and S ⊆ N(v) is a set of size s. If G
avoids a Ks,t then each of the

(
m
s

)
sets S can belong to at most t − 1 pairs, proving

|P| ≤ (t − 1)
(
m
s

)
. On the other hand a convexity argument shows |P| ≥ n

(
n−1e(G)

s

)
, and

now some algebra gives the result.

1.3b Prove that if G is an n-vertex bipartite C4-free graph then e(G) ≤ 2−3/2n3/2+ o(n3/2), i.e.
the lower bound we got for ex(n,C4) using Gq was best possible in the setting of bipartite
graphs [2-].

Let G be such a graph with parts of sizes m and n − m, and (importantly) without
loss of generality we may assume m ≤ n/2. By the first part with s = t = 2 we have
e(G) ≤ m(n−m)1/2 + (n−m) = m(n−m)1/2 + o(n3/2). One can check (using calculus,
for example), that this expression is maximized in the range 0 ≤ m ≤ n/2 at the value
m = n/2, giving the bound. Note crucially that if we did not assume m ≤ n/2 then the
maximum would be at m = 2n/3, which would give a suboptimal bound.

1.3c Prove that for all s, t there exists a constant C > 0 such that if G is an n-vertex Ks,t-free
graph, then the number of edges xy ∈ E(G) with deg(x) ≥ Cn1−1/s is at most O(n). Find
an example of a graph which has Θ(n) edges of this form (Hint: the intended proof I have
in mind works with C ≈ (s+ t− 1)1/s) [2].

Define an auxilliary bipartite graph B where one part U consists of all vertices of G with
degG(x) ≥ Cn1−1/s and the other part V consists of a disjoint copy of V (G) where we
have xy ∈ E(B) if xy ∈ E(G) and x ∈ U . Observe that B can not contain a Ks,t+s with
the part of size s in U , since if it did then removing the at most s vertices that appear in
both parts of the Ks,t+s from the part of size t+ s would give a Ks,t in G. It follows from
(a) that e(B) ≤ (s+ t− 1)1/s|U |n1−1/s+(s− 1)n. On the other hand, by construction we
have e(B) ≥ Cn1−1/s|U |, so if say C = 2(s+ t−1)1/s|U |n1−1/s then this implies (s−1)n ≥
(s+ t− 1)1/s|U |n1−1/s, and hence e(B) ≤ (s+ t− 1)1/s|U |n1−1/s + (s− 1)n ≤ 2(s− 1)n.
But e(B) is exactly the number of edges of the form that we wish to bound, proving the
result.

An example of a graph which this is tight is an n-vertex star.

1.4a Prove that if G is an n-vertex graph then G contains at least e(G)− ex(n, F ) copies of F
for any graph F with at least one edge [1].

One can prove this by induction on ∆ := e(G) − ex(n, F ), for example, the case ∆ = 0
being trivial. Inductively for ∆ > 0, we have by definition of ex(n, F ) that G contains
some copy of F , let e be any such edge. Then inductively G− e contains at least ∆− 1
copies of F and these copies must be distinct from the copy of F containing e (since these
copies live in G− e), giving the desired result.

1.4b Prove that if G is an n-vertex graph with e(G) ≥ 100n3/2 then G contains at least
Ω(n−4e(G)4) copies of C4 (the number 100 does not matter in case you’d rather prove this
result with a different constant) [2].

For notational convenience let d(u, v) = |N(u) ∩N(v)|. It is not too difficult to see that
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the total number of C4’s in a graph G is
∑

u̸=v

(
d(u,v)

2

)
. By convexity this is at least(

n

2

)((n
2

)−1∑
d(u, v)

2

)
≈ n−2(

∑
d(u, v))2.

Note that
∑

d(u, v) = |P| the set of pairs that we defined in class, and this in turn is lower
bounded by roughly n−1e(G)2 by the convexity argument we did in class, and plugging
this in gives the desired result.

2 HW2

1.8 Verify that if G′ is an n-vertex complete (r − 1)-partite graph then e(G′) ≤ e(Tr−1(n))
[1+].

Let n1, . . . , nr−1 be the sizes of a complete (r − 1)-partite graph on n vertices. Then its
number of edges equals ∑

i<j

ninj.

If there exists some i, j with say ni ≥ 2 + nj, then one can consider a new sequence of
integers defined by replacing ni, nj with ni − 1, nj + 1 and one can easily check that this
strictly increases the sum above. As such, the sum is maximized when all of these integers
are within 1 of each other, and this in turn is only possible if each value is equal to the
floor or ceiling of n/(r− 1) (since in particular, some value must be at least the floor and
some value must be at least the ceiling simply by averaging).

1.9a Observe that if G is a triangle-free graph, then deg(x)+deg(y) ≤ v(G) for all xy ∈ E(G).
Use this to prove Mantel’s Theorem (which is in fact the original way Mantel proved his
result) [2].

Let G be an n-vertex triangle-free graph. Then our observation above implies∑
xy∈E(G)

deg(x) + deg(y) ≤ ne(G).

On the other hand, each term deg(x) in this sum appears exactly deg(x) times, meaning
the sum equals

∑
x deg(x)

2. Note that Cauchy-Schwarz implies that for any sequence of
n real numbers xi that n

∑
i x

2
i =

∑
i 1

2 ·
∑

i x
2
i ≥ (

∑
i xi)

2. Applying this here gives∑
deg(x)2 ≥ n(2e(G))2 which exactly gives the bound that we want.

1.9b Generalize our inductive proof of Mantel’s Theorem to give an alternative proof of Turán’s
Theorem (which is in fact the original way that Turán proved his result).

Instead of deleting a pair of vertices in an edge like we did for Mantel, we now delete a
set of vertices forming a Kr−1. In this case no vertex outside the Kr−1 can be adjacent
to every vertex of this Kr−1, and the same sort of analysis as we did before proves the
result.
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1.10 Let F denote the unique 4-vertex graph with 5 edges (i.e. the graph consisting of two
triangles sharing an edge). Prove (without using ??) that ex(n, F ) = ⌊n2/4⌋ for all n ≥ 4
[2].

We prove this by induction on n, the base cases being straightforward. If we have a
graph with more than n2/4 edges then we know there exists some triangle xyz. Look at
G− x− y− z and observe now that every vertex here has at most one neighbor in x, y, z
since otherwise we create our forbidden graph. Then the same analysis we did for our
previous inductive proof gives the result.
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